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SPECTRAL AND INNER-OUTER FACTORIZATIONS
OF RATIONAL MATRICES*

TONGWEN CHEN AND BRUCE A. FRANCISf

Abstract. Spectral factorization and inner-outer factorization are basic techniques in treating many problems
in electrical engineering. In this paper, the problems of doing spectral and inner-outer factorizations via state-
space methods are studied when the matrix to be factored is real-rational and surjective on the extended imaginary
axis. It is shown that our factorization problems can be reduced to solving a certain constrained Riccati equation,
and that by examining some invariant subspace of the associated Hamiltonian matrix there exists a unique
solution to this equation. Finally, a state-space procedure to perform the factorization is proposed.
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1. Introduction. It has been well established in complex analysis that every function
in the space Hp (0 < p _-< can be written as the product of an inner function and an
outer function 15 ]. Within the class RHo (prefix R means real-rational) ofproper real-
rational functions analytic in the fight half-plane Re s >_- 0, a function is inner if it has
unit modulus on the imaginary axis and outer if it has no zeros in Re s > 0. Thus every
function in RH can be represented as the product of an inner function and an outer
function, and the factorization is unique up to sign.

These concepts generalize to the class, also denoted RH, of proper real-rational
matrices analytic in Re s

_
0. Such a matrix G(s) is inner if G"(s)G(s) I (G’(s) is

defined as G(-s)T), and outer if it has full row rank for every Re s > 0. Obviously, an
inner matrix is tall (number ofrows _-> number ofcolumns) and an outer matrix is wide
(number of rows

_
number of columns). Then every G in RH has an inner-outer

factorization G GiGo, Gi inner, Go outer, the factors unique up to multiplication by
an orthogonal matrix.

The basic idea in order to get an outer factor of G(s) is to do spectral factorization
of G"(s)G(s), and then get an inner factor by matrix inversion. Anderson [1] first
studied the problem of doing spectral factorization by state-space methods. He showed
that spectral factorization could be performed by solving an algebraic Riccati equation
with a certain eigenvalue inequality, and he invoked Potter’s result [14] connecting
Riccati equations and Hamiltonian matrices. However, the procedure in l] contains
some gaps. More recently, Bart, Gohberg, and Kaashoek 2 and Bart et al. 3 developed
a geometric factorization theory based on state-space models. Their work yields spectral
factorization as a special case. Finally, Doyle 6 worked out a state-space procedure for
spectral and inner-outer factorizations when G(s) is injective on the extended imaginary
axis. This procedure is essentially Anderson’s with the gaps filled in.

Spectral factorization and inner-outer factorization are basic techniques in treating
many problems in electrical engineering. In its matrix form, spectral factorization provides
a tool for the solution of the optimal filtering problem 17 ], the impedance synthesis of
n-port networks 13 ], among others. The need for inner-outer factorization arises in Ho
optimal control (e.g., 7 ], 20 ). Inner-outer factorization is also relevant to the robustness
problem of feedback stability 16 ].
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Algorithms to do inner-outer factorization by polynomial methods were proposed
in 5 ]. However, to our best knowledge, the problem of doing spectral factorization of
G" (s)G(s) and inner-outer factorization of G(s) by state-space methods remained un-
solved when G(s) in RH is surjective on the extended imaginary axis. In this case
G"(s)G(s) is singular on the imaginary axis if G(s) is strictly wide, and the spectral
factorization of G"(s)G(s) is more delicate. The purpose of this paper is to study this
problem and to derive a procedure for computing the factorizations starting from a state-
space realization of the transfer matrix to be factored.

Let us now introduce some notation used in the following development. Assume
A Rn n. We identify the matrix A and its corresponding linear transformation x --Ax on R. The matrix A is stable if the spectrum ofA, denoted tr(A), is in the left half-
plane Re s < 0. The image and kernel of the linear transformation are denoted Im A
and Ker A, respectively. For a subspace V c R, (AIV) is the controllable subspace

<AIV>=V+AV+...+A"-V.
The pair (A, B) is controllable if (A Im B) R" and stabilizable if there exists a matrix
F such that A + BF is stable.

Let A and I’ be two disjoint sets such that r(A) A U I’. Let c(s) be the characteristic
polynomial ofA and factor it as a aaav, where aa has zeros only in A, av only in I’.
Then we denote

Xa(A) Ker (A), Xv(A) Ker av(A).

It is observed that Xa(A) is spanned by the generalized eigenvectors ofA corresponding
to eigenvalues in A, similarly for Xv(A). Moreover, if a(A), Xx(A) denotes the
generalized eigenspace ofA corresponding to ,. If A is in Re s < 0 and I’ in Re s >- 0,
we call Xa(A), denoted X_(A), the stable modal subspace relative to A and Xv(A),
denoted X+ (A), the unstable modal subspace.

For a real matrix F, Fr is the transpose. If F is a complex matrix, F* denotes the
complex-conjugate transpose. For polynomial matrices P (s) and P(s), P is equivalent
to P2, denoted by P P2, if there exist unimodular matrices M(s) and N(s) such that
P MPzN.

It is convenient to let [A, B, C, D] stand for the corresponding transfer matrix:

[A,B, C,D] := D+ C(s-A)-1B.

Some useful algebraic operations on transfer matrices using this data structure are collected
in the appendix.

2. Problem formulation. Given G(s) in RH, bring in a minimal realization

G(s)=[A,B,C,D].

It follows from the operations in the appendix that a realization for G" (s)G(s) is

G"(s)G(s)=[A,B,C,D]
where

(1)

(2)

(3)

(4)

A _CTC -A

B’=
-C

.= [DrC Br],
J.=DrD.
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Let us first review the inner-outer factorization problem when G(s) has full column
rank on the extended imaginary axis. In this case, we see that D is nonsingular. Define

H.=-g(/5)-l(.

We shall need the following lemma on spectral factorization.
LEMMA 1. (See e.g., 8 ].) Assume G( s) is injective on the extended imaginary axis.

Then there exists a unique matrix X such that

Moreover,

G_(s)’= [A,B, ()-l/2(DrC+ BrX), (/5) 1/2

is a spectralfactor ofG (s)G(s).
From the lemma, we see that G~(s)G(s)=G"(s)G_(s) and G_,

RH. Let

Go.= G_, Gi.= GG-l

Then we obtain a realization of G;"

Gi [A + BF,B()-1/2, C+ DF, D(.) -1/2

where

F.=-()-I(DrC+BrX).
Thus G GGo is an inner-outer factorization of G with Gi inner and Go outer.

Now suppose G(s) is surjective on the extended imaginary axis, or equivalently,
G(s) has a right-inverse in RL. Then G (s)G(s) is not necessarily invertible in RLoo.
However, Lemma says that the invertibility of G"G in RL guarantees the existence
of an X in the lemma. This motivates us to perturb G"G into G"G + e2I, which is
invertible in RL, and to consider the spectral factor ofG G + eI. Here e is an arbitrary
positive number.

It is easily seen that a realization of G~G + eI is given by the following"

where A, B, C are defined in (1)-(3), and

,.=DrD+eI.
Let the matrix associated with the zeros of G~G + e21 be

H,’= :i-/i(/:5)-C.
By the matrix inversion identity,

(I+AB)-l I-A(I+ BA)-IB,
we see that

(D,) -l (e2I+ DrD) -l I+DrD

r( _DDr)-=-[I--D I+ ID]
=-[I- DT(e2 + DDT)-1 D].
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The expansion

e2I-I DDr)- (DDr)- e2(DDT) -2 -I- e4(DDT) -3

yields

r) D]+Dr(DDr)-2 2DT(DDT)-3(D)-I =.[I_Dr(DD -l D- e D+

To get an associated Riccati equation for our problem, the following derivation
serves mainly as a conceptual tool. It will be justified later.

Define

(5) Eo := I-D r(DD r)-I D,

(6) E := Dr(DD T)-2D.
It is readily verified that DEDr I. Hence the matrix E is the pseudo-inverse ofD rD.
Suppose e is small. We neglect the higher order terms. Thus

Hence

(D,) -l Eo+E.

HE= -CrC -A -CTD (J)-I[DTC Br]

A-B -Eo+E DrC -B -Eo+E B

-CrC+CrD -Eo+E DrC -Ar+CrD Eo+E Br

By the fact that Eo is symmetc and DEo 0, we have

( 1A-BEDrC BEBr+BEoBr

0 -(A-BEDrC)r

Assume that A BEDrC has no eigenvalues on the imaNnaw axis and that there exists
a symmetric matx X such that

X_(H) =Im
X,

Thus X, satisfies the algebraic Riccati equation

( )(A-BEDrC)rX+X,(A-BEDrC)-X, BEBr+BEoBr X=0

and the matx (A BEDrC- BEBrX - BEoBrX) is stable. It can be roved by
a result in 18 that X := lim o X exists. Assume

lira XBEoBrX 0.

From (5), it is readily seen that E Eo. Hence Eo is ositive semidefinite. This together
th the above assumptions implies that XBEo 0. In this way we are led to solve the
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following constrained Riccati equation for X:

(7a) (A-BEDrC)rX+X(A-BEDrC)-XBEBrX=O,
(7b) Xr=X,
(7c) XBEo O,

(7d) (A-BEDrC-BEBrX, BEo) is stabilizable.

3. Spectral and inner-outer factorizations. The existence and computation of the
solution to the constrained Riccati equation are deferred to the next section. In this
section we assume such X as satisfies (7) exists.

Define

(8) Go:=[A,B, Co,DI,

(9) Co := C+DEBrX.
We shall show that Go is an outer matrix in RHoo.

LEMMA 2. (See Minto [12].) Assume G RHoo, and [A, B, C, D] is a minimal
realization ofG. Then thefollowing conditions are equivalent:

(i) G has a right-inverse in RH.
(ii) D is surjective and

X+ A + BF) { 0 }, C+DF 0

for some matrix F.
(iii) D is surjective and

X+(A BEDrC) (A BEDrCIB Ker D)
where E is defined in (6).

Suppose (ii) is satisfied and a fight-inverse ofD is D/. Then a fight-inverse of G(s)
is given by

G+ [A + BF, BD+,F,D+ ].

From (5), the first fact to note is that

(10) Ker D Im E0.
By 7 and (9), the stabilizalility of (A BEDrC BEBrX, BEo) gives that of

(A BED rCo, BEo). Thus it follows from Theorem 2.3 of [19] and then (10) that

X+ a BEDrCo (a BEDrCo Im BEo

(A-BEDrCo IB Ker D).
Therefore, Lemma 2 says that the matrix Go is right-invertible in RH, and hence it is
an outer matrix.

Let Go+ be a fight-inverse of Go in RHo. Define

(11) Gi’= GG+o
Then we have the following theorem.

THEOREM 1. Assume G in RH is surjective on the extended imaginary axis and
that there exists an X that solves (7). Then, with Go, Gi defined by (8), (l 1), Go is a
spectralfactor ofG"G and Gi, Go are inner and outerfactors ofG, respectively.
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Proof. From the previous discussion we know that Go is right-invertible in RHo.
To show that

(12)

use (8) to get

(13)

where

(14)

Define

G~G=G’Go,

GTGo=[Ao,Bo, Co,Do]

Ao :=
_(C+ DEBTX) T( C-I- DEBTX)

C+DEBrX)rD
(o [Dr(C+DEBrX) Br],

jo DrD.

T:=
-X

to get from (13) that

Gg’Go= T-l.oT, T-lo, or,ol
and

A
T-l’o T=

(A BEDrC)X+X(A BEDrC)_XBEDrDEBrX_ CrC

_-[ A_CTC -A07"] by(6)and(7a),

T- : -CrD XBEDrD +XB
B XBEo][_CrD+ by (5) and (6)

_CrD by (7c).

Similarly,

0

oT [DrC Br].
Comparison of the above with the realization of G G in )-(4) gives 12 ). Hence

Go is a spectral factor of G"G.
To show that Gi is inner, we follow (11) and then (12)"

G’Gi (G+o )" (G~G)G+o (G+o )" (G’Go)G+o I.

Hence Gi is an inner matrix.
Finally, post-multiply (12) by Go+ to get

G~Gi=G"
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Post-multiply this by Go and use (12) to get

G’-(G-GiGo)=O.

By our assumption, G(joo) is surjective for 0 -< o -< oc. Then

G(joo) Gi(jo)Go(jo), 0 <- oo <- oo.

Hence G GiGo.
Now we find a realization for the inner factor Gi. Since a right-inverse ofD is just

ED T, it follows from Lemma 2 that a fight-inverse of Go is

G+o [A + BF, BEDT, F,EDr]
where F is any matrix such that

(15) X/(A+BF)={O} and C+DEBrX+DF=O.
Since D is surjective, the solutions of (15 are all the matrices of the form

(16) F=-EDr(C+DEBrX)+F =-E(DrC+BrX)+F, DFI =0.

Thus we compute F such that

X+ A BE(DTC+ BTX -[- BE { 0 } and DF O.

(The existence of such F is guaranteed by (7d). Then define F as in (16). Hence

Gi= GG+o =: [Ai,Bi, Ci,Di]

where

Bi .BED
Di DEDr= I.

Ai= A+B

Ci C DF],

Define the similarity transformation

to get

Gi T-IAi T, T-IBi, Ci T, Di]

A+ BED
[C C+DE],I

[A + BF, BED r, C+ DF, I].

4. The constrained Riccati equation. We have assumed that G(s) is surjective on
the extended imaginary axis. It would be trivial if G(s) is surjective for every Re s > 0,
since in this case G is already outer. Hence we assume that G(s) does not have full row
rank on at least one point in Re s > 0.

Bring in the system matrix

A-s B](18) P(s)=
C D
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DEFINITION. The zeros of G(s) are the roots, counting multiplicities, ofthe invariant
polynomials of P(s).

Equations 18 and (6) yield

(19) P(s) [ C-DEDrC 0

Let K be a base matrix of Ker D. Define

T= [D r g].

Then T is invertible. From (19), we have

[A-BEDrC-s BT]=[A-BEDrC-s BDr BoK]P(s)
0 DT 0 DDr

[A-BEDrC-sO BoK](20)
0 DDr

[, 0

0 A-BEDrC-s B

We see from (20) that the nonconstant invariant polynomials ofP(s) are identical
to those ofthe matrix [A BEDrC s BK]. It follows then that if X is a zero of G(s),
it is also an eigenvalue ofA BEDrC.

Let us denote the set of all rhp (right half-plane) zeros, counting multiplicities, of
G(s) by

(21) A:-" {kl,X2,

Then

(22) a(A BEDrC) { k )km k +1, Xn }

for certain numbers km +1, )kn, counting multiplicities. Define the set

(23) I’:= {Xm+ 1,

We see that the sets A and r are symmetric with respect to the real axis in the complex
plane because G(s) is a real rational matrix.

Assumption 1. The sets A and r as defined are disjoint, i.e., Xi 4: Xj for any 1,
..,mandj=m+ 1,...,n.

This will be a standing assumption in the rest of the development.
PROPOSITION 1. Under Assumption 1, suppose X a(A BEDrC) and Re X > 0.

Then X is a rhp zero of G(s) if and only if Xx[(A- BEDrC) r] is orthogonal to
B Ker D.

Proof. Suppose X is an eigenvalue ofA BEDrC with multiplicity I. Do a Jordan
decomposition of the matrix (A BED rC)r, i.e., find a nonsingular matrix

a:= [qlqz" "qlql+ "qn]

such that

(24) Q-1 (a BEDrC) rQ diag Jx, J]



FACTORIZATION OF RATIONAL MATRICES 9

where Jx is an l l matrix consisting of the Jordan blocks corresponding to ,
Xx

Jx x can be either or 0.

"X

It follows that { q, q, q } is a basis for Xx[ (A BEDrC)r].
Take complex-conjugate transpose of (24) to get

Q* (A BEDrC)(Q* )-1 diag [Jr, J* ].
Then

[A-BEDrC-s BK] [Q*(A-BEDrC-s)(Q*)- Q*BK]

[diag(J-s,J*-s) Q*BK].

Necessity. Suppose further that ), is a rhp zero of G(s). By Assumption 1, ), is an
lth order zero. It follows then that (s ,)t divides all the nth order minors ofthe matrix
[A BEDrC s BK], and hence of the matrix in (25). Now since 2 is not in a(J),
we have

qBK=O, j= 1,2, ,1.
Thus Xx[ (A BEDrC)r] is orthogonal to B Ker D.

Sufficiency. This follows by reversing the argument in the necessity part.
Proposition gives a characterization ofrhp zeros of G(s) in terms ofthe generalized

eigenspace of (A BEDrC)r. Now let us turn to the constrained Riccati equation (7).
The associated Hamiltonian matrix is defined as

A BEDrC BEB
(26) H’=

0 -(A BEDrC)
By (22) and (23), the spectrum ofH consists of four parts:

where

r(H) r(A BEDrC) LI o-[- (A BEDrC) r

=AUFU-AU-F

-A={-x: xA), -r=(--: sr}.
The hypothesis that A f3 1" implies that Xr(A BEDrC) is invariant under A
BEDrC. To establish the main theorem, we make the following assumption.

Assumption 2. There exists a subspace V in R" such that
(i) V is H-invariant.
(ii) a(nlv) -A.
(iii) V is independent ofXr(A BEDrC) (R) { 0 }.
A sufficient condition for the existence of such a V is that -A f3 F .
THEOREM 2. Assume A B) is controllable. Then underAssumptions and 2, there

exists a unique matrix X such that

(27) V(R)[Xr(A-BEDrC)(R){O}]=Im
X

Moreover X solves the constrained Riccati equation (7).
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Proof. Let a base matrix ofXr(A BEDrC) be WI. Then we have

(28) (A BEDrC)WI WIHI
for some matrix H1 such that

(29) a(Hl) I.
Let a base matrix ofV be l/. Then for some HE,

(30) HI/’= l/HE,

r(H2) -A.(31)

Partition V as

It follows from (30) that

(32)

and

(33)

(A BEDrC) V1 BEBrV2 Vl H2

-(A BEDrC) rV2 V2H2.

The above constructions yield

(34) V(R)[Xr(A-BEDrC)(R){O}]=Im[ WO VI].V2
Now we shall prove the results by proving a number of claims.

ChIM 1. Ker V2 { 0 }.
Suppose that Ker V 4: { 0 }. Equation (33) implies that Ker V2 is H2-invariant.

Thus there exists a number X in a(H2) and a nonzero vector z such that H2z Xz, z
Ker V. Post-multiply (32) by z to get

(35) (A BEDrC)VIZ kVIZ.

If VlZ 0, then Vz 0. However V is a base matrix. Hence Vlz 4 O. It follows from
(35) that X is an eigenvalue ofA BEDrC, specifically, X e I’. Hence

Then

VlZXr(A BEDrC) Im WI.

This contradicts property (iii) of our Assumption 2. Thus Claim follows.
CLAIM 2. Im W is orthogonal to Im V2.
Take transpose of (28), then post-multiply it by V2 to get

W A BEOrC rVz H W Vz
Pre-multiply (33) by Wit:

W(A BEDrC) rV2 V1 V292.
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Add the above two equations to get

(36) H W V2 + Wl V2H2 O.

By Assumption 1, r(Hr) f3 a(-H2) . Then (36) has a unique solution WV2 0
(Chapter 8 of 9 ). Claim 2 follows then.

It follows from Claim 2 that

Im V2c(Im W) +/-.

Claim and the definitions of V2 and W imply that dim (Im V2) + dim (Im Wl) n.
So

(37) Im V2=(Im W)+/-.

CLAIM 3. The matrix VV is symmetric.
Take transpose of (33) and post-multiply it by Vl:

V(A BED 7"C)V HVV.
Pre-multiply (32) by V2r to get

V(A BEDrC)V VBEBrV2 + VVIH2.
Then

HVVI + VVH VBEBrV.
Since all the eigenvalues of H2 are in Re s > 0, the above matrix equation has a unique
solution, and it is symmetric.

To show that there exists a unique X such that (27) holds, by (34) it suffices to
show that the matrix [W V] is invertible.

Let us denote the subspace

Y:=(Im[W V])-.
Suppose, on the contrary, that Y 4: { 0 }. Let a base matrix ofY be Y. Then

(38) YrW =0,

(39) YrV =0.

Equations (37) and (38) yield that Y V2M, for some matrix M. Then from (39)
MrVV 0. Hence, by Claim 3,

(40) VV,M=O.
Pre-multiply (32) by Yr and use (39) to get

Yr(A BEDTC)V yTBEB7V: O,

i.e.,

(41) MTV(A-BEDTC)V -MTVBEBTV: =0.

Take transpose of (33) to get

V(A BEDTC) 7. T---H2 V2.
Substitute the above into (41) to get

T T T-M H: Vz V MTVfBEBrV: O.
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Post-multiply this by M, noting VVM 0:

MrVBEBrVEM O.

This together with the fact that E is positive semidefinite yields

(42) YrBE 0

By noting that Im E Im D r, we see that

(43) YrB Im Dr= O.

On the other hand, (33) and Claim imply that Im V2 X[(A- BEDrC)r].
Proposition says that X[(A BEDrC) r] is orthogonal to B Ker D, i.e.,

(44) I/’B Ker D 0.

Pre-multiply by M to get

(45) YrB Ker D 0.

Then (43) and (45) give YrB 0. Hence

(46) Im B Im W V].

Pre-multiply (28) by Yr and use 38 ):

(47) Yr(A BEDrC)W O.

From (41) and (42), we see that

(48) Yr(A BEDrC)V O.

Thus (47), (48) together with the definition of Y yield that Im [W V] is invariant
under A BEDrC. This fact and (46) imply

(A-BEDrCIIm B)clm[W V].

However, the hypothesis that (A,B) is controllable leads us to conclude that
Im [W V] R. Hence the matrix [W V] is invertible.

Define X by the equation

Im[ W0 i] Im [X/]"
Then

x=[o z][w Vl-’.
To show X is symmetdc, it suffices to show

[ [
which is equivalent to

o vv:J vw, vfv,"

The latter follows from Claims and 2.
Define

H3 := A BEDrC- BEBrX
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to get

and

(50)

Pre-multiply (49) by [-X

,(H) ru-.
I] to get

(51 A BEDrC) rX+X(A BEDrC) XBEBrX O.

Hence X solves (7a).
It follows from the fact that X is symmetric and then (44) that

XBKerD=XrBKerD=([WI Vl]-l)r[ 0]BKerD=O’V
Hence X satisfies (7c).

To establish that (H3, BEo) is stabilizable, we first note that

(52) X(A-BEDrC)B Ker D=0, k=0, 1,2, ..-.

This can be proved by induction on k. First it is true for k 0. Assume it is true for
k i. Then by Riccati equation (51),

X(A BEDrC) + 1B Ker D

[XBEBrX-(A-BEDrC)rX](A-BEDrC)iB Ker D

XBEBr (A BEDrC) r X(A BEDrC) B Ker D 0.

Thus (52) holds for all nonnegative integers.
This result immediately yields the following:

(53) (H3 B Ker D) (A BEDrCIB Ker D)
Suppose, for a contradiction, that a is an uncontrollable mode of (H3, BEo) and
Re a > 0. Then from (50),

a I’ c tr(A BEDTC).

From 52) and 53 we see that

H3I (H3IB Ker D)=(A-BEDrC)I(A-BEDrCIB Ker D),
i.e., the controllable modes of (H3, BEo) and those of (A BEDrC, BEo) are identical.
It follows that a is an uncontrollable mode of (A BEDrC, BEo). Thus by definition,
e.g., [11],

rank A BEDrC- a BEo < n

This implies immediately that a is a zero of some invariant polynomial of the matrix
[A BEDrC s BEo hence a is a rhp zero ofG(s). This is a contradiction. Therefore
(H3, BEo) is stabilizable, i.e., (7d) holds. [3

It is worth noting that the proof ofTheorem 2 is constructive. Thus we can compute
a solution X ofequation (7) by finding bases for the eigenspaces ofXr(H) and X_A(H).

PROPOSITION 2. The constrained Riccati equation(7) has at most one solution.
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Proof. Suppose there exist two solutions XI and X2 to 7 ). It follows from (7d) that

Pi A BEDrC- BEBrXi + BEoFi, 1,2

are stable for some matrices Fi, 1, 2. Then

’ x, x + x, x).v

(A BEDrC BEBrX) r(X Xz
+(X-X)(A-BEDrC-BEBX2) by (7c)
[(A-BEDrC)rX +X(A-BEDrC)-XBEBrXI]
-[(A-BEDrC)rX2+X2(A-BEDrC)-X2BEBrX2] by (Tb)

=0 by (Ta).

Since (P) (3 r(-P2) , it follows from Chapter 8 of[9] that the equation
PX + XP2 0 has a unique solution X 0, hence X X2. I-]

5. Algorithm. We notice that the way to calculate the inner factor Gi(s) can be
further simplified. From (15) and (16) in 3 we have

Gi- [A BEDTC BEBTX+ BK, BEDT, -DEBTX, I]
(54)

=:[Ai,Bi, Ci,Di]

where K is such that (A BEDrC- BEBrX + BK) is stable and DK O.
However, it is a fact that the inner factor of G is unique up to right-multiplication

by an orthogonal matrix. Thus, it is claimed that the minimal realization of Gi in (54)
does not depend on K. To see this, let N denote the unobservable subspace of (C, A)
[19]. Since X solves the Riccati equation (7), it is easily shown that

(A-BEDrCIB Ker D)N.
By (53),

Thus

(A BED rC[ B Ker D) (A BEDrC BEBrX[ B Ker D).

(A BEDrC- BEBrXI B Ker D) cN.

This means that the BK-affected modes ofAi are unobservable by Ci. Hence

(55) G; [A BEDrC BEBrX, BED, -DEBrX, I].

We summarize the algorithm to do inner-outer factorization as follows.

Given G(s) in RH and a realization [A, B, C, D], assume G(jw) is surjective for
0 =< w

_
c, and that (A, B) is controllable.

Stel 1. Compute the set _A_ of rhp zeros of G(s):
First find the eigenvalues and generalized eigenvectors of (A BEDrC) r. Then

check the orthogonality of Xx[(A- BEDrC) r] to B Ker D to determine whether a
rhp X A.

Step 2. Compute the solution X to the constrained Riccati equation:
Find a base matrix T for the subspace Xr(H) (R) X-A(H). Partition T as
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Then

X T_T-i

Stel 3. Compute inner factor Gi and outer factor Go:

Go [A,B, C+ DEBrX, D],

G [A BEDrC BEBTX,BED, -DEBTX,I].
Then get a minimal realization of G based on this realization.

The procedures to do spectral factorization of GG are embedded in the above
algorithm. The following is an illustrative example done on PC-MATLAB. Given

s-3 7(s-3) 4(s-5s+6)
s + s - + 10s + 24 s + 6s + 9

G(s)
s 2 + 7s s- 5 3s +

s2+2s+ s+4 s+3

a controllable realization of G(s) is the following"

-2 -1 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 -10 -24 0 0 0 0A= B=
0 0 0 0 0 0 0 0
0 0 0 0 -6 -9 0 0
0 0 0 0 0 0 0 0

-4 -4 7 -21 -44 0
C-

5 -1 9 54 8 24
D=

-1

G(s) has two rhp zeros, A { 3, 1}. The solution to the constrained Riccati
equation is

6 6 0 42 24 -48
6 15 -3 15 3 -111
0 -3 9 7 21

42 15 9 375 231 -147
24 3 7 231 145 -45

-48 -111 21 -147 -45 825

Hence an inner factor and an outer factor of G are

s2- 3s s- 3
s2+4s+3 s2+4s+3

s

s+l s+l

s2+4s 2(4s+ 15)
s + 2s + S2 + 10s + 24

s- + 7s + 3 s + 2s 21
s + 2s + s2 + 10s + 24

4S-
S+3

3S+8
S+3
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6. Conclusion. In this paper we have proposed a state-space procedure to perform
spectral factorization ofG"G and inner-outer factorization of G when G(s) is surjective
on the extended imaginary axis. It has been shown that our factorization problems are
closely related to a certain constrained Riccati equation. To find the solution of this
equation, we first calculate the set ofrhp zeros of G(s), then compute a special generalized
eigenspace of the associated Hamiltonian matrix. Both steps amount to finding a basis
for some invariant subspace of a real matrix. Employing orthogonal similarity transfor-
mations, the real ordered Schur decomposition provides a numerically reliable way to
compute orthonormal bases for invariant subspaces (see, e.g., 10 ). The algorithm derived
in this paper has been coded in PC-MATLAB as .m files based on the real ordered Schur
decomposition and satisfactory numerical results have been obtained. It is worth men-
tioning that the Hamiltonian-Schur decomposition can be employed to perform Step 2
in our algorithm. An algorithm to do this decomposition was described in 4 ].

Appendix. The transfer matrix corresponding to the state space realization
(A,B, C, D) is

[A,B,C,D]’=D+C(s-A)-B.
A collection of operations on transfer matrices in terms of this data structure follows:

[A,B, C,D] T-AT, T-B, CT, D],

[A,B, C,D] -1 [A-BD-IC,BD-,-D-C,D-] (D nonsingular),

[A,B, C,D]’- [-A ,-C,B,DT],

A
A’ BD2

,[DC2 CI],DD2

A2 B2
,[CI C2],DI+D2
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BLOCK KRONECKER PRODUCTS AND BLOCK NORM MATRICES
IN LARGE-SCALE SYSTEMS ANALYSIS*

DAVID C. HYLAND, AND EMMANUEL G. COLLINS, JR.

Abstract. Complex and large-scale systems are often viewed as collections ofinteracting subsystems. Prop-
erties of the overall system are then deduced from the properties of the individual subsystems and their inter-
connections. This analysis process for large-scale systems usually requires manipulating the matrix subblocks
of block-partitioned matrices. Two tools that are useful in linear systems analysis are the Kronecker product
and the matrix modulus (lao.I). However, these tools are designed for matrices partitioned into their scalar
elements. Thus, this paper defines and presents properties of the block Kronecker product and block norm
matrix, generalizations ofthe Kronecker product and matrix modulus to block-partitioned matrices. The utility
of the results is illustrated by deriving in simplified fashion a recent result in robustness analysis.

Key words, block Kronecker product, block norm matrix, large-scale systems

AMS(MOS) subject classification. 15

1. Introduction. In the analysis of complex and large-scale dynamic systems it is
often advantageous to regard the overall system as a collection of interacting subsystems.
Properties of the aggregate system can then be deduced from the properties of the indi-
vidual subsystems and their interconnections. (See, e.g., 6 ], 7 ], 11 ], 14 for a small
sample of the numerous published results that take this approach.) For linear systems,
this type ofanalysis often involves manipulating the matrix subblocks ofblock-partitioned
matrices.

Two tools that have been useful in systems analysis are the Kronecker product and
the matrix modulus. The Kronecker product, for example, has been used to find the
solution of linear matrix equations [1], [4 ], [10 ], [17 ], in the development of matrix
calculus 4 ], 9 ], 13 ], 16 ], and in dynamic sensitivity analysis 3 ], 4 ]. However, the
Kronecker product was designed for matrices partitioned into their scalar elements. For
example ifA, Q, and B are matrices, then the Kronecker product allows us to write

(1.1) vec (AQB)=(Br(R)A) vec (Q)

where vec (.) is the vector-valued operator that stacks the columns of a matrix in a
vector. However, suppose Q were partitioned into matrix subblocks. Then the operation
(1.1) destroys this structure.

The matrix modulus ofthe matrix Q is the matrix qj] and has been used to develop
robust stability conditions for dynamic linear systems [11], [18 ]. However, if Q is par-
titioned into matrix subblocks, the matrix modulus is too fine in that it is based on a
property (the absolute value) of the scalar elements of a matrix. Conversely, a norm
QIIo ofthe matrix Q is too coarse in that it totally ignores the block-partitioned structure

of the matrix.
Tools designed specifically for block-partitioned matrices are obviously needed. One

such collection of tools has been based on matrix majorants and minorants [5 ]. This
paper develops additional results based on the block Kronecker product and the block
norm matrix generalizations, respectively, ofthe Kronecker product and modulus matrix
to block-partitioned matrices.

The paper proceeds as follows. In 2 the block Kronecker product is introduced
and some of its algebraic properties are presented. Then, in 3 the block norm matrix
is defined and some related equalities and inequalities are given. Next, 4 presents results

Received by the editors September 28, 1987; accepted for publication (in revised form) May 9, 1988.
This research was partly supported by Air Force Office of Scientific Research contract F49620-86-C-0038.

f Harris Corporation, Government Aerospace Systems Division, Melbourne, Florida 32902.
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on block-diagonal and diagonal matrix structures. These results are useful in 5, which
uses results developed in the previous sections to derive in a simplified fashion the co-
variance block norm inequality of Proposition 4.2 in [7].

Before proceeding we present some notation. It is assumed that the matrices are, in
general, complex.

Ip p p identity matrix
(R), (R) Kronecker product, Kronecker sum 4 ], 8
CO1/(Z) ith column of matrix Z

COil (Z)

vec (Z) col2.(Z) Z is a p q matrix

colq (Z)
vec-q (z) p q matrix defined such that vec [vecq (z)] z; z is a

vector of dimension pq
Z r transpose of matrix Z
Zn conjugate transpose of matrix Z
zij (i, j) element of matrix Z
Y. Z Hadamard product ofp q matrices Y and

z (Y,Z [y;:;.]) [1]
Y <=<= Z yij - zi for all and j (Y and Z are real matrices of equal

dimension.
nonnegative matrix matrix with nonnegative elements (Z >->= 0)
tr (Z) trace of matrix Z
kmin(Z), kmax(Z minimum and maximum eigenvalues of Hermitian

matrix Z
ri(Z) singular value of matrix Z
0"mi (Z), O’ma (Z) smallest and largest singular values of matrix Z
zllo any norm of matrix Z (not necessarily induced by a vector

norm
Z II, any norm of matrix Z induced by a vector norm II"

([I z 1[ maxllyll =l Zyll)
yll 2 Euclidean norm of vector y
Z IIs Spectral norm of matrix Z, induced by the Euclidean

norm I1" I1=
IIz I1 Frobenius norm of matrix Z (llz I1 ]i j Izl)
2. Block Kronecker products. This section introduces the block Kronecker product

and a related vector-valued function vecb (.). The algebra associated with the block
Kronecker product is also presented (see Table A). The reader familiar with the standard
Kronecker algebra will quickly recognize that the block Kronecker algebra is almost
identical. This is essentially due to property (A.3) of Table A.

It should be recognized that below the primary consideration is the special case of
square matrices with square diagonal blocks. This restriction is to avoid notational com-
plexity and confusion. However, most of the results extend to more general partitions.
The extensions require a clear definition of how various matrices are partitioned (such
as when multiplying rectangular matrices A and B).

Consider the n n partitioned matrices

(2. la) A [Aij](i,j= i, ,r),

(2. lb) B= [Bij](i,j= 1, ,r)
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where Aij and Bo are n n and Y i-- ni n. The n2 vector vecb (A) is defined by

(2.2) vecb (A)

vec (A)

vec (Arl)
vec (a 12)

vec (A2)

vec (A)

Notice that vecb (.) is a linear operator_
We need to define an operation A (R) B such that for an n n matrix D partitioned

identically to A and B

(2.3) vecb (BDA T) (A(R)B) vecb (D).

This motivates the definition of the block Kronecker product of A and B, denoted by
A B. A B is the n 2 X n2 matrix defined by

(2.4) A(R)B &

AI@B A2@B A@B
A@B A@B A(R)B

Arl’B Ar2"B Arr’B
where the n in njn matrix product Ao (R) B is defined by

(2.5) Ao(R)B&

The block Kronecker sum ofA and B is denoted by A ) B and is defined by

(2.6) A(R)B=A(R)ln+I,(R)B.

Recognize that if the matrices A, B, and In are partitioned into their scalar elements
(i.e., r n) then A (R) B A (R) B and A (R) B A (R) B, so that the block Kronecker
product and block Kronecker sum reduce, respectively, to the Kronecker product and
Kronecker sum.

Some of the basic algebraic properties of the block Kronecker product and block
Kronecker sum are presented in Table A. In this table it is assumed that A and B are
n n matrices partitioned as in (2.1) and C and D are n n matrices partitioned
identically to A and B. Also, f(. denotes an analytic function. The eigenvalues ofA are
denoted by k (i) 1, , n) and a ti) denotes any corresponding eigenvectors. Similarly,
the eigenvalues ofB are denoted by/ i), and (i) denotes any corresponding eigenvectors.
Recognize that if A or B have redundant eigenvalues, then it is possible to have t

a (k) or 3 ts) 3 (k) forj # k. Thus statements (A. 16)-(A.18) in Table A are not redundant.
To understand (A. 18 it is necessary to define the block Kronecker product oftwo

vectors. Consider the n-dimensional partitioned vectors

(2.7a) ,xL ,X r l,

(2.7b) yr= [y,yf yrr
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TABLE A
Algebra ofblock Kronecker products.

(A.1)
(A.2)
(A.3)
(A.4)
(A.5)
(A.6)
(A.7)
(A.8)
(A.9)

(A.10)
(A.11)
(A.12)
(A.13)
(A.14)
(A.15)
(A.16)
(A.17)
(A.18)

vecb (ADB) (Br (R) A) vecb (D)
vecb (AD + DB) (Br 6) A) vecb (D)
A D B PT(A (R) B)P for some permutation matrix P
(A + )) C= A C +B C
A( + C)=A B + A C
(A ) B)= A )
(A ff3 B)(C ) D) (AC) ) (BD)
(A B)-’ A-’ )
B ff3 A Q(A ff3 B)Q for some permutation matrix Q
det (A B) [det (A) det (B)]"
tr (A B) tr (A) tr (B)
(I 3 A)(B ff3 I,,) (B ff3 I,,)(I,, A)
f(I,, (R) A) I,, (R)f(A)
f(A I,,) f(A) I,,
exp (A (R) B) exp (A) (R) exp (B)
The eigenvalues of (A (R) B) are the n numbers X(i)(j) (i, j l, 2, n)
The eigenvalues of (A B) are the n numbers X(i)t(j) (i, j l, 2, n)
a()/3() is an eigenvector ofA B with eigenvalue X)t() and is also an eigenvector ofA B
with eigenvalue X( +/(g).

where x and Yi are n; vectors and Y n n. Then, the n 2 X vector x (R) y is
defined by

Xlly

(2.8) x y - x2 (R). y
Xrg

where

(2.9)

Xi () Yl
x(R) y:

Xi + Yr

The proofs of most ofthe properties presented in Table A are easy once the validity
of (A. l) and (A.3) is established. Thus the proofs of these two statements are presented
and then the proofs ofthe remaining results are discussed with the exception ofproperty
(A. 18 whose proof is presented in detail.

Proofof (A. ). By definition

(2.10) vecb (ADB)

vec ((ADB) 11

vec ((ADB) rl

vec ((ADB) 12

vec A "DB r2

vec ((ADB) It)

vec ((ADB)rr)
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The (p, q) block of (ADB) is given by

(2.11) (ADB)pq , ApjDjiBiq.
i=lj=l

Also,

iq@Apj vec Oji(2.12) vec (ApjOjiniq) (B r

Substituting (2.11 and (2.12) into (2.10) shows that vecb (ADB) may be expressed as
an r r block matrix where the (p, q) block has dimension npnq npnq and is given by, (BTqp@Alj) vec (Djq)

J, (B(R)Az) vec (Djq)
(2.13 vecb ADB ]pq J

(2.14)

, Brap (R) Ao) vec
J

When we use the definition of B (R) A (see (2.5)), it follows that (2.13) is equiva-
lent to

vec (Do)

[vecb(ADB)]q=(B(R)A) vec(.Dzq)I
vec iDrq)J]

Property (A. follows from 2.14 ).
Proofof (A.3 ). Consider the equation

(2.15) ADBT=C,
which is equivalent to

(2.16) (A (R) B) vec (D) vec (C).

Applying (A. 1) to (2.15 ), we obtain

(2.17) (A(R)B) vecb (D)= vecb (C).

There exists a permutation matrix P such that

(2.18a) vecb (C) P vec (C),

(2.18b) vecb (D) P vec (D).

Substituting (2.18 into (2.17 ), premultiplying by P, and using Prp 1,,2 we obtain

(2.19) Pr(A (R)B)P vec (D) vec (C).

Subtracting (2.16) from (2.19 ), we obtain

(2.20) [pT(A(R)B)P-(A(R)B)] vec (D) 0.

Since (2.20) is valid for all choices ofD it follows that the expression in "[ ]" is identi-
cally zero. []

Property (A.2) now follows from (A. 1). Property (A.3) implies that

(2.21) A(R)B=P(A(R)B)Pr.
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The proofs of (A.4)-(A.9 and (A. 12 are then obtained by substituting (2.21 into the
equivalent expressions for the standard Kronecker product and Kronecker sum 4 ], 8 ].
For example, substituting (2.21) into

(2.22)

we obtain

(2.23)

(A (R)B)( C(R)D) (AC)(R)(BD)

P(A (R) B)PrP( C(R)D)Pr= P(AC)(R)(BD)Pr.
By pre- and post-multiplying (2.23) by pT and P, respectively, we obtain (A.7).

The proofs of(A. 10)-(A. 11) and (A. 16 )-(A. 17 follow from the equivalent results
for the Kronecker product and Kronecker sum [4 ], [8 ], the property (A.3), and the
fact that the determinant, trace, and eigenvalues ofa matrix are invariant under similarity
transformation.

Since f(. is analytic, there exists a scalar sequence { f,. } F= 0 such that

(2.24) f()) Z f, X".
n=0

Also, from (A.7) it follows that

(2.25a) In ()A In ()A i,

(2.25b) (A () In A () In.
The proofs of (A. 13 and (A. 14) follow from (2.24) and (2.25). Property (A. 15 follows
from (A.12), the fact that the exponential of the sum of commuting matrices is the
product of exponentials (i.e., if MN NM, e(M/ N) eMeN) and (A. 13), (A. 14),
and (A.7).

Finally, the proof of (A. 18 is presented.
Proofof (A. 18 ). Let COil (M) denote the first column of the matrix M and let the

n n matrices E and F satisfy

(2.26a)

(2.26b)

Then,

(2.27a)

(2.27b)

Using (A.7) we may write

(2.28)

and thus

COIl (E)= O (i),

COil (F)

COil (AE) , i)a (i),

COil (BF)

(A(R)B)(E(R)F)=AE(R)BF,

(2.29) (A (R) B) COil (E(R) F) COIl (AE(R) BF).

Recognize that for any n n matrices M and N

(2.30) COll (M(R)N)= tOll (M)(R)cOll (N).

The first part ofthe proofis completed by using (2.30) and substituting (2.26) and (2.27)
into (2.29) to obtain

(2.31) (A)B)(ot(i))3(J))= k(i)ld,(J)(ol(i))3(J)
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From (2.6) and (A.7) it follows that

(2.32) (A (R) B)(E(R)F) AE(R)F+ E(R)BE

and thus

(2.33) (A (R) B)coil(E(R) F) col (AE(R) F) + col (E(R) BF).

The latter part of the proof follows by using (2.30) and substituting (2.26) and
(2.27) into (2.33) to obtain

(2.34) (A]B)(ot(i)(J))=(,(i)+ lz(J))(ot(i))[3(J)). [[J

3. Block norm matrices. This section defines the block norm matrix and block
comparison matrix of a given matrix. Then some basic properties of the block norm
matrix are presented.

Consider the p q partitioned matrix

(3.1) N= [Nii](i= 1, ,u;j= 1,

where Nij is Pi qj, = Pi P and Z }’ qi q. Then for any matrix norm II" II0
define the u v block norm matrix No [12] by

(3.2) fo-[f]o-[llN+jllo]<+: ,, ,p;j: ,, ,).

The nonnegative matrix No is a generalization ofthe modulus matrix ([ Nij ]) for scalar-
partitioned matrices.

Also, consider the p p partitioned matrix

(3.3) M= [M]<,: , ,)

where Mi is Pi P. Let [l" denote a matrix norm induced by the vector norm
and define the u u block comparison matrix Mo 12] by

(3.4a) Mo [M]o rnij](i,: z, ,u)

where

-1(3.4b) m__ii- IIM7 ,
(3.4c) m;= -IIM;[Io for :j.

Here, by convention, ifMi is singular, then M 0. M0 is a generalization of the
comparison matrix [2 for scalar-partitioned matrices.

Some ofthe properties ofblock norm and block comparison matrices are presented
in Table B. However, before discussing and proving these properties we state the following
results on matrix norms.

PROPOSITION 3.1. Let U be an m n matrix and V an n p matrix. Then

(3.5a) amin(u) VIIF <-- UVIIF- O’max (U) VIIF,

(3.5b) JlUllFrmin(V)<= UVI[ -< IlUlJFamax(V).

Proof. Express UV as

(3.6) UV tr (VnUnUV).
But UnU has the modal composition

(3.7) uHu EH2E
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where E is unitary and

(3.8)

Thus

(3.9)

It follows that

(3.10)

fl diag { a2(U) ) 7=,.

uw 2F tr (VHEHfEV) tr (ftEVVHEH).

tr2min(U) tr (EVVHE)<-II ugllF O’2max (U) tr (EVVHEH).

Inequality (3.5a) then follows since

(3.11) tr (EVV"E)=tr (vvH) vll .
Inequality (3.5b) is proved similarly by using

(3.12) UV[IF tr (uvvHuH). [2]

PROPOSITION 3.2. Let U and V be arbitrary matrices. Then,

(3.13) O’ma (U() V) trma (U) O’ma (V).

Proof.
(3.14) 0"2max U( V) kma ((U() V)(e() v)H).
Using known properties of the Kronecker product [4], [8] we find that

0"2max (e() V)-- kma (uuH() VVn)

(3.15) kmax( UUH))kmax(VVH)

0"2max (U) O’2max (V). [-]

PROPOSITION 3.3. Let U be an arbitrary matrix. Then,

(3.16) vec (U) F vii F.
Proof. The result follows from the definition of the Frobenius norm I1" lIP. []

In Table B, c denotes a scalar, M is a p p matrix partitioned as in (3.3), N and
R arep q matrices partitioned as in (3.1), and Pis an s p matrix partitioned compatibly
with Mand N. A, B, and D are n n matrices partitioned identically in the form (2.1).
The partitions of vecb (D) are assumed to be the vectors vec (Dj) and the partitions of
(A (R) B) are chosen compatibly (i.e., the partitions are all of the form A (R) Bk).

TABLE B
Block norm matrix properties.
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Properties (B.1) and (B.2) follow immediately from the norm properties cNllo
cl IINII0 and the triangle inequality, N / RIIo <= [INII0 / IIRl[0. Property (B.3) is a result

of the triangle inequality and the induced norm property PN[]o <=
Before considering the remaining results, recognize that

(3.17a) trmax (Nij)

(3.17b) O’min(Mii) M T
Properties (B.4) and (B.5) then follow, respectively, from the triangle inequality and the
fight-hand side inequalities of (3.5a) and (3.5b).

Proofof (B.6).
u

(3.18) (MN)ijlIF MiiNij + , MikNkj
k=l F
kb

It then follows from IIN / RII - IINI[ IIRII and (3.5a) that

(3.19)

But since

(3.20)

it follows that

(MN)jlIF O’min(Mii) NoIIF-
u

kNk
k=l

Z IIMklIFIINkIIF,
F k=l

k4:i

(A 03 B) [Aij@ B](i,j= , ,r)

Ao(R)B Ao(R) B2 Ao(R)Br
Ao(R)B2 Ao(R) Bzz Ao(R) B2r

o
A(]) Wrl m(i6 Wr2 mo)Wrr

A)B)s (Ao(R)B) ](i,s ,... ,r).

It follows that

(3.25)

Using (3.13), we write

(3.26)

(3.24) Ao@B=

Property (B.6) follows from 3.22 ).
Proofof B.7

(3.23)

where

u

(3.22) (MN)jlIe >= Z (Ms)ik(Js)kj"
k=l

which is equivalent to

u

(MN)oIIF O’min(Mii)IIN;II+ Z (--liMekiln)II Nkll,
k=l
ki
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Substituting (3.26) into (3.24), we obtain

(3.27) A(R)B] [A]B.
Property (B.7) follows from (3.25) and (3.27).

Property (B.8) now follows from (B.2) and (B.7). Property (B.9) is a result
of(3.16).

4. Diagonal structures. In this section results concerning block-diagonal and di-
agonal matrices are presented. These results are used in the example of the next section.

Assume that A and B are n n matrices of the following form:

(4.1 a) A block-diag { hi } = 1,

(4.1 b) B block-diag { B }
where A and Bi are n >( ni and Z i= rti n Then A (R) B is the n 2 n 2 matrix

(4.2a) A (R) B block-diag { Ci } =
where C is the n in )< nin block-diagonal matrix

Ai@Bl 0

(4.2b) C; A@B2.
0 Ai@Br

Thus A (R) B is block-diagonal with diagonal subblocks of the form A (R) B.
It follows that A (R) B is the n 2 n 2 matrix

(4.3a) A (R) B block-diag {D
where D; is the nn nn block-diagonal matrix

Ai() Bl 0

(4.3b) Di
Ait) B2.

0 Ai()nr

Thus A (R) B is block-diagonal with diagonal subblocks of the form Ai (R) B.
Now suppose v is an r2 vector and E is an r2 X r2 diagonal matrix. Express E as

(4.4a) E block-diag { Ei }ri=1
where the r r diagonal matrix E is given by

(4.4b) E diag { };=1.
Then

(4.5) vec] (Ev)=/r,vec2] (v)

where "," denotes the Hadamard product and

(4.6) /-- ij](i,j= 1,"" ,r).

5. An illustrative example. We now use results from 2-4 to derive the covariance
block norm inequality found in Proposition 4.2 of[7 ].

Consider the nth order system

(5.1) 2(t)=(A +G)x(t)+ w(t)



28 D. C. HYLAND AND E. G. COLLINS, JR.

where w(t) is white noise with intensity V. It is assumed that the n n matrix .4 is a
stability matrix of the following form:

(5.2) i=1

where Ai is n ni ( --1 n n) and represents the dynamics of the ith subsystem. G
is an n n matrix partitioned compatibly with .4. The off-diagonal blocks ofG represent
the uncertain interactions among the various subsystems. It is assumed that for some
nonnegative r r matrix (,
(5.3)

Notice that is a matrix majorant of G 5].
Assuming (A + G) is a stability matrix, the asymptotic state covariance Q satisfies

the Lyapunov equation

(5.4) 0 (A + G)Q+ Q(A + G) 7"+ V.

Assume that all matrices in (5.4) are partitioned compatibly. Then operating on (5.4)
with vecb (.) and using (A.2), we obtain

(5.5) -(A (R)A) vecb (Q) (G(R) G) vecb (Q) + vecb (V),

and thus

(5.6) [-(A (R)A) vecb (Q) ]v [(G(R) G) vecb (Q)+ vecb (V) ]v.

Considering the fight-hand side of (5.6) and using (B.2), (B.4), (B.8), (B.9), and
(5.3) consecutively, we obtain

(G(R) G) vecb (Q) + vecb (V) ]F_--<_ (G) G) vecb (Q) ]v+ [vecb (V) ]v

--<< [G(R) G][vecb (Q) ]v+ [vecb (V) IF(5.7)
--<--< (tTs(R) (7) vecb (r) + vee (l?r)
_=< (t(R) d) vec (OF) + vec (l?V).

Similarly, considering the left-hand side of (5.6) and using (B.1), (B.6), and (B.9),
we obtain

(5.8) [-(A )A) vecb (Q) ]r>_-->_-- (.A....3A) vecb (r).
Thus, from (5.6)-(5.8)

(5.9) (A)A)vec(OF)<=<=(r(R))vec(OF)+VeC(r2F).
It follows from (4.3) that (A (R)A ) is the r2 r2 diagonal matrix

(5.10a) (A (R)A)= block-diag { IDa]s}
where [D]s is the r r diagonal matrix

(5.10b) [D;] diag

Define the n n matrix by

(5.11) .= rmi,(Ai(R)Aj)]i,= l, ,).

Then using (5.10) and (4.5) and operating with vec- (.) on both sides of (5.9),
we obtain

(5.12) 17"* 0F <=<= (OF -I- OF(rT+ "F,
which is the covariance block norm inequality of Proposition 4.2 in [7 ].
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A VARIANT OF KARMARKAR’S LINEAR PROGRAMMING
ALGORITHM FOR PROBLEMS WITH SOME

UNRESTRICTED VARIABLES*

JOHN E. MITCHELLf AND MICHAEL J. TODD

Abstract. A variant ofKarmarkar’s projective linear programming algorithm that can be used on problems
with some unrestricted variables is considered. The variant is derived in two ways. One derivation involves
eliminating the unconstrained variables, and the other involves solving a constrained least squares problem.
The results ofGonzaga are used to show that our algorithm converges in O(nq) iterations where n is the number
of nonnegative variables and q is the precision required in the objective function value.

Key words, linear programming, Karmarkar’s algorithm, unrestricted variables, constrained least squares
problems
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1. Introduction. In this paper we describe a variant of Karmarkar’s algorithm 11
designed to solve linear programs where some of the variables are not constrained to be
nonnegative. The linear programs are assumed to be in standard form. The variant we
develop is a primal projective algorithm; we show that it takes O(nq) steps, each requiting
O(n 3) work, where n is the number of variables constrained to be nonnegative and q is
the precision required in the objective function value. We consider two approaches to
finding a direction, one based on solving a constrained least squares problem and the
other involving elimination of the unrestricted variables. We show that these two ap-
proaches lead to the same direction.

Vanderbei 15 has considered applying the affine variant ofKarmarkar’s algorithm
(see, for example, [4] or [16]) to problems with unrestricted variables. He first assumes
that the free variables have a lower bound and then derives a limiting direction as the
lower bound approaches negative infinity.

Our original problem is written as follows:

minimize cxA + cfxF,

subject to AxA + FxF O,
(P)

g"XA -b g TFXF 1,

XA>=O,

where CA, gA, and xA are n-vectors; CF, gv, and XF are p-vectors; A is rn by n of rank m;
and F is rn by p of rank p. We refer to the constraints

AXA d- FXF 0
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(and any constraints equivalent to these) as the subspace constraints. We refer to
the constraint

gTAxA "k- gfrXF

(and any constraint equivalent to this) as the normalizing constraint.

(D)

The dual problem to (P) is

maximize

subject to

Z

Ary+ zga <-ca,
Fry+ ZgF gA.

We assume that (P) is feasible and that we have an initial feasible solution
(X0Ar, X0Fr) T with X0A strictly positive. (Henceforth, we shall abuse notation and write
(X0A, X0F), etc.) We also assume that the feasible region for (P) is compact. This is equivalent
to saying that there does not exist a nonzero (XA, XF) satisfying

AXA-FFXF=O, gTAxAWgXF=O, XA>=O.
Therefore, if we find a nonzero point (XA, XF) that satisfies all the constraints except the
normalizing constraint, we automatically have

gTAxA W gfXF> O.

This observation is due to Gonzaga [9].
Note that ifwe have a general linear program in standard form with some unrestricted

variables, we can transform it into a problem ofthe form (P). Assume we have a problem
of the following form:

minimize

subject to

O TA XA "- O TFXF,

AXA + TXF--" b,

xA>=O,

where 6A and XA are (n 1)-vectors; kF and XF are p-vectors; b is an m-vector; is m
by (n 1); and/+ is m by p. We homogenize to obtain the following:

minimize OXA

subject to [A I-b] "-PXF’--O,

[011][XA]=t
XA>--O, >=0.

This formulation is equivalent to the original formulation and it is in the general form
(P). Note that gF 0 and that if the feasible region of (’) is compact, so is the feasible
region ofthe homogenized version. Derivations similar to this (but working on problems
without unrestricted variables) can be found in the work of, for example, Anstreicher

], Gonzaga 9 ], Gay 5 ], Steger 13 ], and Ye and Kojima 17 ].
We propose to solve (P) using a variant of Karmarkar’s algorithm. At iteration k

ofthis algorithm we have a solution (XA XF) to (P) and a lower bound zk on the optimal
value of (P). We define Xk to be the diagonal matrix with diagonal elements the entries
of XA SO Xke x, where e denotes a vector ofones ofthe appropriate dimension. Then
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(e, x) is a feasible solution to the following rescaled problem:

minimize ?. + crex,
subject to AYA + FXF-- O,

(P)
TA.a q" grXF 1,

ffa>-_O,

where . k AXe,, ?A ?Ak := XkCA, and a A Xg.4.
Each iteration consists of three steps:
(1) Obtain a new lower bound z z+

_
zk.

(2) Find a suitable vector a7 (dA, dv) in the null space of [1F]. (We discuss
how to choose d in later sections.) Choose a steplength a and set

YA -- e+ aaTA, XV "-" XF+ adF.
(Here a > 0 is such that > 0. For example, a can be chosen by using a line search
on an appropriate potential function, it can take a fixed value, or it can be chosen so
that min { )Ai:

_
--< n } 3 for some fixed such as 0.1 or 0.01. See references 11 ],

[14], and [16].)
(3) Radially project so that the normalizing constraint is satisfied:

Let

gA.Pa +gXF
and then rescale by setting

XkF+ XF/ .
In 2 we derive a feasible direction dby solving a constrained least squares problem,

in 3 we derive a direction by eliminating the unrestricted variables XF, and in 4 we
show that these two directions are equivalent.

2. Obtaining a direction using a least squares approach. The problem is assumed
to have the following form:

minimize ?ArYA + CffwXF,

(P)
subject to A.fA + FXF-- O,

+ gFXF ,
YA>=O,

where YA, (A, and ffA are n-vectors; XF, CF, and gr are p-vectors; .e.ff{mn’ and
F.,mxp.

The dual to this problem is the following"

maximize z,

(IS)) subject to dry+ ZA <- .A
Fry+ zg’= CF.

(This is simply a rescaling of the dual (D) of (P) with the first constraints multiplied by
the components of XA.)

In this section we consider obtaining a direction by solving a constrained least squares
problem. In the case whenp 0, that is, in a standard form linear program, the Karmarkar
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direction can be derived as the residual of the unconstrained least squares problem

(LS(z)) min 1/2 zg )
y

where z is the current lower bound on the optimal value ofthe linear program. (See, for
example, 6]. This reference augments the matrix A used in (LS(z)) by a row of ones.
However, as was shown by Gonzaga 9 ], the direction obtained when solving the least
squares problem with this modified matrix is equivalent to the direction obtained by
solving (LS(z)).) Analogously to that derivation we find a direction for the problem (P)
by solving the following constrained least squares problem:

(CLS(z))
subject to Fry CF-- ZgF,

where z is our current lower bound on the optimal value for (P). We choose this for-
mulation because in (D)the dual constraints corresponding to the variables XF are equality
constraints and therefore any dual feasible solution (y, z) must satisfy the constraints in
(CLS(z)). Then a suitable direction for the constrained variablesA in (P) is the optimal
residual of the problem (CLS(z)). We denote this direction by dcLsA.

We have assumed that F has full column rank and that A has full row rank. Therefore
there exist feasible solutions to (CLS(z)) and the optimal solution is unique. The Karush-
Kuhn-Tucker optimality conditions 7] for y’ to be an optimal solution to the problem
(CLS(z)) are as follows:

(1) There exists v’ e P such that (ry,_ ( zA)) + Fv’= O.
(2) Fry (cF zgF) O.

It should be noted that v’ is unique since we have assumed that F has full column rank.
Therefore, with CLS as above, there exists a direction dcLs (:=V’) such that CLS

:= (dcLs, dcLs.) is in the null space of [A F]. This is the direction we choose to move
in at each iteration of our algorithm for solving (P). We then radially project in order
to satisfy the normalizing constraint.

We now describe a straightforward way to update the lower bound z. Define y(z)
to be the optimal solution to (CLS(z)). Then we can find a lower bound for (P) by
solving

max z
(I3’) z

subject to ry(z) + zA <-.
We will show later that y(z) is a linear function of z (see (2.6)-(2.8)); it follows that
(D’) can be solved by means of a ratio test. Let ’ be the optimal value of (13’). Then
(y(f’), ’) is feasible in (D) so f’ is a valid lower bound for (P). If ’-< zk, we set
Zk + -- Zk and Yk + Yk; otherwise we set Zk / -- ’ and Yk + Y( f’). When there
are no unrestricted variables, this method of updating the lower bound z is equivalent
to the method first given in Todd and Burrell [14].

A representation of the null space of F is necessary to solve the constrained least
squares problem (CLS(z)) and to find explicitly the direction rices. The most numeri-
cally stable method of obtaining this representation is to form the QR-factorization of
F. The standard procedure using this technique is given in Golub and Van Loan [8 ].

We first form the QR-factorization of F:

(2.1) F= QI Q.] -
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where Q m p, Q2 m (m p) and R is a p p nonsingular upper triangular matrix.
If we define

(2.2) Q [Q Q2],

Q is an orthogonal matrix and Q2 is an orthogonal basis for the null space of F.
For ease of notation we define several other quantities:

(2.3)

and

(2.4)

3’= (3,,2)’= (Qlry, Qfy)

A Q .., ,,2 A k2 Qf..
Define A := QrA and A2 QA. Then A1Xk and .42 AXk, so the products

in (2.4) do not have to be computed at each iteration.
The problem (CLS(z))can be rewritten as follows:

(CLS’(z)) r’r

subject to R TI CF-- ZgF.

Note that the constraints of (CLS’(z)) deteine p so (CLS’(z)) is equivalent to the
following unconstrained least squares problem:

(CLS"(z)) min IIJP2--(?A--ZA--JP)II

where p solves

(2.5) R TI CF-- Zgr.

Therefore the solution to CLS’(z)) is

(2.6) (z) R-T(CF-- Zgr),

2.7) f:(z) []-’J:(e-z-Jf,z))
and the optimal solution to (CLS(z)) is

(2.8) YCLs(Z) Qp(z) + Q2P2(z).

For any matrix M, let P denote the projection map onto the null space ofM. The
matrix operator coesponding to P is I- Mr(MMr)-M. Then dCLS, the optimal
residual to the problem (CLS(z)), is ven by

(2.9) dcs, -e(a- za),

where

(2.10)

and

(2.11) A (A fl [R-rgr).

The Karush-Kuhn-Tucker conditions given above yield

(2.12) dcLsv R-1-daTcLs
R-LdP,(G- za).
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When we form the QR-factorization ofFthe constrained dual problem (D’) becomes

max z

subject to Af32 (z) + za =< ?a,
from which f’ can be obtained as above.

If A and F are sparse matrices, a different method should be used to solve the
constrained least squares problem, since it is extremely unlikely that A and A2 will be
sparse. Methods for solving sparse constrained least squares problems are discussed by
Bjrrck [2] and also by Coleman [3] and Heath [10]. One method puts a large weight
on the equality constraints and includes them in the least squares objective. This approach
is related to Vanderbei’s algorithm 15 in that large weights are associated with variables
that are far from their lower bounds. To satisfy the equality constraints in (CLS(z))
exactly, it is necessary to find a basis W for the null space of F. In the dense case, one
way to find such a basis is to perform the QR-factorization of F as in (2.1); the matrix
Q2 produced by this method is an orthogonal basis for the null space of F. When A and
Fare sparse, Wshould be sparse or represented in terms ofsparse matrices, as in methods
for large-scale, equality-constrained nonlinear programming. Then the major work at
each iteration of our algorithm to solve the problem (P) is solving a system of the form

WrrWu r

where r is a fixed vector. This can be solved indirectly provided we can efficiently form
products involving W, A, and their transposes.

3. Obtaining a direction by eliminating unrestricted variables. Consider the origi-
nal problem

(P)

minimize

subject to

CXA-[-CXF,

AXA + FXF O,

gxa +gXF 1,

XA>--O.
In 2 we obtained a direction by solving a constrained least squares problem. In

this section we consider obtaining a direction by eliminating the unrestricted variables.
This requires a representation ofthe null space ofF; the resulting direction is independent
ofthe basis we use for this null space. To facilitate comparison with the direction obtained
in 2 we define the QR-factorization ofF as in (2.1), so Q2 is a basis for the null space
ofF.

Substituting for XF in (P), we obtain the following linear programming problem,
which is a function ofxa only:

minimize

subject to

TAXA
AXA =0,

XA>--_O,

where

(3.1) CA Ca-A rQiR-rcF,

(3.2) a ga-A rQR-rgF,
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and

(3.3) =QA.
For any xA the corresponding XF is given by

(3.4) XF--" --R-QTI AxA.
If the feasible region for (P) is compact, so is that for (’).

(’) is a standard form linear program so we can apply Karmarkar’s algorithm to it
directly. At iteration k we have a feasible solution XA to (’) and a lower bound z on its
value. Note that z is also a lower bound on the value of (P). We define X to be the
diagonal matrix with elements the entries ofXA SO X,e XA. Then e is a feasible solution
to the rescaled problem

where

minimize

subject to

AA,
A2A =0,

:A >=0,

(3.5) .=:=x,e, g:=:=x,, A:=A*.=Ax,.

To obtain the problem (’), we first eliminated the unrestricted variables in (P) to
give the problem (P), then scaled the remaining variables. Exactly the same problem
(P) would have resulted if we had first scaled (P) (ving the problem (P)) and then
eliminated the unrestricted variables.

All variables in () are restricted to be nonnegative so the direction dz for the
variables A is as defined in, for example, Mitchell and Todd 12 ]. Let z be our cuent
lower bound on the optimal value of () (and hence also on that of (P)). Then d,
is ven by

(3.6) dzeI -PA(A- ZA).

(We ignore the projection ohogonal to e, since Gonzaga [9 has shown that the final
directions obtned are equivent, whether or not this addition projection is ffoed.)
After moving in the direction dZl, it is necessaff to radially project the point obtained
in order to satisfy the constraint

(3.7) 1.

Then we can find xv by substituting for a (scaled by X) in (3.4). However, XF is not
necessa in order to solve the problem (P), and so we only need to solve for XF using
(3.4) after finding the optimal XA.

Obsee that instead of finding the new values ofXA by radially projecting to satisfy
the constraint (3.7) and then using (3.4) to find XF, it is possible to find a direction

dzle in the unrestricted variables. By (3.4), dme is ven by

(3.8) dELIM, R-IQAdi,.
Moving in the direction de (d, dne) and then radially projecting to satisfy
the appropriate noalizing constraint is exactly equivalent to the first approach.
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Because there are no unrestricted variables in (), we can update the lower bound
z in the standard way [14] by solving the problem

max z,
(15’)

subject to j rYELIM (Z) + Za =< A,
where

(3.9) YELU(Z) [r]-j(a_ Zffa).

Let ’ be the optimal value of (I)’). If ’ > Zk, set Zk / " ’; otherwise set Zk / -- Zk.

4. Comparing the directions. In this section we show that the directions defined in
the previous two sections are equivalent, and we use the results of Gonzaga 9 to show
polynomial convergence of the algorithm when using either of these directions. We also
discuss the benefits and disadvantages of using this approach as opposed to splitting the
unrestricted variables.

THEOREM 1. The solutions ’ and ’ to (0’) and (0’), respectively, are the same.
For a given point XA, XF) and lower bound z, the direction CLS defined in 2 (equation
(2.9)) and the direction dELIM defined in 3 (equation (3.6)) are the same.

Proof. Note that ?A , , and2 J, where these quantities are defined
in 2.10 ), 3.5 ), 2.11 ), 3.5 ), 2.4 ), and 3.5 ), respectively. Therefore for each z, J2 (z)
(defined in (2.7)) and YELIU(Z) (defined in (3.9)) are the same. Hence f’ ’.

The equivalence of the directions follows directly from their definitions.
It then follows from (2.12) and (3.8) that dcLs. dELIMF, and therefore the two

procedures will generate the same sequence of iterates provided they start from the same
point and use the same stepsizes. The results of Gonzaga [9 applied to () then imply
the following property of our algorithm.

THEOREM 2. For suitable stepsizes a both ofthese algorithms take O( nq) steps to
converge.

Our algorithm requires the solution of a linear program of size m by n. In order to
transform our original problem into this linear program, it wasnecessary to find a basis
W for the null space of a matrix of size m by p, to premultiply our original constraint
matrix A by the transpose of this basis, and also to perform several matrix-vector mul-
tiplications. These steps only have to be done once.

If instead we replaced each unrestricted variable by two nonnegative variables we
would not have this extra cost at the beginning, but we would have to solve a linear
program of size rn by (n + 2p). This linear program has an unbounded set of optimal
solutions, so there is no guarantee that Karmarkar’s algorithm would solve it in a poly-
nomial number of iterations. One way to guarantee polynomial convergence is to place
bounds on the split variables. However, this is not an elegant way to solve problems with
unrestricted variables. (This contrasts with the simplex algorithm which includes unre-
stricted variables in the basis and never allows them to leave--only a minor alteration
to the usual simplex algorithm.)

The main work at each iteration in our algorithm is the solution of a system of
equations Wr,rWu r, a system of equations of size m p. The main work at each
iteration in the alternative algorithm described in the previous paragraph is the solution
of a system of equations (.r + 2FFr)y v, a system of equations of size m. In the
dense case we would expect our algorithm to have a lower operation count per iteration
than the alternative, regardless of the size of p. In the sparse case the balance is more
delicate and depends on the representation and/or sparsity of the basis matrix W. For
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large p we would still expect our algorithm to outperform the alternative; for small p the
comparison would have to be done on a case-by-case basis.
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A MATRIX DECOMPOSITION METHOD FOR ORTHOTROPIC
ELASTICITY PROBLEMS*

HSIN-CHU CHENf AND AHMED H. SAMEH

Abstract. The construction of an efficient numerical scheme for three-dimensional elasticity problems
depends not only on understanding the nature of the physical problem involved, but also on exploiting special
properties associated with its discretized system and incorporating these properties into the numerical algorithm.
In this paper an efficient and parallelizable decomposition method is presented, referred to as the SAS domain
decomposition method, for orthotropic elasticity problems with symmetrical domain and boundary conditions.
Mathematically, this approach exploits important properties possessed by the special class of matrices A that
satisfy the relation A PAP, where P is some symmetrical signed permutation matrix. These matrices can be
decomposed, via orthogonal transformations, into disjoint submatrices. Physically, the method takes advantage
ofthe symmetry ofa given problem and decomposes the whole domain ofthe original problem into independent
subdomains. This method has potential for reducing the bandwidth of the stiffness (mass) matrix and lends
itself to parallelism on three levels. Therefore, it is useful for sequential, vector, and multiprocessor computers.

Key words. SAS domain decomposition method, SAS property, SAS ordering, finite element method,
reflection matrices, reflexive matrices, stiffness matrices, mass matrices, orthogonal similarity transformations,
parallelism, speedup, orthotropic elasticity problems, eigenvalue problems

AMS(MOS) subject classifications. 15A04, 65F05, 65F15, 65N30

1. Introduction. The construction of an efficient numerical scheme depends on
understanding the nature, ofthe physical problem involved, exploiting special properties
associated with its discretized system, and incorporating these properties into the numerical
algorithm. The fast Fourier decomposition of the difference operators of the Poisson
[BuGo70], [SaCh76] and the biharmonic equations [SaCh76], [Bjor83] is a typical
example. The direct application of these fast solvers, however, is limited to separable
problems [Schu77]. The separability of a physical problem depends not only on the
differential equations, but also on the geometry of the boundary and on the form of the
boundary conditions Wein65 ]. The last two conditions do not often hold for problems
in practice.

The SAS domain decomposition method (where the term SAS stands for "sym-
metrical and antisymmetrical" proposed in ChSa87 and Chen88 is a special decom-
position method that decomposes certain classes of physical problems into independent
subproblems by taking advantage of symmetry in these problems. This decomposition
method has its origin in the idea of traditional symmetrical and antisymmetrical ap-
proaches [B1Ka66 ], Szi174 ], [WeJo87 and in generalized coordinate transformations
[Rubi66]. A similar algorithm has been proposed independently in [NoPe87]. In our
SAS decomposition method, we take advantage ofthe symmetry ofthe physical problems
by exploiting important properties possessed by a special class of matrices A,
A n, that satisfy the relation A PAP where P is some symmetrical signed per-
mutation matrix. Unlike the fast Fourier decomposition method, the SAS approach
directly applied to physical problems is constrained only by the conditions ofthe symmetry
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of domain, boundary conditions, and material properties. Therefore, this approach has
much wider applications.

In this paper we present the SAS domain decomposition method for three-dimen-
sional orthotropic elasticity problems with symmetrical domain and boundary conditions.
In 2, we introduce two special classes of vectors and the matrices mentioned above
together with their important properties. In 3, we present the SAS approach for decom-
posing algebraic linear systems and generalized eigenvalue problems whose coefficient
matrices satisfy the desirable relation A PAP. In 4, the impact of such an approach
on developing parallel algorithms for a variety of multiprocessors is illustrated and some
possible parallel implementation strategies on existing and future supercomputers are
provided. In 5, we show how to decompose the element stiffness (mass) matrix of a
rectangular hexahedral element Melo63 into eight submatrices via orthogonal similarity
transformations. These orthogonal transformations can be extended to decompose the
system (mass) matrix ifcertain symmetry conditions exist. In 6, numerical experiments
on two isotropic prismatic bars are presented to demonstrate the applicability and use-
fulness of this domain decomposition method.

2. Special classes of vectors and matrices. Before presenting the SAS approach, we
would like to introduce some basic definitions and fundamental properties regarding
certain classes of vectors and matrices (see also ChSa87 ], Chen88 ).

DEFINITION 2.1. Signed permutation and reflection matrices. A signed permutation
matrix is a permutation matrix with its nonzero elements being either or 1. A reflection
matrix is a symmetric signed permutation matrix.

DEFINITION 2.2. Symmetrical and antisymmetdcal vectors. Let Pbe some reflection
matrix of order n. A vector x n is said to be symmetrical (or antisymmetrical) with
respect to P if x Px (or if x -Px).

Symmetrical and antisymmetrical subspaces. Let P be a reflection matrix. A vector
subspace S c n is said to be symmetrical (or antisymmetrical) with respect to P ifx
Px (or ifx -Px) for any x e S. Figure 2.1 shows geometrically the nonzero symmetrical
subspace 2(p) and antisymmetrical subspace 2a(P) of the 2 space with respect to
some P.

DEFINITION 2.3. Reflexive matrices and subspaces. Let Pbe some reflection matrix
of order n. A matrix A e is said to be reflexive with respect to P ifA PAP. A
subspace S c n is said to be reflexive with respect to P ifA PAP for any A e S.

The SAS properties. A matrix A e n is said to possess the SAS property with
respect to a reflection matrix P ifA is reflexive with respect to P.

When a linear differential operator contains no odd derivative terms with domain
and boundary condition symmetry, the corresponding matrix, say A, derived either from
finite difference [Smit78 ], boundary element [LiLi83 ], or finite element discretization
Zien77 ], can often be arranged in such a way thatA possesses the SAS property, namely,

(2.1) A PAP.

Let Jr, Es, and Fs be symmetric matrices of order r, s, and s, respectively, and be de-
fined by

(2.2) Jr ." E=Er--- .." F= ".
"0 +_1 0 0" +1

Three of the most desirable forms of P are given by

(2.3) P= Jr(R) E, P= Jr(R) Fs, P= Ir(R)
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X
0

P 1

FIG. 2.1. The nonzero symmetrical and antisymmetrical subspaces of with respect to P.

X e
0 1
1 0

FIG. 2.2. The decomposition ofa vector b into its symmetrical part u and antisymmetrical part v.

where (R) denotes the Kronecker product (or tensor product), r X s n, and/r is the
identity matrix of order r. Other forms of the matrix P are possible. It is worth noting
that P is involutory.

Let P be some reflection matrix of order n and c(p) and an(p) be two subsets
of the vector space cn defined by

(2.4a) Cgs(P)-- {xlx cgn and x= Px},

(2.4b) a(P) --- { xlx cgn and x -Px}.
THEOREM 2.4. Given a reflection matrix P of order n, any vector b qg" can be

decomposed into two parts, u and v, such that

(2.5a) u + v b

where

(2.5b) ue c(p) and ve c,(p).

The proof is readily established by taking u 1/2 b + Pb and v 1/2 b Pb). The
geometrical decomposition ofa vector b in 2 into its symmetrical and antisymmetrical
parts with respect to some P is shown in Fig. 2.2.

THEOREM 2.5. c(p) and cg(p) are, respectively, symmetrical and anti-
symmetrical subspaces of c with respect to P over the field g. Furthermore, (P)
and cg 2(p) are mutually orthogonal.
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Proof. (1) c,(p) and c](p) are subspaces. From Theorem 2.4, it is clear that
s’(P) is a nonempty subset of ’. Now let x and y be two arbitrary elements in
c8 (p) and a c. The vector ax + y) remains in c (p) since

(2.6) ax+ y) P(ax+ y).

Therefore, Cs(P) is a subspace of " over the field . Similarly, c(p) is also a sub-
space of c over the field c.

(2) Cgs(P) and c(p) are orthogonal. For any x e (P) and any y e (P),
we have

(2.7) (x, y) (Px, -Py) -(x, y) 0

where (., .) denotes an inner product. Hence s’(P) and (P) are mutually
orthogonal.

(3) Since c,(p) and (P) are subspaces, we conclude from (2.4) and Definition
2.2 that qq " (P) and c(p) are, respectively, symmetrical and antisymmetrical subspaces
of cg, with respect to P over the field cg. U]

In the following, we present two more useful theorems. Theorem 2.6 indicates that
the inverse ofa reflexive matrix is also reflexive with respect to the same reflection matrix
P, and therefore the solution of such a linear system will lie in the symmetrical (anti-
symmetrical) subspace if the fight-hand side vector is symmetrical (antisymmetrical).
Theorem 2.7 states that the addition and multiplication oftwo matrices that are reflexive
with respect to the same reflection matrix P do not change the special SAS property.

THEOREM 2.6. Given a linear system Ax f, A c, n, and f, x c,, ifA is
nonsingular and reflexive with respect to some reflection matrix P, then

A-l pA-1p,(2.8)

(2.9a)

and

(2.9b)

x q(P) ifff6 qg’s(P),

x c](p) ifff
THEOREM 2.7. Given two matrices A and B where A, B cg,n, ifA and B are

both reflexive with respect to the same reflection matrix P, then

(2.10) cI +_ [3B P cI + [3B P

(2.11) (c4)(3B) P(o.4 )(3B)P

where a, 3 .
3. The SAS decomposition method.
3.1. Linear systems. Consider the linear system

(3.1) Ax= b

where A is reflexive with respect to some reflection matrix P and is nonsingular. The
main idea ofthe SAS approach, based on the principle ofsuperposition, is to decompose
the fight-hand side vector b into two parts, say u and v, such that (2.5a) and (2.5b) hold.
This decomposition immediately enables us to handle (3.1) by solving two separate linear
systems, say

(3.2) Ay= u and Az= v

where y + z x. At this point, it is still not clear that solving the two systems in (3.2)
will lead to any advantage. The next important step is to decompose the matrix A into
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two submatrices, say A of order k and A2 of order k2, kl + k2 n, such that instead of
solving (3.1) we can solve the following two smaller independent systems:

(3.3) AI)7 and A’=
where and can be extracted from u and v and actually depend on the form of the
matrix P. Theorem 2.6 yields information on how to decompose the matrix A. For
example, if the matrix A satisfies (2.1) with P of the form

(3.4) P= J2 (R) En/2, n even

and the linear system in (3.1) is partitioned as

(3.5)
A2I

then by taking

(3.6a)

and

(3.6b)

we have

(3.7)

Thus,

(3.8)

t b + En/2b2 ), ) b En/2bl

Y"" (Xl "t- En/2X2) ,= (x2 En/2Xl ),

A =All +AI2En/2, A_ =A22-A21En/2.

x 1/2 (9- En/ZY- and x2 1/2 (’+ E,,/9).
Note that the useful information about the relations between the components of the
solution vector would have been wasted if(3.1) had been solved directly without exploiting
the special property possessed by the matrix A.

In many cases, the decomposed submatrices A and A2 still have the desirable SAS
property. The decomposition cn then be further carded out to yield four independent
subsystems with each submatrix oforder approximately equal to one quarter ofthe order
ofA. This decomposition procedure can be applied recursively to those subsystems until
no disjoint submatrices have the SAS property. For instance, the discrete biharmonic
operator on a rectangular domain with boundary conditions symmetrical about its two
centered axes can be decomposed into four independent subsystems ChSa87 ], [Chen88 ].
The resulting subsystems can then be solved independently using either four processors
as in the Cray X-MP/48 or four clusters as in the Cedar multiprocessor [DaKu86 ]. The
final solution of the original system can be easily retrieved from the solution of the
decomposed subsystems. The implementation of this approach on the Cedar machine
takes full advantage of its three levels of parallelism: problem decomposition among
clusters, parallelism within a cluster, and vectorization within each processor (compared
to only two levels for the Cray X-MP).

3.2. Eigenvalue problems. When the matrix A possesses the SAS property, it can
be shown (via similarity transformations) that the proposed decomposition approach
can be used for solving eigenvalue problems much more efficiently. For instance, if P
takes the form (3.4) and A is partitioned as in 3.5 ), then A is similar toA (R) A2 through
an orthogonal transformation XrAX, where A1 and A2 are the same as in (3.7) and

(3.9) X=- E./2
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The high efficiency realized in handling the problem is due to three main features of the
above technique. First, all the eigenvalues ofthe original matrix A can be obtained from
the decomposed submatrices, which are oflower order. The amount ofwork is, therefore,
greatly reduced even for sequential computations. Second, the extraction ofthe eigenvalues
of the different submatrices can be performed independently, which implies that high
parallelism can be achieved in addition to the computational savings. Third, the eigen-
values in each submatrix are in general better separated, which indicates faster convergence
for schemes such as QR (e.g., see [Wilk65 ]).

To see how much effort can be saved, we consider the QR iterations for a real-
valued full matrix (or order N). In using the QR iterations to solve for the eigenvalues,
we usually reduce the original matrix to a Hessenberg form (a tridiagonal matrix for the
symmetric problem). On a sequential machine, the reduction step takes about cN3 flops
[GoVa83 for some constant c. Suppose the matrix A satisfies PAP A and that it can
be decomposed into four submatrices each of order N/4; then the amount of work
required in the reduction step by using the proposed decomposition method is reduced
to cN3/16, i.e., one sixteenth of the original work. In addition, because of the fully
independent nature of the subproblems we can further reduce the computing time by a
factor between three and four by using, for example, the four central processing units
(CPUs) of a Cray X-MP/48.

Depending on the form of the signed reflection matrix P, several similarity trans-
formations can be derived for this special class of matrices A PAP. Here we present
two important and computationally attractive similarity transformations.

THEOREM 3.1. Let A cg n n, n even, be partitioned as

A2 A22J

with each submatrix being oforder n/2. Let P be oftheform

where P is some signed permutation matrix oforder n/ 2. IfA is reflexive with respect
to P, then there exists an orthogonal matrix X such that A is similar to (Al q- Av_P1 ()
(A22 A21 p1T).

Proof. Consider the orthogonal matrix

111 -;1r](3.10) X=
P

Then we have

(3.11)

X-1AX=- -P1 A21 A22J P I

(All Jr-AI2PI)nU(pT1A21--pT1A22PI) (AI2-PA21pTI )4r(PA22-AIIP)](A2-PAlzP)+(AzzP-PA) (A2_-A2Pr )+(PAPrI -PA)_)

[All +AI2P1 0].0 A-APr
The last expression is a direct consequence of the assumption that A PAP.
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THEOREM 3.2. Let A q#’" be partitioned as (A/j), i, j 1, 2, and 3 with All
and A33 of order r and A22 of order s, where 2r + s n. If A PAP where P is of
theform

P- 0 I 0
PI 0 0

in which P1 is some signedpermutation matrix oforder r, then there exists an orthogonal
matrix X such that A is similar to

(3.12) ]/A21 A22 0
0 0 A33-A31pTI

Proof. Consider the orthogonal matrix

(3.13)
I 0 _pr ]o VIs oX=-- P1 0 I

Then the application of the similarity transformation x-lax yields

(3.14)

X-lAX " 0 VI A21 A22
-PI 0 A3 A32

[ (Al +A13PI)+(pTIA31 +PA33PI)
/’(A21 + A23P1

2 [ (A31-P1AI3P1)+(A33Pl-PiAll)

Ail +AI3PI fAl2 0 ]}/A21 A22 0
0 0 A33-A31pTl

A23 0 V/s
A33 Pl 0

f(AI2+PA32)
A22

1](A32-PIAI2)
T T T T "](AI3-AIIPI )+(PIA33-PIA3tPI

f(A23-A2,P)
(A33 A3 pT) (plA 13 Pl All pT)

As in Theorem 3.1, the final equality expression in (3.14) is obtained by employing the
assumption that A PAP. It should be noted that ifA is Hermitian, then both submatrices
in (3.14) are still Hermitian. The same argument holds for the two submatrices in (3.11).

Note that the application of the above decomposition method can be extended to
the generalized eigenvalue problem Ax XBx without difficulty if B also satisfies the
same requirement, namely, A PAP and B PBP.

4. Parallel implementations of the SAS approach. One of the important features
of the SAS approach, whenever applicable, is the simple procedure involved in decom-
posing the problem into smaller independent subproblems. This approach is, therefore,
very attractive for sequential, vector, and multiprocessor computers. Efficient imple-
mentations ofthe SAS scheme on parallel computers depends not only on the architecture
ofa given machine but also on how the compiler is designed to handle program statements
that can be executed in parallel. If the matrix A is SAS-decomposable, then Table 4.1
shows the potential of parallelism inherent in solving linear systems Ax b via the SAS
approach where nsub is the number of subdomains or submatrices decomposed by the
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TABLE 4.1

Non-SAS Algorithm

Form A
Form b

Solve Ax b

SAS Algorithm

Form A, A2, ,Ansub
Form b

Decompose b into b, b2, bnsub
Solve Ax b (i 1, nsub)
Retrieve x from x x2, , X,,sub

TABLE 4.2

Implementation Quasi-Fortran statements

CVD$L CNCALL
DOi= 1, nsub

Solve Aixi bi
END DO

CVD$L NOCNCALL
DOi= 1, nsub

Solve Aixi bi
END DO

CVD$L CLUSTERCALL
DOi= 1, nsub

Solve Aixi bi
END DO

Execution mode

concurrent outer
sequential/vector inner

sequential outer
concurrent/vector inner

concurrent outer
concurrent/vector inner

SAS approach. The first two implementations are currently available on the Alliant
FX/ 8 parallel computer. The statements (CVD$L CNCALL) and (CVD$L NOCNC-
ALL) are two Alliant optimization directives Alli87 used to indicate whether the next
loop is to be executed in concurrent mode. The third implementation in Table 4.2 is
intended for the Cedar computer where all the A;’s can be formed simultaneously, one
per cluster, and all the systems Aixi bi are solved simultaneously, one per cluster.

In Table 4.1, the decomposition of the vector b into bi and the retrieval of the
solution x from xi, I, ..., nsub, involve only vector operations. The independence
of the subsystems resulting from the SAS domain decomposition implies high-level par-
allelism. Hence, on machines such as the Alliant FX! 8 or Cray X-MP!48 we can solve
one subsystem per processor using a vectorized solver. On a machine like Cedar, however,
we can solve each subsystem on each cluster using parallel solvers, thus taking full ad-
vantage of the three levels of parallelism of the Cedar architecture.

5. The application of the SAS approach to elasticity problems.
5.1. Orthotropic elasticity problems. To demonstrate the effectiveness of the SAS

domain decomposition method, we consider the three-dimensional static analysis of
orthotropic elasticity problems. The mathematical formulation for such an analysis
[Lekh63 is briefly described below. Let 2 be the domain in R 3, 1 the boundary surface
where displacements are specified, and I’2 the boundary surface where tractions are known.
Let the stress, displacement, body force, and surface traction vectors be denoted by
b, and p, respectively, where a r Jail 0"22 0"33 0"12 O"13 0"23], T [1, J2, 3], bT
b, b2, b3 ], and p r [p, p2, P3 ]. Here the superscript T stands for the transpose and

the subscripts 1, 2, and 3 represent the three Cartesian directions x, y, and z, respectively.
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The differential equations and boundary conditions for an orthotropic elasticity solid
can be expressed in the following matrix form:

(5. la) ’rD’a + b 0 inf

subject to

(5. lb) /i b on Il,

(5.1c) p’Co’--pb on I2
Here e is the differential operator:

(5.2)
0 0

C is the matrix of the direction cosines:

(5.3)
cos (n, x 0 0

C 0 cos (n,x2) 0
0 0 cos (n, x3)

cos (n, x_) cos (n, x3)
cos (n, Xl) 0

0 cos (n, X

0 ]cos (n, x3)
cos (n, x2)

and D is the material property matrix:

(5.4a) D

d d12 d13
d2 d22 d23
d13 d23 d33

d44
d55

d66
The symbols (n, xi) in 5.3 denote the angles between x; and the outward normal n to
the surface I’2, and dij in (5.4a) represent the elastic constants for orthotropic material
[Lekh63]. For isotropic material, the material property matrix is simplified to

(5.4b)

E
(1 + v)(1 2v)

1-v v v
v 1-v
v v

(1 2v)/2
(1 2v)/2

(1 2v)/2

where E and u represent the material modulus and the Poisson’s ratio, respectively.
Solving (5.1) analytically is not always possible. Numerical approximation techniques
are therefore necessary. In this paper, we employ the finite-element method using the
basic 8-node rectangular hexahedral elements [Melo63 ], [Dawe84] for our numerical
approximation. Figure 5.1 shows the node numbering and positive directions of the
degrees of freedom of the element. At a given node the unknown in the direction of Xl
is always followed immediately by the unknowns in the direction of axes x2 and x3,
respectively. We denote the dimensions of the element along x, x2, and x3 by 2/1, 2/2,
and 2/3, respectively. The element stiffness matrix and mass matrix for an orthotropic
element as shown in Fig. 5.1 are given [Melo63 ], [Prze68 ], [Chen88] in Appendices A
and B, respectively.
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FIG. 5.1. A basic rectangular hexahedral element.
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5.2. The SAS decomposition of the stiffness matrix. The SAS domain decompo-
sition method is directly applicable to the system stiffness and mass matrices assembled
from the elemental matrices when a three-dimensional orthotropic/isotropic elasticity
problem with symmetrical domain and boundary conditions is symmetrically discretized
by rectangular hexahedral elements. One way of showing this is to begin by proving that
the element stiffness (mass) matrix possesses the SAS property with respect to some
reflection matrix. In the following theorem we show how to recursively decompose the
element stiffness matrix K(e) into eight submatrices.

THEOREM 5.1. Let E3, F3, and G3 be defined as

(5.5) E3 F3 G3
-1

and Ik be the identity matrix of order k. If the material of the rectangular hexahedral
element shown in Fig. 5.1 is either isotropic or orthotropic with its principal directions of
orthotropy coinciding with the three coordinate axes, then the element stiffness matrix
K(e) ofthis element, partitioned as (Kij), <= i,j <= 8, with each submatrix being oforder
3, is orthogonally similar to

(5.6) gsss( gssa( gsas( gsaa( gass( gasa(gaas( gaaa

where

Ksss= (As + CsF3) + (Bs + DsF3)G3,

gssa G3(As + CsFa)G3 G3(Bs + DsF3),

Ksas F3(AsF3 Cs) + F3(BsF3 Ds)G3,

gsaa G3F3(AsF3 Cs)G3 G3F3(BsF3 Ds),
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gass= (Aa + CaF3) + (Ba + DaF3)G3,

(5.7)

gasa G3(Aa + CaF3)G3- G3(na + DaF3),

gaas F3(AaF3 Ca) + F3(BaF3 Da)G3,

gaaa G3F3(AaF3 Ca)G3 G3F3(BaF3 Da),

with

As Kll + KI5E3, Aa E3Kl E3 E3K15,

Bs KI2 + KI6E3, Ba E3KI2E3 E3KI6,

Cs KI3 + KITE3, Ca E3KI3E3 E3KI7,

Ds KI4 + K8E3, Da E3KI4E3 E3K8.

Proof. From the explicit form of g(e (see Appendix A), we observe the following
three-level relations:

Level 1.

K15 K16 K7
K25 K26 K27 K28
K35 K36 K37 K38
K45 K46 K47 K48

K55 K56 K57 K58
K65 K66 K67 K68
K75 K76 K77 K78
K85 K86 K87 K88

g51 K52 K53 K54
g61 K62 K63 K64 (14 () E3 ),=(I4@E3) g71 K72 K73 K74
g81 K82 K83 K84

(I4@E3)
Kl KI2 KI3 K14
K2 K22 K23 K24
K3 K32 K33 K34
K41 K42 K43 K44

(I.(R)Es).

Level 2.

(5.9)

Level 3.

Kl3
K3

K33
K43

K53
K63

K73
K83

K41 [ g31 K32"
K24J I2@F3

K41 K42

K341= h (R) F3 [ KlK44J K21

g4] [K71K64J
(/2 @F3)

K81

K84jK74]-(h@F3)[ K51K61

(h(R)F3),

KI2]
K22j

(/2(R)F3),

K72] (./2 () F3
K82.]

g12 a3K2163, K52 a3K6163,

K22- G3KIIG3,

K32 G3K41G3,

K62 G3KsG3,

K72= G3K81G3,

K42 G3K31G3, K82 G3KTIG3.
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Let P1 and Xl, Ql and Y1, and R1 and Zl be defined as follows:

0 (I4@E3)
and Xl= (I4@E3) IPl=

(I4@E3) 0

0 (I2(R)F3)
and YI

(h(R)F3) 0

and Zl= (Ii@G3) I

From the relations of Level 1, it is seen that K is SAS-decomposable with respect to
By applying the first orthogonal similarity transformation XKX1, we have

(5.11) XKX =Ks@Ka
where

Kl K12 Kl Kl4 Kl Kl6 Kl Kl8 E3
g21 K22 K23 K24 K25 K26 K27 K28 E3Ks g31 K32 K33 K34

+ K35 K36 K37 K38 E3
g41 K42 K43 K44 K45 K46 K47 K48 E3

(5.12)
K55 K56 K57 K58 Ks K52 K53 K54
K65 K66 K67 K68 g61 K62 K63 K64 E3ga--
K75 K76 K77 K78 g71 K72 K73 K74 E3
K85 K86 K87 K88 g81 K82 K83 K84 E3

From the relations of Levels and 2 and the fact that E3 and F3 commute, it is not
difficult to show that Ks and Ka are both SAS-decomposable with respect to Ql. A second
application of orthogonal similarity transformations yields

(5.13) Yr KsYl =Kss(R)Ksa, Yrl KaYl =Kas(R)Kaa

where

(5.14)
(KI + K15E3 K12 -t- KI6E3 +
(K21 + K25E3) (K22 + K26E3) (K23 + K27E3) (K24 + K28E3) F3

gsa._ [ (K33 + K37E3)
K43 + K47E3

(K34+ K38E3)]- [ (g31+g35E3)(K44 + K48E3) (g41 + K45E3) K42 + K46E3 F3

Kas [ K5 KS E
K65 K61E3 -][(K57-K53E3)(K56 K52E3)

+
K66 K62E3 K67 K63E3 K68 K64E3 F3

gaa [ (K77 K73E3
K87 K83E3 (K78-K74E3)]_[ (g75-gTlE3)(K88-K84E3) (K85-K81E3) K86 K82E3 F3

Again from the relations of Levels 1, 2, and 3 and the fact that E3, F3, and G3 commute,
it can also be shown that Kss, Ksa, Kas, and Kaa are all SAS-decomposable with respect
to R1. Applying the third orthogonal similarity transformation we obtain

(5.15)
Z gssZ gsss( gssa,

z gasz, gass( gasa,
ZKsoZ =Ks.s(R)K,...

z’gaaZ gaas( gaaa.
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where

(5.16)
Ksss=((K + KsE3)+(K3 + K7E3)F3)W((KI2 + KIrE3)W(K4 + K8E3)F3)G3,
gssa ((K22 q- K26E3)q-(K24 -+- K28E3)F3)-((K21 q- K25E3)q- (K23 q- K27E3)F3)G3,

gsas’- (( g33-l- g37E3)-(g31 d- K35E3)F3)-I-((K34"I" K38E3)-(K32-I-- K36E3)F3)G3,

gsaa g44 q- g48E3 g42 q- g46E3 )F3 g43 4r g47E3 g41 + K45E3 )F3 )G3,

gass K55 gs E3 h- (K57 K53E3)F3 + ((K56 K52E3) d- (K58 K54E3)F3)G3,

gasa ((K66 K62E3) -t- (K68 K64E3 )F3)-((K65 g61 E3 - (K67 K63E3)F3 )G3,

gaas ((K77 K73E3 -(K75 g71 E3 )F3 - ((K78 K74E3 -(K76 K72E3 )F3 )G3,

gaaa K88 K84E3 (K86 K82E3 F3 ((K87 K83E3 (K85 KsE3 F3 G3.
Using the three-level relations (5.8)-(5.10), we obtain (5.7) from (5.16). In summary,
by combining these three levels of orthogonal similarity transformations (5.11), 5.13 ),
and (5.15 ), we have the final expression

SrKS Ksss(R) gssa() gsas() gsaa( gass() gasa( gaas() gaaa
where

with

S XYZ

X=11(R)X, Y=12(R) Y, Z= Ia(R) Z.
Since X, Y, and Z are all orthogonal matrices, the above transformations are numerically
stable. This decomposition can be represented graphically by a three-level binary tree as
shown in Fig. 5.2. ff]

COROLLARY 5.2. The element mass matrix M(e ofthe rectangular hexahedral ele-
ment (see Appendix B) shown in Fig. 5.1 is orthogonally similar to a matrix oftheform
(5.6) ifthe mass density p ofthe element is constant.

FIG. 5.2. The binary tree representation ofthe SAS domain decomposition ofthree levels.
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Motivated by Theorem 5.1, we now present a more general theorem that allows us
to recursively decompose a matrix A into eight submatrices using the same three levels
of decompositions when certain relations exist. The proof of this theorem is analogous
to Theorem 5.1 and therefore will be omitted.

THEOREM 5.3. Let A Cnn, n 8 X s, bepartitioned as [Aij], _-< i,j <= 8, with
each submatrix being oforder s. Let also Es, Fs, and Gs be some reflection matrices each
oforder s and Ik the identity matrix oforder k. Suppose that Es, Fs, and Gs commute
and the matrix A satisfies the same three-level relations (5.8)-(5.10) with E3, F3, and
G3 replaced by Es, Fs, and Gs, respectively. Then A is orthogonally similar to

(5.7)

where

with

Asss(Assa)Asa, (R) Asaa(Aass (R) Aasa ()Aaas ()Aaaa

Ass=(As+CsFs)+(Bs+DsFs)Gs,

Ass,, Gs(As + CsFs)Gs- Gs(Bs + DsFs),

Asas=Fs(AsFs-Cs)+Fs(BsFs-Ds)Gs,

Asaa GsFs(AsFs- Cs)Gs- GsFs(BsFs- Ds),

aass=(Aa+faFs)+(na+DaFs)Gs,

Aa,, Gs(A,, + C,,Fs)Gs- Gs( B,, + D,,Fs),

Aaas=Fs(AaFs-C,)+Fs(B,Fs-Da)Gs,

Aaa,, GsFs(AaFs- Ca)Gs- GsFs(BaFs- D,),

As=All +AsEs,

Bs A I2 -t- A I6Es,

Cs=A13+AITEs,

Ds=AI4+AI8Es,

Aa EsA Es EsA 15,

Ba EsA I2Es EsA I6

Ca= gsAl3Es-EsAl7,

Da EsAI4Es- EsAI8.

THEOREM 5.4. Let the domain ofthe three-dimensional linear isotropic or orthotropic
elasticity problem (5.1), be a cube with its boundary conditions symmetrical about at
least one principal plane. Ifthe principal directions oforthotropy coincide with the three
principal coordinate axes, then the problem can be discretized in such a way that the
system stiffness matrix K assembledfrom K(e) and the system mass matrixMassembled
from M(e) are both SAS-decomposable with respect to some reflection matrix P.

Proof. The proof ofthis theorem is rather lengthy and, therefore, will not be pursued
here. Interested readers are referred to Chen88 for a similar proof for orthotropic plate
bending problems. E]

DEFINITION 5.5. The SAS (or reflexive) ordering. An ordering is referred to as the
SAS ordering if the following rules are satisfied.

(1) The whole domain is divided into two subdomains along a line (or a plane) of
symmetry.

(2) Nodes in a subdomain are ordered such that any nodes on the line (or plane)
of symmetry are ordered last.

(3) Nodes in the second subdomain are then numbered in the same order as their
symmetrical counterparts in the first subdomain; see Fig. 5.3(a) for an ordering in a
two-dimensional case. (SAS ordering in the three-dimensional case is treated similarly.)
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X X X X

x nonzero entries

(c)

FIG. 5.3. Two examples ofthe SAS ordering. (Dashed lines represent lines ofsymmetry.)

If, however, the domain has more than one line (or plane) of symmetry the rules
above are applied recursively on each of the subdomains created by the first line (or
plane ofsymmetry (see Fig. 5.3 (b)). Although we have used the natural ordering within
a subdomain as shown in Fig. 5.3, it should be mentioned that from the SAS ordering
point of view, there is no restriction on what ordering should be used within a given
subdomain. Different ordering, of course, results in different matrix structure. For the
ordering shown in Fig. 5.3 (b), the four decomposed submatrices all have the same struc-
ture, as shown in Fig. 5.3(c). We shall not be concerned with the structure of the un-
decomposed matrix because it need not be explicitly assembled.

In Theorem 5.4 we did not specify the form of the reflection matrix. Such a matrix
depends on many factors, such as the ordering of unknowns, the plane(s) of symmetry,
and the number ofnodes on the plane(s) ofsymmetry. If, for example, we symmetrically
discretize the problem into two subdomains and place no nodes on the plane ofsymmetry,
then by employing the SAS ordering and retaining all dummy unknowns associated with
the boundary conditions in the system (in other words each node retains all three un-
knowns in the same order as shown in Fig. 5. whether or not it has constraints), we
obtain a system stiffness (or mass) matrix that is SAS-decomposable with respect to the
following reflection matrix:

0 (&(R) $3)](5.19) P=
(/(R) $3) 0
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where the subscript L represents the number of nodes in each of the two subdo-
mains and

E3 if np is parallel to x,

if np is parallel to x2,

if r/p is parallel to x3,

where E3, F3, and G3 are defined in (5.5) and np stands for the normal of the plane of
symmetry. If however there are K additional nodes on the plane of the symmetry then
the reflection matrix may be given by

0 0 (I,(R)$3)]P= 0 (I/c(R) $3) 0
(I,(R)$3) 0 0

(5.20)

To close this section, we should bear in mind that the reflection matrix with respect to
which a matrix is SAS-decomposable need not be unique.

6. Numerical experiments.
6.1. Physical problems. The physical problems we consider for our performance

tests are two prismatic long bars, B and B2, as shown in Figs. 6.1 and 6.2, respectively.
Both bars are assumed to be isotropic. Bar B [Wang53], [TiGoT0] is fixed at the left
end, i.e., the displacements in all three directions on the plane x 0 are equal to zero.
Bar B2, having the same uniform cross section, is fixed at both ends: x 0 and x L.
The loading we consider for B is a simple bending moment M applied at its right end,
while for B2 we apply a downward line load q at the two-thirds position of the bar from
the left end. The dimensionless values for the constants L, M,... etc. are given in
Table 6.1.

We use the basic 8-node rectangular hexahedral elements with several different finite-
element discretization grids. These are Nx Ny Nz grids where Ns s x, y, or z)
denotes the number of grid spacings in the direction of s. All discretized elements are
identical in size. A 16 5 5 grid is shown in Fig. 6.3.

Since the domain and boundary conditions ofbar B are symmetrical about planes
xy and xz and the problem is symmetrically discretized, the system stiffness matrix can
be decomposed into four disjoint submatrices. Similarly, we can decompose the system
stiffness matrix of bar B2 into eight disjoint submatrices because it is symmetrical about
three principal planes. In practice we do not actually decompose the assembled system

z z

FIG. 6.1. The prismatic bar B 1.

z q q

2L/3 L/3

FIG. 6.2. The prismatic bar B2.
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TABLE 6.1
Dimensionless constants.

Constants

Values

L b c

30.0 1.5 2.0

E v

1000.0 0.3

M q

60.0 200.0

stiffness matrix. Instead, we need decompose only the element stiffness matrices involved
before assembling them into the system.

To conveniently decompose and assemble the disjoint submatrices while taking
advantage of the SAS property possessed by the system matrix, we use the SAS ordering
to number the nodes between subdomains for all discretization. Within each subdomain
we use the natural ordering, plane by plane, starting from the plane x L, which has
fewest points as compared with planes parallel to either y 0 or z 0, in order to
minimize the bandwidth of the resulting matrix. On each plane the natural ordering is
applied beginning with the direction which has fewer points. Note that the decomposability
of the resulting linear system is independent of the fight-hand side vector and therefore
the symmetry of external loadings is not one of our main concerns.

6.2. Comparisons of results. The exact solutions ofthe three displacements for bar
B are given TiGo70 ], respectively, by

6z
2Ely

x vy2 + vZ2

where ly is the moment ofinertia ofthe cross section ofthe bar with respect to the neutral
axis parallel to the y axis. The comparison of displacements between the numerical
approximation via the SAS decomposition technique and the exact solution for bar B
at (x, y, z) (30.0, -0.75, 1.00) is shown in Table 6.2. The exact solution for bar B2
is not available. We therefore compare the numerical solution at (20.0, -0.75, 1.00)
with a solution obtained by using the isotropic parametric element L3DISOP LoDo86
implemented in POLO-FINITE, a structural analysis software package developed at the
Department ofCivil Engineering, University ofIllinois. The comparison is given in Table
6.3. For each discretization grid, identical numerical results (except round-off errors)
were observed whether the problem was solved via the SAS approach or as a single
domain without using decompositions.

FIG. 6.3. The 16 5 5 discretization grid (not in scale).
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TABLE 6.2
Solutions obtained via the SAS approach.

(For bar B1 at (30.0, -0.75, 1.00).)

Grid 1655

-0.1337

-0.1029

0.2001

3255

-0.1652

-0.1259

0.2473

4855

-0.1727

-0.1315

0.2588

6455

-0.1756

-0.1337

0.2631

Exact

-0.1800

-0.1350

0.2700

TABLE 6.3
Solutions obtained via the SAS approach.

(For bar B2 at (20.0, -0.75, 1.00).)

Grid 1555

-0.1561

-0.1711

-0.2207

45X5X5

-0.2085

-0.2690

-0.2982

7555

-0.2145

-0.2886

-0.3076

15X55
(from POLO-FINITE)

-0.1561

-0.1711

-0.2207

As far as the data storage and the computational efficiency are concerned, we compare
the storage required and the CPU time (all in seconds) consumed on an Alliant FX/8
in solving the resulting linear systems with and without decompositions. Table 6.4 presents
for the decomposed stiffness matrices the minimum half-bandwidth (a symmetric matrix
A (a) is said to have half-bandwidth p if aij 0 whenever [i -j[ >= p), which can
possibly be obtained through the SAS decomposition for both bars when the natural
ordering is employed in each subdomain. The ordering we described earlier in this section
gives this minimum half-bandwidth. It is clear that the SAS domain decomposition can
greatly reduce the storage requirement for most cases. The following four algorithms are
used to test the efficiency ofthe SAS approach. All computations are performed in double
precision.

CHOLSE: An algorithm using Linpack solver DPBFA and DPBSL routines DoMo79
on eight CEs (parallel implementation 2 (Table 4.2));

CHOLCN: An algorithm using Linpack solver DPBFA and DPBSL routines one per
CE (parallel implementation (Table 4.2));

GROWSE: An algorithm using Gaussian elimination where the matrix is stored by
diagonals (rowwise) (parallel implementation 2 (Table 4.2)); and

GROWCN: An algorithm using Gaussian elimination where the matrix is stored by
diagonals (rowwise) (parallel implementation (Table 4.2 )).

For this type of three-dimensional problems, the resulting banded system stiffness
matrix is rather dense within the band. Direct banded solvers are much more efficient
than iterative methods such as (preconditioned) conjugate gradient algorithms. The
comparison ofCPU time for non-SAS (NSUB 1) and SAS (NSUB > 1) approach for
bar B for a grid 64 5 5 grid is presented in Table 6.5. In Fig. 6.4 we plot the CPU
time for all four discretization grids using the-algorithm GROWSE with only one CE
(FX/1). It is seen that the SAS approach is much more efficient than the classical one.
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TABLE 6.4
Half-bandwidth for the decomposed submatrices.

Number of subdomains

Half-bandwidth 132 78 42 42

TABLE 6.5
CPU time on the Alliant FX/8 in seconds for the SAS approach for bar B with grid 64 5 5 using

direct methods.

Algorithm

CHOLSE

CHOLCN

GROWSE

GROWCN

Number of subdomains

95.43
44.58
15.16

94.64
44.30
15.20

91.66
37.55
14.69
(3.74)’

90.71
37.41
14.65

Number of processors

67.09
33.31
13.08

22.80
7.73

47.28
19.55
7.81
(2.00)

20.19
7.60

52.11
27.32
11.97

4.01

26.35
10.89
4.48
(1.14)’

4.22

46.47
25.06
11.55

17.29
7.06
2.98
(0.75)

Numbers in parentheses indicate the CPU time actually consumed when the symmetry of the external
loadings is taken into account by checking the right-hand side vectors of the decomposed subsystems.

This portion of savings in CPU time results mainly from the reduction ofthe bandwidth
of the decomposed submatrices. Figure 6.5 shows the further reduction of CPU time
contributed from the use of multiprocessors, namely, the effect of parallelism. Similar
comparisons for bar B2 are given in Table 6.6 and Figs. 6.6 and 6.7.

If we define - to be the ratio of the time required to solve the problem using the
classical approach on one processor to the time consumed by the SAS approach using
all eight CEs of the Alliant FX/8, then we can see from Tables 6.5 and 6.6 that the
combination of the SAS domain decomposition and parallelism yields ratios z ranging
from 8.26 (CHOLSE) to 30.76 (GROWSE) for bar B 1, and from 8.51 (CHOLSE) to
43.43 (CHOLCN) for bar B2. It should be pointed out that the above speedups did not
take advantage of the symmetry of the external loadings. In other words, we solved all
subsystems without checking their fight-hand side vectors. The speedup in terms of the
ratio of the CPU time using one CE to that using eight CEs ranges from 1.31 and 2.07
for the algorithm CHOLSE and from 4.93 to 5.48 for the algorithm GROWSE. Clearly
if the concurrency is applied to solving a given linear subsystem, GROWSE (Gaussian
elimination) has much more potential than CHOLSE (Cholesky decomposition). If,
however, the concurrency can be applied to one level higher, i.e., solving several inde-
pendent linear (sub)systems, then the Cholesky decomposition may still be competitive,
depending on the number of independent (sub)systems and the number of processors
available. For example, the algorithm CHOLCN, going from one CE to eight CEs, yielded
a speedup of 6.75 for bar B2 when the domain is decomposed into eight independent
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lOO

NSUB

NSUB

NSUB

N 50

(FX/)

16 32 48 64

NUMBER OF GRID SPACINGS IN X-AXIS

FIG. 6.4. CPU time spent in solving linear systems from bar BI via the SAS decompositions (Algorithm
GROWSE).
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S

(NSUB 4)

FX/1

FX/2

FX/4 /
FX/S

16 32 48 64

NUMBER OF GRID SPACINGS IN X-AXIS

FIG. 6.5. CPU time spent in solving linear systemsfrom bar B using multiprocessors (Algorithm GROWSE).
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TABLE 6.6
CPU time on the Alliant FX/8 in seconds for the SAS approach for bar B2 with grid 75 5 5 using

direct methods.

Algorithm

CHOLSE

CHOLCN

GROWSE

GROWCN

Number of subdomains

114.56
53.02
18.10
17.76

114.65
52.62
18.13
17.82

112.95
45.30
17.60
17.53
(8.67)

114.60
45.55
17.80
17.60

Number of

78.86
39.02
15.37
15.14

26.67
9.12
8.97

55.21
22.91
9.15
9.06
(4.63)

23.88
8.89
8.71

processors

62.29
32.32
15.28
14.06

4.79
4.75

32.34
13.11
5.39
5.29
(2.64)

5.08
5.09

55.30
30.25
13.66
13.46

2.64

20.59
8.88
3.52
3.50
(1.75)

3.48

Numbers in arentheses indicate the CPU time actually consumed when the symmetry of the external
loadings is taken into account by checking the fight-hand side vectors of the decomposed subsystems.
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FIG. 6.6. CPU time spent in solving linear systems from bar B2 via the SAS decompositions (Algorithm
CHOLCN).
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FIG. 6.7. CPU time spent in solving linear systemsfrom bar B2 using multiprocessors (Algorithm CHOLCN).

subdomains by the SAS decomposition technique. This speedup would not have been
possible had it not been for the exploitation of parallelism on a higher level.

7. Conclusions. The SAS domain decomposition method and its application to
three-dimensional orthotropic/isotropic elasticity problems with domain and boundary
condition symmetry have been presented. This decomposition method is an efficient and
parallelizable approach for decomposing algebraic linear systems, eigenvalue problems,
and generalized eigenvalue problems that possess the SAS property into smaller inde-
pendent subsystems or subproblems. Mathematically, this approach exploits the important
SAS property possessed by the special class of matrices A PAP where P is some reflec-
tion matrix (symmetrical signed permutation matrix). Using orthogonal (or unitary)
transformations, we decompose the matrix into disjoint submatrices. Physically, the
method takes advantage of the symmetry of a given problem and decomposes the whole
domain of the original problem into independent subdomains. Unlike the fast Fourier
decomposition method, this approach is constrained only by the SAS property and there-
fore has much wider applications.

From the outcome of the numerical experiments presented in this paper, it is clear
that the SAS domain decomposition method is a very efficient approach for problems
that are symmetrically discretizable. For problems that cannot be symmetrically discre-
tized, the SAS domain decomposition method may still be promising, if used in con-
junction with other domain decomposition techniques. Numerical experiments in this
area will be reported later. Other advantages of the SAS approach that are worth men-
tioning are:
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(1) This orthogonal decomposition of a matrix into disjoint submatrices is numer-
ically stable.

(2) The approach lends itself to parallelism on three levels. It therefore is useful
not only for supercomputers like the Cray X-MP series but for multiprocessors of the
Cedar type DaKu86 ], ChSa87 ].

(3) It has potential for reducing the bandwidth of the matrix, thus reducing the
storage requirements when the matrix is stored in a banded form.

Appendix A. The stiffness matrix for an orthotropic rectangular hexahedral ele-
ment. (See Fig. 5.1 for notations and sign conventions.)

FS s] vK(e)=LS21 $22j
=Kte)’

821

Pl
P4 P2
P6 P5 P3
q q4 q6 P
q4 q2 q5 P4

--q6 --q5 q3 --P6
r r4 r6 s

--r4 rE r5 --$4

r6 --r5 r3 s6
S1 $4 $6

--$4 $2 $5 --r4
--$6 $5 $3 --r6

w w4 w6 x
-w4 WE W5 --X4
--W6 W5 W3 --X6

Xl X4 X6 W1
-x4 x2 x5 -w4
x6 -x5 x3 w6
Yl Y4 Y6 Zl
Y4 Y2 Y5 z4

-Y6 -Y5 Y3 -z6
Z1 Z4 Z6 Yl
Z4 Z2 25 Y4
Z6 Z5 Z3 Y6

P
--P4 P2
--P6 P5 P3
q -q4 -q6 P

--q4 q2 q5 --P4
q6 --q5 q3 P6
r -r4 -r6 s
r4 r2 r5 $4

--r6 --r r3
s1 --$4 --$6

$4 $2 $5 r4
$6 $5 $3 r6

P2
--P5 P3

$4 --$6 Pl
$2 --$5 --P4

--$5 $3 P6
r4 -r6 q
r2 -r5 -q4

r5 r3 -q6

sym.

P2
-P5 P3
-q4 q6 P
q2 -q5 -P4 Pz
q5 q3 -P6 P5 P3

X4 --X6 Yl --Y4 Y6 Zl --Z4 --Z6
x2 -x5 -Y4 Y2 -Y5 -z4 z2 z5
X5 X3 --Y6 Y5 Y3 --Z6 Z5 Z3
W4 --W6 Z1 --Z4 26 Yl --Y4 --Y6
W2 --W5 --Z4 Z2 --25 --Y4 Y2 Y5

-w5 w3 z6 -z5 z3 Y6 -Y5 Y3
Z4 --Z6 W --W4 W6 Xl --X4 --X6

Z2 --Z5 W4 W2 --W5 X4 X2 X5
--Z5 Z3 --1426 --W5 W3 --X6 --X5 X3
Y4 -Y6 x -x4 x6 Wl -w4 -w6
Y2 --Y5 X4 X2 --X5 W4 WE W5
Y5 Y3 x6 x5 x3 w6 w5 w3

sym.

P2
-P5 P3
q4 -q6

q2 -q5

q5 q3

Pl
P4
P6

P2
-P5 P3
-$4 $6 Pl
$2 --$5 P4

--$5 $3 --P6
-r4 r6 q

r2 -r5 q4

r5 r3 q6
P2
P5 P3
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Pl 4.0C + 4.0C + 4.0C3,

P2 4.0C8 + 4.0C9 + 4.0Co,

P3 4.0C13 + 4.0C4 + 4.0C,

p4 -2.0C4-2.0C5,

p -2.0C 2.0C,

P6 2.0C6 + 2.0C7,

q 2.0C + 2.0C2- 4.0C3,

q2 2.0C8 + 2.0C9- 4.0Co,

q3 -4.0C3 + 2.0C4 + 2.0C,

q4 1.0C4 1.0C,

q5 -2.0C + 2.0C2,

q6 2.0C6- 2.0C7,

r 2.0C- 4.0C2 + 2.0C3,

r2 -4.0C8 + 2.0C9 + 2.0Co,

r3 2.0C3 + 2.0C4-4.0C5,

r6 .oc6 + .oc7,

s 1.OC 2.0C2 2.0C3,

$2-- -2.0C8 + 1.0C9- 2.0Co,

$3 -2.0C3 + 1.0C4- 2.0C5,

s4 1.0C4 + 1.OCt,

s 2.0C + 2.0C2,

$6-" 1.0C6- 1.0C7,
22Cl =dlll213/V,

C2 d44111a/V,2 2

C3 22=d55112/V,

C4=d1213/12,

C5 d44/3/12,

W --4.0Cl + 2.0CE + 2.0C3,

wE 2.0C8- 4.0C9 + 2.0Co,

W3 2.0C13 4.0C14 nt- 2.0C15,

w4 2.0C4- 2.0C,

w5 1.0CI1 1.0C12

w6 -2.0C6 + 2.0C7,

Xl --2.0Cl + 1.0C2- 2.0C3,

X2 1.0C8- 2.0C9- 2.0Co,

X3 -2.0C3 2.0C + 1.OC5,

X4--" 1.0C4- 1.0C5,

x5 1.OC + o0C12,

X6 -2.0C6- 2.0C7,

y -2.0C 2.0C2 + 1.0C3,

Y2 -2.0C8- 2.0C9 + 1.0Clo,

Y3 1.0C13- 2.0C14- 2.0C5,

Y4 2.0C4 + 2.0C5,

Y5 1.OCll 1.0C12,

3,6 .0c6 + .0c7,

Z 1.OC- 1.OCE- 1.0C3,

Z2-"- 1.0C8- 1.0C9- 1.OCo,

Z3---1.0C13- 1.0C14- 1.OC15,

z4 1.0C4 + 1.0C5,

z5 1.0CII -- 1.OCl2

Z6 1.0C6 1.0C7,

C6 d312/12, C d23l/12,

C7 d5512/12, C2 d66l/12,

C8 N221l13/V,2 2

C9 d441213/V,2 2

22Co d66112/V,

22C13= d33[l12/g,

22C14=d551213/g,

d66113/g,C15 2 2

where d;j are elastic constants; ll, 12, and 13 are as shown in Fig. 5.1; and V 18111213.



MATRIX DECOMPOSITION METHOD 63

Appendix B. The consistent mass matrix for a rectangular hexahedral element. (See
Fig. 5.1 for notation and sign conventions.)

pl11213)216 M8 (R)I3,

8
4
4
2

M8= 4
2
2

8
2 8
4 4 8
2 2
4 2

4 2
2 2 4

sym.

8
4 8
4 2
2 4

8
4 8

where o is the density of the material and 13 is the identity matrix of order 3.
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LINEAR AGGREGATION OF INPUT-OUTPUT MODELS*

ERIC C. HOWEll AND CHARLES R. JOHNSON:I:

Abstract. The aggregation of input-output models is analyzed. Three axioms are shown to characterize a
simple functional form for aggregation; then the properties of the aggregated model are analyzed relative to the
original model. Since an input-output model is driven by a square substochastic matrix, these results can also
be viewed as facts about abstract mappings involving substochastic matrices.

Key words, input-output, aggregation, substochastic matrices, axiomatic aggregation theory, economics

AMS(MOS) subject classifications. 90, 15

1. Introduction. It is clear that some aggregation is necessary for input-output anal-
ysis. The array ofgoods and services produced by an economy is so vast that aggregation
is a prerequisite to estimation ofan input-output matrix; additional aggregation is usually
required by promising confidentiality to survey respondents or by legislating confidentiality
restrictions for statistical agencies. However, most analyses substantially exceed the min-
imum amount of aggregation. Few researchers utilize the largest, least aggregated tables
that are available, perhaps due to the inconvenience of using large matrices, or a belief
that the information lost by aggregation is not a significant source of error.

Methodological questions about aggregation have generated a lively debate in many
areas of economics; this has not been true, however, in input-output analysis. Practically
all theoretical analyses of input-output aggregation have utilized the same functional
form; none has addressed the question ofwhy that functional form was selected. Therefore,
part of our purpose in this paper is to consider input-output aggregation more generally,
and discover what can be deduced axiomatically about functional forms. Special aspects
of the structure of an input-output model make the aggregation literature largely inap-
plicable. Two of the most general axiomatic analyses of aggregation, Wilson (1975 and
Rubinstein and Fishburn (1986), are examples.

Our second aim is to prove several new results about input-output aggregation and
link these results to the existing literature. Most of the known results were established in
several papers in the mid-1950s. Economics has changed in the three decades since, so
the original presentation of these results make them fairly inaccessible. As a result, we
will also provide modern statements ofthe pioneering results, and brief proofs that stress
their logical interconnection. We begin with a briefreview ofhow input-output aggregation
is generally performed.

Suppose that an n-by-n input-output matrix A is to be aggregated from n
"micro commodities," denoted N { l, ..., n }, to m "macro commodities", M
( 1, m ), with m < n. Let an m-by-n matrix S indicate which micro commodities
are to be combined: for all e M and j N, si,j equals if micro commodity j is to be
included in macro commodity and equals zero otherwise. Thus S is a 0, matrix with
exactly one in every column and at least one in every row. (Hence S is column
stochastic.) Let an n-by-m matrix T indicate the proportional weights of each micro
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commodity in its macro aggregate. For all eMandj N, tj,i e 0, ifmicro commodity
j is included in macro commodity and tj,/. equals 0 otherwise, and the sum ofthe weights
of the micro industries assigned to a given macro industry is assumed to be 1. Thus T is
also column stochastic.

The input-output aggregator used in the literature is computed as the matrix
product, SAT.

At least conceptually, however, there are other methods of matrix aggregation avail-
able. For example, McManus (1956) and Morimoto (1971) consider aggregation where
S may contain any positive weights; Neudecker (1970) considers an aggregator chosen
to optimize a particular objective function; and Leontief (1967) considers an alternative
notion--aggregation through algebraic elimination ofvariables. Other possibilities include
applying the above aggregation procedure to the (I A - matrix to obtain S(I A - Tand then computing the aggregation of A as (I- [S(I- A)-T]-). Alternatively, we
might use the micro commodities as data to estimate an aggregated matrix, using a
variant of the econometric estimation techniques suggested by Gerking (1976) for esti-
mating input-output models. Or we might first aggregate the columns to produce a rec-
tangular model with m multiproduct industries, and then convert the rectangular model
to a square m-by-m model using the approach outlined by Miller and Blair (1985) for
converting rectangular models to square models.

What can be said about the functional form in input-output aggregation? We turn
first to the axiomatic treatment of general linear aggregation.

2. Axiomatic analysis of linear aggregation. In this section we consider a general
aggregatorf, mapping n-by-n input-output matrices into m-by-m input-output matrices
m < n. We suggest three axioms we might require of an input-output aggregator and
show that these axioms are equivalent to a basic functional form off.

Denote the set of all real n-by-m matrices by Mn,m when n m, Mn,n is abbreviated
to Mn. The usual vector space of real n-tuples will be denoted by R, and vectors from
that space will be assumed to be column vectors.

We consider an (open) input-output model with n commodities given by

x=Ax+ y.

Here x R" is an output vector, y e R is a final demand vector, and A e M,, is an input-
output matrix. We measure amounts of commodities in a common unit (e.g., $) and
make the ordinary assumption of a positive rate of value added in the production of
each commodity. For an input-output matrix A (ai,j), the entry a/.,j, may be interpreted
as the amount (value) of commodity necessary in the production of a unit (dollar’s
worth) of commodity j, given the technology represented by A. Thus ,i ai,j is the
value added per unit of production of commodity j, which is assumed positive. In this
event, the matrix A has nonnegative entries and column sums all less than 1. Such a
matrix is usually called (strictly) column substochastic (since a column stochastic matrix
is a nonnegative one with column sums of 1).

We note that we make these assumptions primarily for simplicity, as broader situ-
ations may be accommodated with no substantive change in our results. In particular,
we could assume that the input-output matrix has column sums that are less than or
equal to 1, and that every irreducible component ofA contains one column where this
inequality is strict. Modifications would have to be made to some ofthe following theorems
because, as we will see, aggregation can alter the irreducibility of a matrix.

DEFINITION 2.1. By an input-output matrix we simply mean a square column sub-
stochastic matrix.
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The input-output equation y (I- A )x can be used to transform an output vector
to a final demand vector. Conversely, since A is column substochastic, (I A) must be
nonsingular, so that x (I A)-ly can be used to transform a final demand vector to
an output vector. Since A is substochastic, the inverse matrix (I- A)-I is nonnegative
and ifA is irreducible, then (I- A )-1 is strictly positive.

We wish to consider general functions mapping n-by-n input-output matrices into
m-by-m input-output matrices.

DEFINITION 2.2. An input-output matrix aggregator is a functionf: Mn -- Mm that
maps the n-by-n input-output matrices into m-by-m input-output matrices m < n. The
k, element of the matrix f(A) will be denoted by f(A)k,t. An input-output matrix B
will be referred to as an aggregation of the input-output matrix A if it is the result of
some aggregator applied to A.

Considering that input-output models are linear, one natural assumption is that the
aggregator is linear. Additional reasons for considering linear aggregators will emerge in
the sections that follow (most especially Corollary 4.1).

AXIOM (Linearity). The aggregator f: Mn Mm is a linear function.
A second axiom requires that the aggregator not distort the payments to primary

factors in one particularly obvious situation. We use e to denote the column vector of
’s whose number of components is determined by the context.

AXIOM 2 (Value Added Neutrality). For each 0 < a < and each input-output
matrix A satisfying era ae r, the aggregator must satisfy erf(A aer.

This axiom asserts that ifthe proportion ofvalue added is the same in the production
of all micro commodities, then it should be the same for all of the macro commodities,
and the micro and macro proportions of value added should be equal. Thus if all micro
commodities require (1 c) units of the primary factors per dollar of output, then a
macro commodity, which is just an aggregation ofmicro commodities, should also require
(1 c) units of primary factors per dollar of output. We note that under the assumption
of linearity on f, the above axiom could be stated to hold for one particular value of a,
which would imply that it holds for all values of a.

Generally, in the process ofaggregation we think offorming each macro commodity
from one or more micro commodities. Our last axiom is a precise statement of this idea.

AXIOM 3 (Partitioning). There exist functions hi mapping N onto M, called the
input partition, and ho mapping N onto M, called the output partition, which have the
following three properties. Let i, j e N; k, e M; and suppose that/ e R is such that
(A + iE;,j) is an input-output matrix.

(a) Input partitioning: f(A + Ei,j)k,t f(A),t unless k hi(i).
(b) Output partitioning: f(A + bEi,)g,t f(A)g,t unless ho(j).
(c) Coincidental partitioning: The output partition and the input partition are

equal, ho hz h.
Here Ei, denotes the matrix with a in the i, j position and O’s elsewhere. In forming
the aggregation, the function hlindicates how the micro commodities, regarded as inputs,
are to be assigned to the macro commodities, and ho indicates how the assignment is to
be made regarding the commodities as outputs. The partitioning axiom states that a
perturbation ofan entry ofA should not change the input requirements (column elements)
ofany macro commodity other than the one to which the commodity is mapped. Similarly,
a perturbation of an entry of A should not change the output (row elements) of any
macro commodity other than the one to which the commodity is mapped. Finally, the
input partition and the output partition should be the same. An immediate consequence
of Axiom 3 is that

f(A + Ei,),t=f(A)k, unless k h(i) and l h(j)
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so a perturbation in the i, j element ofA does not effect the k, element off(A) unless
h maps to k and j to l.

We will be principally interested in aggregators that satisfy the preceding axioms.
DEFINITION 2.3. We call an input-output aggregator f that satisfies Axioms 1, 2,

and 3 a standard aggregator. For convenience, we also call an input-output matrix B a
standard aggregation of the input-output matrix A if B is the result of some standard
aggregator applied to A.

The following theorem characterizes the functional form of standard aggregators.
THEOREM 2.1. An input-output aggregatorf: Mn "- Mm is standard ifand only if

fmay be represented as

f(A) SAT

in which S Mm,n is a O, column stochastic matrix, T Mn,m is column stochastic, and

ST IMm.

Proof. For sufficiency, first note thatf(A) SAT satisfies Axiom 1, since for two
matrices A(), A(2) Mn and a,/3 R, we have

f(aA () +/3A (2)) S(ceA () +/3A (2)) T= of(A ()) + 3f(A (2)).

Indeed, the matrix representation off, relative to the "standard" basis, is

vec f(A) Tr(R) S) vec A.

(The function vec maps Mm,n into R mn by "stacking" the matrix columns, taken from
left to fight, and (R) denotes the Kronecker product.) The stated form also satisfies Axiom
2 since, if era ce, then we may calculate:

erSAT erAT eTT er.
Let h" N-- Mbe given by h(i) k if and only if sk, 1. The column stochasticity

of the 0, matrix S implies that for each N, s,; for exactly one k M, which
ensures that h is single-valued. Moreover, since ST I, S must have at least one in
every row, so h is onto. For S and T to be column stochastic, while ST (= I) is also
column stochastic, T can only have a nonzero entry in position i, j ifS has a in position
j, i. (If T had a positive entry in position i, j and S had a 0 in position j, i, then the i,
element ofthe product ST would be less than 1, contrary to the hypothesis.) Computation
verifies, then, that SEi,jT contains only zeros, except possibly in position h(i), h(j), so
the form SAT satisfies the third, and hence all three, of the axioms.

The proof of the necessity of the stated form proceeds in stages to indicate the
functional forms that are possible as more axioms are applied.

Iff is a linear aggregator, i.e., if Axiom is assumed, thenf has a matrix represen-
tation, G, in the "standard" basis, i.e.,

vec f(A) G vec A

in which G is m2-by-n 2. Because an aggregator must map nonnegative matrices to non-
negative matrices, G must be componentwise nonnegative. Partition G as follows:

G (G,,q)
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in which Gp,q a_. Mm,n for p 1, ..’, m and q 1, ..., n. Also, partition vec A and
vecf(A as follows:

vecA= vecf(A)=
Un

in which Uq - R" for q 1, n, and Vp Rm for p 1, m. Then

l)p Z Gp,qUq.
q=l

Next we show that the value added neutrality axiom implies that there exist non-
negative numbers ap,q for p 1, m and q 1, n such that

ap,q- Olp,qnp,q for all p and q

in which Hp,q . Mm,n is column stochastic and

n., ap,q= forp=l,...,m.
q=l

To show this, note that

erv E eTGp,qU E zTp,qUq
q q

in which Z;q is the column sum vector of Gp,q. Note that value added neutrality requires
that the preceding expression equal a for all p 1, ..., m whenever all Uq, q 1, ...,
n have the property that eTuq a. By varying the Uq among those with that property, it
is clear that Z Zrp,,Uq can take any value in the interval

o[E( Zp,q)min, E ZpT,q)max
in which (.)rain denotes the minimum entry and (.)max denotes the maximum entry of
the indicated vector. This degenerates into the trivial interval a if and only if

and

T TZp,q maxZp,q min Olp,q for q= 1, ,n and p= 1, ,m

n

E Olp,q-- for p 1,... m.
q=l

This verifies the assertion.
Finally, input partitioning implies that

(Gt,j)k,i 0

unless k h(i). This, plus the preceding assertion, implies that Gt,j at,iS, in which S
is a 0, column stochastic matrix that is independent of l, j. Thus G (al,j) (R) S and
f(A) SA (a,j) r and (al,j) r is column stochastic. Coincidental partitioning implies that
(at,j) has a zero entry wherever S does. Denote (al,j)7" by T and the zero pattern plus
column stochasticity of T implies ST I, to complete the proof.

In the context of the theorem, the statement ST I simply means that the nonzero
entries of T are contained among the positions indicated by the ’s of S’.

As noted in the Introduction, SAT is the most common functional form used for
input-output aggregation. Usually the columns of T measure the proportions ofthe micro
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commodities in their macro aggregates in a base-period output vector X That is, most
applications set

T= diag (xo)Sr ( diag (Sxo) } -(where diag (.) denotes the square diagonal matrix whose elements are the components,
in natural order, ofthe indicated vector). According to Charnes and Cooper, "The main
justification for this mode of consolidation is that it conforms to the way data would be
synthesized ab initio if[SAT] rather than A were the objective" (1961). Theorem 2.1
has established another significant reason to favor this particular functional form, although
not necessarily this particular choice of T.

The form SAZ where Z is the Moore-Penrose generalized inverse of S is another
special case of standard aggregation. The Moore-Penrose generalized inverse of S is the
unique matrix Z Mn,m such that SZS S; ZSZ Z; and SZ and ZS are symmetric.
(See, for example, Horn and Johnson (1985).) The fact that ST I shows that Z T
must satisfy the first two of these conditions for any choice of T (of the form given by
Theorem 2.1), but the third need not be satisfied since TS need not be symmetric in
general. However, suppose Z is obtained as the result of dividing the columns of Sr by
their sums, that is

Z= Sr{ diag Se) -.
Then Z is column stochastic, and SZ I, so T Z satisfies the requirements ofTheorem
2.1. Moreover, (ZS) (Sr( diag (Se) }- S) ZS, so Z satisfies the final symmetry
requirement, and hence is the generalized inverse of S. The choice of Thas been studied
by Ijiri (1968), Kymn (1977), and others.

Theorem 2.1 shows that the three axioms are necessary and sufficient to guarantee
that an aggregator has form SATfor Sand Tofthe specified type. The following examples
show that none of the axioms are superfluous. If the linearity axiom is dropped, then
numerous different aggregators become possible, for example, the aggregatorf(A SAT
in which the entries of S and T depend explicitly on the entries ofA. (We note that the
nonlinear function f(A) I- (S(I- A)-T)- mentioned in does not qualify as
an aggregator because it does not always produce a nonnegative matrix, as shown by
simple examples.) Ifvalue added neutrality is dropped (and the other two axioms retained)
then S need not be column stochastic. This would correspond to "weighted aggregation"
studied by McManus (1956) and Morimoto (1971). If the partitioning axiom is relaxed
to permit the perturbation of one element ofA to affect more than one element off(A),
then S can have more than one positive entry per column; it need not be a 0, matrix,
but must still be column stochastic. This would correspond to an aggregation scheme
where each micro commodity could be proportioned among several macro commodities.

Some additional terminology will prove useful. The proof of Theorem 2.1 makes it
clear that the partition function h and the matrix S are equivalent. We introduce the
following terminology to take account of that fact.

DEFINITION 2.4. If h maps N onto M then the 0, matrix S Mm,n given by

ifh(j)=i,
Si,j

0 otherwise

will be called the matrix representation of h. Conversely, if S Mm,n is a 0, column
stochastic matrix with no row containing only zeros, then S will be called a partitioning
matrix, and the function h mapping N onto M given by h(j) if s;,j will be called
the function representation of S.
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Plainly, the matrix representation ofh is column stochastic and has no row containing
only zeros. The function representation of S is single-valued and onto. Also, the matrix
S in Theorem 2.1 is a partitioning matrix.

3. Standard aggregation. This section discusses some features of the input-output
matrix A that are, in general, preserved by a standard aggregator, B SAT. The results
in this section appear to be new. First, we prove the following result, which will prove
useful throughout the remainder of the paper.

THEOREM 3.1. Suppose S Mm,n is a partitioning matrix, T Mn,m is column
stochastic, and ST I. Then TS is a column stochastic, idempotent matrix ofrank m.

Proof. The matrix TS is idempotent because TS)(TS) T(ST)S TS. Since T
and S are column stochastic, TS is column stochastic. Moreover, S is a 0, matrix with
exactly one in each column and at least one in each row, so the columns of TS are
each columns from T, and each column of T appears at least once in TS. The matrix T
has full column rank equal to m because ST I Mm. Hence TS also has rank m.

Theorem 3.1 implies that the set of eigenvalues of TS includes with multiplicity
m and 0 with multiplicity (n m), since TS is idempotent.

The previous theorem can be used to establish a close relationship between standard
aggregators and the notion of matrix similarity. Two matrices, G, H Mn are said to be
similar if there exists a nonsingular matrix Q such that G Q-IHQ. That is, there must
exist a pair of matrices QI and Q2 such that G QI HQ2 with QIQ2 Q2QI I. Note
that a standard aggregator yields B SATwith ST I. Although TS is not an idempotent
matrix of rank n (and hence the identity), as would be the case ifA and B were similar,
it is an idempotent matrix of rank m. It is reasonable, then, to inquire about the rela-
tionship between the set of eigenvalues of SAT, a(SAT), and the set of eigenvalues of
A, tr(A). Although similar matrices have the same sets of eigenvalues, counting multi-
plicities, an additional condition must be satisfied in order for SATto inherit an eigenvalue
from A.

THEOREM 3.2. Suppose that A M, is an input-output matrix, S Mm,n is a par-
titioning matrix, T Mn,m is column stochastic, andST I. Let tr(A ) with eigenvector
x. Ifx is also an eigenvector of TS associated with the eigenvalue a(TS), then
a(SAT) with eigenvector Sx.

Proof. Suppose that tr(A) with an associated eigenvector x 4: 0, and suppose
that, in addition, x TSx. Then Ax Lv, so A(TSx) Lr, and hence SATSx XSx.
Now, Sx O, since otherwise 0 T(Sx) x in violation of the hypothesis. Thus
tr(SA T) with associated eigenvector Sx.

The hypothesis ofTheorem 3.2 is highly restrictive because it would be coincidental
for A to have an eigenvector x, which was also an eigenvector of TS associated with
a(TS). However, a consequence of the theorem is to guarantee that for any irreducible
input-output matrix A, and any partitioning matrix S, there always exists a standard
aggregation ofA that preserves the Perron eigenvalue ofA. Moreover, the Perron eigen-
vector of the aggregated matrix is the aggregation of the Perron eigenvector ofA.

COROLLARY 3.1. Suppose that A M is an irreducible input-output matrix with
Perron eigenvalue and eigenvector x, and that S Mm,n is a partitioning matrix. Then
there exists a column stochastic matrix T M,m such that SAT is a standard aggregation
with Perron eigenvalue and eigenvector Sx.

Proof. Since A is an irreducible square nonnegative matrix, A has a unique positive
eigenvalue ,, called the Perron eigenvalue, with an associated positive eigenvector x. Let
T diag (x)Sr{ diag (Sx)}-1. The positivity of x implies that Sx is positive, which
implies that { diag (Sx) } -1 is a positive diagonal matrix. Thus T is nonnegative since it
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is the product of three nonnegative matrices. Moreover, T can be confirmed to be
column stochastic:

er[diag (x)Sr{ diag (Sx) }-] xrSr{ diag (Sx) }-’= er.
Finally, since T is the product of ST and two diagonal matrices, t,j can be positive only
if sj,i is 1. Thus SAT is a standard aggregator.

The following computation shows that x is an eigenvector associated with a unit
eigenvalue of TS:

TSx= [diag (x)ST{ diag (Sx) }-]Sx= diag (x)STe diag (x)e= x.

Consequently, Theorem 3.2 guarantees that X e a(SAT) with eigenvector Sx. V]

The significance ofthe Perron eigenvalue and eigenvector ofan input-output matrix
is discussed in many references, among them Takayama (1985 and Woods (1978 ). The
spectral radius of a matrix A, denoted p(A), equals max {IX I: x (A)}. When A is
nonnegative and irreducible, p(A) is the Perron eigenvalue ofA, so Corollary 3.1 could
be restated in terms of the preservation of the spectral radius.

The previous corollary can be compared to the analyses of McManus (1956) and
Morimoto (1971), whose results for weighted aggregation (mentioned in 2) establish
that any irreducible input-output matrix can be aggregated to a one-by-one scalar matrix
so as to preserve the Perron eigenvalue. Corollary 3.1 establishes that any irreducible
input-output matrix can be aggregated to an m-by-m matrix for any given partitioning
matrix, so as to preserve the Perron eigenvalue and eigenvector.

Irreducibility is a technically useful concept in the analysis ofinput-output matrices.
We next investigate how a standard aggregator can affect the reducibility of a matrix. It
is straightforward to construct both examples in which an input-output matrix A is re-
ducible but a standard aggregation ofA is not, and also examples in which the reverse is
true. For example, in the following expression A is reducible, but SAT is irreducible:

.1 .1 0 .5SAT
0 0 0 0 .5 15

In the following, A is irreducible, but SAT is reducible:

.1 .1 .1 .1 0

SAT-
0 0 .1 .1 .1 0 .5 0 .2

0 .1 .1 .1 0 .5

Examination of the latter example shows that it is somewhat special, in that the null
second row of T causes the 3, 2 and 4, 2 entries in A to have no weight in SAT. Indeed,
we can prove the following theorem, which indicates that a standard aggregator maps
irreducible matrices to irreducible matrices, except in extreme cases such as the previous
example.

THEOREM 3.3. Suppose that A e Mn is an input-output matrix, S M,,,n is a par-
titioning matrix, T Mn,m is column stochastic, and ST I. Supposefor all N and
j M that ti,j is positive whenever s,i is 1. lfA is irreducible then SAT is irreducible.

Proof. Let h: N -- M be the function representation of S. Consider S(Ei,) T for
some i, j e N. Since S is column stochastic, it must have a somewhere in every column,
so SE,j cannot be zero. Because T has a positive entry in every position where ST has a
1, T must have a positive entry somewhere in every row, so SEi,jT cannot be the zero
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matrix. As a consequence, since SAT is a linear function ofA, we have that, if ai, > 0
then (SA T)hi,hj) > O.

Let p, q e M. Pick e h -1 (p) and j e h-l(q). It is necessary and sufficient for A to
be irreducible such that, for any i, j e N, there must exist a sequence kl, k2,
kt j in N such that ak,,k,/l > 0 for all 1, l 1. Consider such a sequence. The
preceding paragraph demonstrates that (SAT)htkt),htk,/, > 0, so p h(kl), h(k2),
h(k) q is such a sequence in M for SAT. Thus SAT is irreducible, r-1

Thus a standard aggregator may create irreducibility, but it may not destroy irre-
ducibility unless there is a micro commodity with a zero weight in T. It is possible to
revise Theorem 3.3 to cover the case where A is reducible, with at least one positive
number in every row, and with > irreducible subcomponents given by the partition
of N1, "", Nt of N. Consider a graph G with vertices representing the irreducible
subcomponents N1, Nt and with an (undirected) arc connecting Ni and Nj if and
only if there is a macro good that contains a micro good in Ni and a micro good in Nj..
It can be shown that SAT is irreducible if and only if G is a connected graph.

We note that examples may easily be constructed to show that 0(SAT) may be
larger or smaller than 0(A) for a standard aggregation SAT ofA.

4. Aggregation error. In this section, we will (i) describe the errors that can result
from aggregation, (ii) present bounds on the magnitude of the errors, (iii) discuss the
special case when aggregation error is identically zero, and (iv) note that aggregation
error will always be zero for some vectors though not necessarily all.

Input-output matrices are used in numerous different sorts of calculations, and
aggregation can have different effects on the accuracy of each. The two most common
uses involve (a) computing a final demand vector from a given output vector, and (b)
computing an output vector from a given final demand vector. A final demand vector
for the macro commodities can be obtained as S(I- A )x, the aggregation ofthe expression
obtained from the unaggregated A matrix, or as (I B)Sx, the output vector resulting
from use ofthe standard aggregation B SAT. Similarly, an output vector for the macro
commodities can be obtained as S(I- A)-ly or as (I- B) -l Sy. In general, the former
member of each of these two pairs of expressions is not the same as the latter, and their
differences may be regarded as errors resulting from the particular aggregation.

DEFINITION 4.1. Let A Mn and B Mm be input-output matrices, and suppose
that S e Mm,n is a partitioning matrix. For x e Rm the m-dimensional vector

S(I-A)x-(I- B)Sx [BS- SA ]x

is called type a error, and, for y e R n, the m-dimensional vector

S(I-A )-I y-(I- B) -1 Sy [S(I-A )-1 -(I- B) -l S]y

is called type b error. If both type a and type b aggregation errors are identically zero for
all x and y, then B will be said to be a zero error aggregation ofA associated with S.

Type a error results from the transformation of an output vector to a final demand
vector and type b error results from the reverse transformation. Note that a Neumann
expansion of type b error yields

S(I-A )-I y-(I- B) -1 Sy (BS- SA )y+ (BS SA)y+

The usual terminology is to call type b error "total aggregation bias" and type a error,
"first-order aggregation bias," which seems to imply that the transformation of output
to final demand is inconsequential. We have adopted our more neutral terminology to
reflect the fact that input-output analyses frequently involve both types oftransformations.
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What bounds can be established for relating the magnitudes of type a and b errors?
Let I]" be any vector norm, and let II]" [I] be the matrix norm induced by I1" I[, i.e., for
all F Mn

[l[F[[[ max Fxll.
Ilxll

(See, e.g., Horn and Johnson (1985 ).)
LEMMA 4.1. Let A Mn and B Mm be input-output matrices, and suppose that

S Mm,, is a partitioning matrix. Then,

BS- SA )x[I _< II[BS- SAIII

and

IS(I-A)-’-(I-B)-’]yI[ <_ II[S(I_A)_ _(I_B)_ SI]l.

The lemma follows immediately from the definition of an induced norm. The first
expression is a bound on the size of type a error relative to the size of the output vector,
and the second is a bound on the size of type b error relative to the size of the final
demand vector. It is also clear from the definition of an induced norm that each bound
is tight. The following theorem establishes a relationship between these two bounds.

THEOREM 4.1. Let A Mn and B Mm be input-output matrices, and suppose that
S Mm,n is a partitioning matrix. Then,

[[IBS- SAll[ --< I[II-B[I[ [[IS(I-A )- (I- B)-I SI[I

and

IllS(I-A)- -(I-B)-SII[ Ill(I-B)-’[I[ [IIBS-SAIII [I[(I-A)-[I[.

Proof. To establish the first expression, we have

[IIBS-SAII[

III(I-B)[S(I-A)- -(I-B)-ISI(I-A)[I[

=< [llI-nlll IIIS(I-a)-l-(I-n)-SIII IIII-AIII
where the inequality follows from the submultiplicative property ofinduced matrix norms.
To establish the second, we have

IIIS(I-A)--(I- B)- Sill- Ill (I- n)-’ [(I- n)s- S(I-A)](I-A)-’III

-II[(I-B)-l(--ns+ sa)(1-a)-’lll
-< [I[(I-B)-’[[[ [IIBS-SAIII III(I-A)-’III.

A simple example confirms that the bounds in the previous theorem are tight. Sup-
pose [11" [1[ is the maximum absolute column sum norm, and let

A=
0

S=[ ],

If the standard aggregation associated with S and T() is used, then both sides of the first
inequality have a value of.5. If T(2) is used in place of T(), then both sides ofthe second
inequality have a value of 1. (The null column indicates that the second commodity is
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produced with only primary inputs, such as capital and labor. The example can also be
regarded as a limiting case where the zeros are replaced by a small number e.)

In addition to establishing a relationship between the magnitude of type a and type
b errors, Theorem 4.1 has the following useful corollary.

COROLLARY 4.1. Let A E Mn and B Mm be input-output matrices, and suppose
that S Mm,n is a partitioning matrix. Thefollowing conditions are equivalent:

B is a zero error aggregation ofA associated with S.
(ii) Type a error is identically zero.
(iii) Type b error is identically zero.
(iv) BS= SA.
(v) S(I-A)- (I- B)-S.

Any ofthese conditions imply thefollowing:
(vi) (I- B)- S(I- A)-IT.
(vii) B SAT in which T Mn,m is any column stochastic matrix with ST I.
Proof. (i) (ii). This follows from Definition 4.1.
(ii) (iii). If type a error is identically zero, i.e., (BS SA )x 0 for all x, then

I[IBS SAIII 0. Consequently, the second inequality in Theorem 4.1 implies that
Ilia(I- A) -’ (I- B) -1 Sill 0, so we have that (S(I- A) -l (I- B)-lS)y 0 for
all y. That is, type b error is identically zero.

(iii) (iv). Just as in the previous paragraph, if type b error is identically zero,
then IIs(I A )-l (i B)-1 sIII 0, so the first inequality in Theorem 4.1 implies
that I[BS Shill 0, which implies that BS SA.

(iv) (v). If BS SA, then [IIBS Shill 0, so by Theorem 4.1

Ills(I-A)-’ -(I- B)-’ sill-- o,

and hence S(I- A) -1 (I- B)- S.
(v) (i). If S(I A)- (I B)- S then type b error is identically zero,

and hence type a error is identically zero, so B is a zero error aggregation ofA associated
with S.

(v) (vi). Note that, postmultiplying (v) by T yields (vi), so that any of the five
equivalent conditions implies (vi). Similarly, (iv) (vii).

Variants ofthe conditions in Corollary 4.1 have been used for some time. Hatanaka
(1952), McManus (1956), and Charnes and Cooper (1961) all note the equivalence of
(ii) and (iv). Morimoto (1970) and Ara (1959) prove that (iii) and (iv) are equivalent.
Kossov (1970) proves that (ii) implies (iv). Miller and Blair (1985 and Bulmer-Thomas
1982 prove that (iv) implies v ).

Since (vii) follows from (i), if we wish to find aggregations of A that have zero
aggregation error (if they exist), we need not look beyond the standard aggregations of
A. In particular, if a correct S is known, then any column stochastic T with ST I will
produce the zero error (standard) aggregation B.

In 3, we have discussed the relationship between matrix similarity and standard
aggregators, and presented cases in which a standard aggregator preserves part of the
spectrum of A. The following theorem shows that if B is a zero error aggregation ofA
associated with S, then a(B) c tr(A). Thus the likeness between standard aggregators
and matrix similarity is particularly compelling in the case of zero error aggregation.
(Part (iii) was noted by Ara (1959).)

THEOREM 4.2. Let A M and B Mm be input-output matrices, and suppose that
S Mm,n is a partitioning matrix. Suppose that B is a zero error aggregation ofA associated
with S. Then we have thefollowing:
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(i) If ) tr(A with right eigenvector x, then either Sx 0 or ) tr(B with right
eigenvector Sx.

(ii) If ) tr(B) with left eigenvector z, then ) tr(A ) with left eigenvector Srz.
(iii) O(A)= 0(B).
Proof. To prove statement (i), suppose that ) e (A) with right eigenvector x v 0.

Then we have Ax Mc, which implies that SAx )Sx. But, since B is a zero error
aggregation of A associated with S, Corollary 4.1 states that BS- SA, so we have
BSx )Sx. Therefore, either Sx must equal zero or ) e tr(B) with right eigenvector Sx.

For statement (ii), suppose that ) e (B) with left eigenvector z =/: 0. Then we
have zrB ,z r, which implies that zrBS zrS. But, since BS SA, we have that
zSA zrS. The matrix S is a 0, column stochastic matrix with at least one in
every row, so the entries of the vector zrS are precisely the entries of zr with every entry
appearing at least once. Thus zrS O. Therefore, , e a(A) with left eigenvector Srz.

Statement iii is an immediate consequence ofstatement (i). The Perron eigenvector
x ofA is nonnegative, so Sx cannot equal 0, so the Perron root of B is the same as that
ofA.

Our final remarks on zero error aggregation demonstrate how to determine from
an input-output matrix A whether there exists a partitioning matrix S such that there is
a zero error aggregation of A associated with S. For given matrices A and S, we
know that such an aggregation exists if and only if there is a matrix B that satisfies
BS SA. The following theorem gives an interpretation of the latter condition. Let
A h- (k), h- (l) denote the (not necessarily square) submatrix ofA obtained by in-
cluding the rows in the set h-(k) and the columns in the set h-(l).

THEOREM 4.3. Suppose that A M is an input-output matrix and S Mm,n is a
partitioning matrix, and let h" N -- M be the function representation ofS. There is a
zero error aggregation ofA associated with S ifand only ifthere is a constant bk,tfor each
k, l M such that

erA h- k), h- l) bk,te r.
Furthermore, in this event, any standard aggregation ofA corresponding to S has zero
aggregation error and results in the matrix B bk,t) Mm.

Proof. Let B (bg,t) Mm be a zero error standard aggregation of A associated
with S. By Corollary 4.1, BS SA. But this is exactly the condition asserted in the
theorem. Note that this condition is independent of the matrix T.

On the other hand, if there is a constant bk,t for each k, I e M such that

erA h- (k), h- (1) b,er,
then BS SA for the S given as the matrix representation of h and for B defined by
B (b,t). Then for any T satisfying ST I and this S, B is a standard aggregation
ofA. U]

Theorem 4.3 suggests a simple algorithm to determine, for a given input-output
matrix A, the smallest number of macro commodities m, for which there exists a par-
titioning matrix S and a standard aggregation B, in which B is a zero error aggregation
ofA associated with S. The algorithm operates by taking a sequence of successively finer
refinements of a given partition, until the condition stated in Theorem 4.3 is satisfied.
The algorithm proceeds as follows.

In step 0, partition N { 1, ..-, n } into one set, forming the partition p0
{PI)} with PI)= N.
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In step r, use p(r- to partition the matrix A, and compute the column sums within
o(r) o(r) p(r)every resulting submatrix of A. Refine pr-1) to form pO , -2 "’", k, } SO

that all j pO have common submatrix column sums. That is, obtain p(r) so that

is constant for all j -s
p(r)

for all s 1, kr and for all 1, ..., k_ . Continue to step r + if p(O differs
from Pr- ) and, otherwise, stop.

Clearly in the usual case for an input-output matrix, the above algorithm would
not stop until the partition contained n singleton sets, which would indicate that any
standard aggregation ofA would have (both type a and type b) aggregation error.

The algorithm must produce a partition that satisfies the requirements ofthe Theorem
4.3 because refinements are carried out until all of the submatrices ofA have constant
column sums. Note, however, that the refinement process only separates commodities
if such a separation is necessary for zero error aggregation. Consequently, the algorithm
produces the smallest possible number of macro commodities consistent with a zero
error aggregation. There may, of course, be other zero error aggregations that have
larger m.

To illustrate the algorithm, consider the following input-output matrix.

.2 .1 0 0 0
0 .3 0 0 .2

A= .2 0 0 .3 .2
0 0 .3 0 .2
0 0 .1 .1 .2

Step O. Let pO) be the partition containing only one set, { 1, 2, 3, 4, 5 }.
Step 1. The column sums over A are equal for the first four columns, but not for

the fifth, so P<) consists of two sets pl) { 1, 2, 3, 4 } and Pt2) { 5 }.
Step 2. Partition A into submatrices according to ptl), to obtain the following matrix.

.2 .1 0 0 0
0 .3 0 0 .2

A= .2 0 0 .3 .2
0 0 .3 0 .2
0 0 .1 .1 .2

All of the submatrices have constant column sums except the ones in the
1, and 2, positions. Thus Pt2) consists of three sets P]2) { l, 2 },
P2(2) { 5 }, p2) { 3, 4 }.

Step 3. Partition A into submatrices according to p(2) to obtain the following matrix:

0 3,10 012
A-- .2 010 .31.20 01.3 01.2o 0 1.1 .1 [.2

All of the submatrices have constant column sums except the ones in the
1, and the 2, positions. Thus pc 3) consists of the four sets P3) { ),
P2t3)= {5},p3)= {3,4},P4t3)= {2}.
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Step 4. Using p(3) to partition A yields submatrices with constant column sums, so
no additional refinements are required. Thus

.2 .1 0 0
0 .3 0 .2B=
.2 0 .3 .4

S=

0 0 .1 .2

yield a zero error aggregation ofA for S.

0 0 0 0
0 0 0 0
0 0 0
0 0 0 0

The preceding discussion gives conditions for aggregation error to be zero, regardless
ofthe choice ofx and y. Those conditions were restrictive and most input-output matrices
would not satisfy them for any choice ofS. However, for any standard aggregation, there
are always subspaces within which type a and type b errors are zero.

THEOREM 4.4. Suppose that A Mn is an input-output matrix, S M,,,n is a par-
titioning matrix, T Mn,m is column stochastic, and ST I. There exists a subspace of
Rn, ofdimension at least m, such that type a error is zerofor all x in the subspace. There
exists a subspace ofR, ofdimension at least m, such that type b error is zero for all y
in the subspace.

Proof. The matrix TS is idempotent, with rank m, so occurs in a(TS) and is
associated with an m-dimensional subspace, X, of eigenvectors. Let x e X, so TSx x.
Note that type a error is

BS SA x SATSx SAx SAx SAx O.

Thus type a error is zero for x taken from the m-dimensional subspace X.
Now, suppose that y is taken from the m-dimensional subspace given by (I- A )X,

the image ofX under multiplication by (I A). Let x (I A)-I y. Then type b error
equals

[S(I-A )-I -(I- B)-’ S]y S(I-A)-’y-(I- SAT)- Sy
(I- SAT)- [(I- SAT)STSx- S(I-A)x]

=0

where the third equality follows because TSTSx x. !--1

The proof of Theorem 4.4 shows that type a error is zero for all x that satisfy
TSx x. Which x are these? Let ei Rm denote the th vector in the "standard" basis
ofRm, so Tel Ti, the th column of the matrix T. Note that

TS( Ti) TS( Tel) T(ST)ei Tei Ti.

Thus type a error is zero for all x e R n in the subspace spanned by T, ..., Tm. That
is, type a error is zero for all output vectors whose micro commodities are output in the
proportions given by the columns of the T matrix. Ordinarily negative output of a com-
modity is meaningless so only the nonnegative polyhedral cone generated by T, .--,
Tm would be of interest.

Similarly, type b error is zero for all y in the subspace spanned by (I- A)T,
(I- A)Tm. This latter subspace will usually include final demand vectors that have
mixed sign, but that are readily interpretable in a model that is open with respect to
international trade, since negative final demand for a commodity simply indicates that
the commodity is predominantly imported.

Balderston and Whitin (1954) and others have demonstrated that type a error is
zero on a one-dimensional subspace. Morimoto (1970) has noted that type a error is
zero on an m-dimensional subspace.
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LOCALIZATION CRITERIA AND CONTAINMENT FOR
RAYLEIGH QUOTIENT ITERATION*

CHRISTOPHER BEATTIE" AND DAVID W. FOX

Abstract. Rayleigh quotient iteration can often yield an eigenvalue-eigenvector pair of a positive-definite
Hermitian problem in a very short time. The primary hindrance associated with its use as a regular computational
tool lies with the difficulty of identifying and selecting the final regions of convergence. In this paper rigorous,
accessible criteria for localizing Rayleigh quotient iteration to prespecified intervals of the spectrum are provided,
as well as extensions to situations where only partial spectral information is available. An application for finding
partial eigensolutions of symmetric tridiagonal matrices is given with results that compare very favorably with
the EISPACK routine TSTURM.

Key words, symmetric matrix, eigenvalues, Raleigh quotient iteration
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1. Introduction. The generalized matrix eigenvalue problem

(1.1) Ax XBx

with A and B Hermitian and B positive definite occurs frequently in science and engi-
neering. Typically the matrices A and B are sufficiently large and sparse that a full spectral
decomposition of (1.1) is inconvenient or too expensive, and ultimately only a relatively
few eigenpairs satisfying (1.1) are needed. In such circumstances a wide variety ofiterative
methods may be considered (e.g., see [14]).

In this article we focus on the use of a simple vector iteration defined recursively
through the solution of

(1.2) (A- aB)x+ w+ 1Bx, s=0, 1,2, .’..

The positive scaling factor Ws+ is determined so that x*+ Bx/ 1. Now, if the shift
a is set to a fixed value 7, then 1.2 defines the usual inverse iteration. Excluding certain
unstable situations, this will yield vector iterates that converge linearly to an eigenvector
of (1.1) associated with the eigenvalue closest to 7. If, on the other hand, the shift is reset
at every step to the Rayleigh quotient

# x* Axs,
then (1.2) defines Rayleigh quotient iteration. In striking contrast to the linear convergence
of inverse iteration, Rayleigh quotient iteration has an asymptotically cbic rate of con-
vergence, though the vector iterates generally do not converge to an eigenvector corre-
sponding to the eigenvalue closest to the initial shift go.

In spite of the remarkable potential advantage that its speed may afford, in practice
Rayleigh quotient iteration as an independent vector iteration method is rarely encoun-
tered, although it does lie at the heart of QL-QR algorithms commonly used for small
to middle-sized matrix eigenvalue problems. This general disuse may be justified for two
reasons: erratic convergence behavior of Rayleigh quotient iteration, and the considerable
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expense ofmatrix factorizations needed in solving (1.2) repeatedly for consecutive shifts.
Although Rayleigh quotient iteration is globally convergent for Hermitian problems,
there is no assurance that closure will occur to an eigenvalue in the region of the initial
shift or even that the sequence of Rayleigh quotient iterates will be restricted a priori to
any given interval of the spectrum [10 ]. This issue has an aggravating influence on the
latter point, which otherwise should not be overstated. While circumstances exist where
it is critical to minimize the total number of matrix factorizations (as in 6]), in many
other circumstances this overhead is acceptable as we may deduce from the evident utility
of algorithms that utilize Sturm sequences or spectrum slicing to drive bisection or "de-
terminant search" strategies (cf. ). For these methods the complexity ofa single iteration
is often comparable with that needed for a Rayleigh quotient iteration, yet we are left
with a far slower asymptotic convergence rate.

The apparently unpredictable behavior of Rayleigh quotient iteration reflects the
unsuitability of the Rayleigh quotient by itself as an indicator of alignment of a trial
vector with any particular reducing space. However, Rayleigh quotient iteration will
converge predictably to an eigenvalue within a given interval, provided that some trial
vector Xk, becomes well aligned with the reducing space ofthe eigenvectors corresponding
to the eigenvalues contained in that interval. Such a situation could evolve, for example,
if we precede Rayleigh quotient iteration with inverse iteration. In particular, to locate
eigenvalues in the interval 3’ r/, 3" + r/] l(r/) we may do inverse iteration with as
3" until the component of the iterated vector lying in the reducing space associated with
the spectral interval I(7) has been sufficiently magnified that subsequent Rayleigh quotient
iteration converges in I(7). Since the eigenvector components are a priori unknown,
the question becomes: "How can we use observable quantities in order to determine
when this component has been sufficiently magnified?"

Various ad hoc strategies have been proposed that try to avoid this difficult question.
Typically inverse iteration is done a fixed number of times, and then Rayleigh quotient
iteration is attempted. If it goes astray, then inverse iteration is restarted. This strategy
can be found as early as 1958 5 ]. Its shortcomings are apparent: there is no way of
knowing if the inverse iterations are more numerous than necessary, thus delaying the
onset of cubic convergence, or too few, leading to a uselessly wandering sequence of
iterates (cf. ).

In reviewing Ostrowski’s treatment of the local convergence behavior of Rayleigh
quotient iteration 9a ], 9b], we may observe that the explicit estimates of convergence
neighborhoods for Rayleigh quotient iteration that are given may also be used to determine
thresholds for switching from inverse iteration to Rayleigh quotient iteration. Unfortu-
nately, the bounds are in terms of quantities involving the unknown eigenvectors, and
hence they do not lead ultimately to useful switching criteria in practice. Some measure
ofa priori spectral information does appear necessary to derive rigorously valid switching
criteria, however, and clearly such requirements must be modest if usable criteria are to
be obtained.

Progress toward resolving these difficulties was made by Szyld and Widlund [18]
and Szyld 16 ], 17 ], who first gave a rigorous switching criterion based on the isolation
distance from l(r/) to the rest ofthe spectrum. Additionally, Szyld in 16 ], 17 formulated
an ad hoc criterion for circumstances in which no a priori spectral information is available.
Though this ad hoc criterion does fail in certain circumstances (in the sense that reversion
to inverse iteration is necessary), it appears to work reasonably well in practice.

In this paper, we extend some of the previous results of Szyld, obtaining improved
switching criteria that, on the one hand, make minimal demands on a priori spectral
information and that, on the other, are best possible in a certain sense. We make fun-
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damental use ofthe Kato-Temple inequalities in our derivation. Our results are illustrated
in an implementation for resolving tridiagonal matrices that exhibit dramatic speedups
over the comparable EISPACK routine, TSTURM.

In the following section we establish some additional notation and collect results
that are used in our analysis. In 3 we state our primary containment theorem (Theorem
l) and show how it is best possible using the information available. Section 4 discusses
the localization of Rayleigh quotient iteration when the number of eigenvalues in an
interval is available. In the final section we discuss application of our switching criteria
and give some results of computational experiments.

2. Preliminaries. For an arbitrary B-normalized vector xs with corresponding Ray-
leigh quotient #s Xs* Axs define the Rayleigh quotient residual vector

(2.1) rs=(A-#sB)xs

and the inverse iteration residual vector

(2.2) qs- (A-’yB)xs.

The appropriate measure of magnitude for these quantities is the norm generated by
B-/2 [10, 15.9], which we designate by I1" lib. It is given by

Ilxllb- [x*B-’x] /2,
where * denotes the conjugate transpose. Thus

(2.3) Ilqsll [Xs* (A-’B)B-l (A-yB)xs]

and

(2.4) [Ir,[l- [Xs* (A- #sS)S- (A #sS)xs] /2.

It is important to note that I[qsll and ][rsll are available from information already com-
puted during the course of an iteration step (1.2) with no need to solve an additional
system involving B. In fact, for inverse iteration (a, -l), premultiplication of (1.2) by
B-/2 shows immediately that

For either Rayleigh quotient iteration or inverse iteration (1.2) also yields

lira/ llb-[/-(O’s-s/ )=]
Thus the norms of both residuals are available directly from the scaling Oas +1 with no
additional work.

We note further that when as % premultiplication of(1.2 by Xs* and the Cauchy-
Schwarz inequality give

I)q,+ ,lib Iq**xs+, --< IIq, llb.
Hence inverse iteration always produces a monotone decreasing sequence of inverse
iteration residuals (see also [17]). Similarly, Rayleigh quotient iteration (with as
always produces a monotone decreasing sequence of Rayleigh quotient residuals 10,
{}4.81,

The monotonicity of these residuals is key in their use as thresholds for switching from
inverse iteration to Rayleigh quotient iteration.
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Before we start our analysis, we close this section with a few more useful facts about
Rayleigh quotient iteration (see also [17] and [12 ]), which we state as a lemma.

LEMMA. For Rayleigh quotient iteration as #s) we have

/s+ 1- #s (rs*Xs/ )(x*+ Bxs)

and

(2.6) [Its+ 2 + (s+ s)2 2
0+ Irs*Xs.

Proof. Rewrite (1.2) as

(A-#s+ B)xs+ +(s+l-t.ts)BXs+l =OOs+ Bxs.
Premultiplication by Xs*+ provides (2.5). Premultiplication by B-/2 and the Pythag-
orean Theorem give (2.6).

3. Containment of Rayleigh quotient iterates. In this section we establish our central
result on the containment of Rayleigh quotients. We show that if a Rayleigh quotient
lies on one side of the midpoint of a known gap in the spectrum, then, provided that the
residual is no greater than half ofthe gap width, all subsequent Rayleigh quotient iterates
must lie on the same side of the midpoint. In an appropriate sense, this result is then
shown to be the best possible. In all that follows, we will refer to the eigenvalues of (1.1)
as the eigenvalues of A relative to B, or more simply as the eigenvalues of (A, B).

THEOREM 1. Suppose that (a, [3) is known to be a gap in the spectrum of A, B ).
Let # and r be the Rayleigh quotient and residual ofthe B-normalized vector x. Suppose
IIr/l --< ( a)/2; then we have thefollowing:

If# < (a + )/2, then/s < (a + [3)/2 for all s >- 1, and
if/ > a + [3) / 2, then/s > a + [3) / 2 for all s >= 1.
Proof. We proceed by contradiction. Suppose that x x is such that <

a +/3)/2 and that rll --< ( )/ 2. Let be the lowest index for which #t < a +/3) /
2 and #t+ - (a +/3)/2. Since Ilrsll is nonincreasing with s, for all s we have

(3.1) Ilrsllb (/- a)/2.

Since (, a)( ) >_- 0 at each point , of the spectrum of (A, B), we have from the
spectral theorem (see also Kato [7 ), for any r and g corresponding to the B-normalized
vector x

In particular, since t < (a + )/2 this gives

]t <
Ol -" [j (--a)2=--- 2 IItll

and since #t + - (a +/3)/ 2

U/+I>.a"F/..F. (--)2

2 2
-[[rt+

We subtract, square, and use [Irtllb >- lift+ [[b to obtain

(#t + 1-- t) 2 (/-- 0/) 2 3 IIr/ll -Ilr, + ,11 .
Since (/t + t) 2 + rt + l] , ]r? xt + z, we find

(/3-a)2-< 3[Ir/[[ ,+ Irt*x+ 12 =<4llrtll =<(/3- a)2,
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where the center and right-hand inequalities are the result of the Cauchy-Schwarz in-
equality and of the bounds given by (3.1), respectively. Thus equality prevails and rt
must be collinear with Bxt +1. Now (2.5) yields the contradiction

/-h+ 1-/*t (rt*Xt+ )(Xt+ IBXt) r’xt 0.

By a parallel argument, if / > (a + )/2, every Rayleigh quotient remains above
( + )/2. q

The inequalities in this theorem are the best possible in the sense that neither alone
can be weakened. In fact, if the bound on [{rll is weakened to Ilrll[ --< (/3 a)/2 for
any > 1, then the following counterexample shows that the theorem is false.

Suppose the known gap (a,/3) is not optimal and that A has adjacent eigenvalues,_ and X+ relative to I such that ,_ < a </3 + (see Fig. 1). Define the unit vector
x by

X [1 + K]-I]2 { U_ + K I]2U +}.
It is easy to verify that/ satisfies

and that r satisfies

#<(c+B)/2 and u>(M+X-)/2

r =< K(/3 a)/ 2 and r -< ,+ ,-)/ 2.

Thus the Rayleigh quotient iterates all have quotients lying above (k+ + ,_)/2, and, in
fact, the quotients converge to M.

On the other hand, if the restriction on Ilrlle is maintained, but u, (a + ))/2, all
of the subsequent #s can remain at (a +/3)/2 as the following example shows. Suppose
that A has the adjacent eigenvalues k_ a </3 k+ relative to I. The initial vector

X 2-1/2(u+ + ta_)

satisfies

#1 (a+/3)/2 and

however/s (c +/3)/2 for all s >= 1.
These examples give us the following theorem.
THEOREM 2. Theorem is optimal in the sense that ifeither condition is weakened

there exist matrices and starting vectors that satisfy the relaxed criteria but have subsequent
Rayleigh quotients that do not lie strictly on one side ofthe center ofthe specified gap.

Note that if Ilrlllb < (/3 a)/2, then zl must lie strictly on one side or the other of
the center of the specified gap, for there must be an eigenvalue within []r1116 of

FIG.
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4. Localization with partial spectral information. Now we are in a position to use
results of the preceding section to establish conditions that ensure the convergence of
Rayleigh quotient iteration to a point within a given interval. These results depend on
determining, as part of the computation, gaps between eigenvalues which the sequence
of Rayleigh quotients cannot cross.

Since our ultimate goal is to establish criteria for shifting from inverse iteration to
Rayleigh quotient iteration as quickly as it is safe, we shall introduce notation here that
is adapted to that purpose. If we have an interval [a, b] containing eigenvalues of
(A, B), we shall frequently use the center "y as the shift in the inverse iteration and
denote by r/the distance from the center to the endpoints, i.e., l(n) a, b] with f
(a + b)/2 and n (b a)/2.

To begin, suppose that the interval [a, b] contains in its interior exactly one eigen-
value X of (A, B) and that the Rayleigh quotient z corresponding to the B-normalized
vector x lies in (a, b). Then the Kato-Temple inequalities (see 7 and 19 ]) imply- Ilr[l /(b- )=-a’ <=X <=b’=- /

which provides an interval [a’, b’] that contains X but is narrower than the original
interval a, b if r < (b #)( a).

When the Kato-Temple inequalities restrict the interval in this way, the improvement
establishes a gap at each end, and Theorem can be used to give conditions on Ilrllb that
will keep all ofthe subsequent Rayleigh quotients from crossing the gaps. This is embodied
in Theorem 3.

THEOREM 3. Suppose thefollowing statements are true:
(i) The interval a, b) contains exactly one eigenvalue X of A, B).
(ii) The Rayleigh quotient I corresponding to the B-normalized vector x lies

in(a,b).
(iii) The corresponding residual vector r satisfies

Ilrllb_-< [(- a)(b- a)] 1/2_(_ a);

then the subsequent Rayleigh quotient iterates all lie below b + b’)/2. If (i) and (ii)
hold and

(iv) The residual vector r satisfies
[Irllb_-< [(b- #)(b- a)] 1/2-(b- t),

then the subsequent Rayleigh iterate quotients all lie above a’ + a)/2. If (i) and ii
hold and

(4.1)

which is the smaller ofthe restrictions iii and (iv), then the subsequent Rayleigh quotient
iterates all lie in the interval ([a + a’]/2, [b + b’]/2) and converge to the eigenvalue .

Proof. A quick computation shows that either of the restrictions on lit lib implies
that the Kato-Temple interval [a’, b’] lies interior to [a, b]. Since u < b’ < (b + b’)/2,
Theorem implies that all of the subsequent Rayleigh quotients iterates also lie below

(b + b’)/2 provided that I11’[1 b <= (b b’)/2, i.e., provided that ]]r[] satisfies

211rllb--
But this is exactly what is implied by the first restriction on ]lrll in the hypothesis of the
theorem. Similarly the second restriction of the hypothesis implies that the quotients
remain above (a + a’)/2. The convergence follows from the global convergence of Ray-
leigh quotient iteration. D
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If an interval [a, b] containing tz is known to contain n eigenvalues of (A, B), we
can find bounds on Ilrll b that will ensure that subsequent quotients remain in the interior
of[a, b]. These conditions arise from determining the existence of a minimum gap in
the spectrum within [a, b] to the fight and to the left of u and are embodied in
Theorem 4.

THEOREM 4. Suppose n eigenvalues of (A, B) are known to be in a, b] and the
Rayleigh quotient # corresponding to a B-normalized vector x lies in ( a, b ). Then if
Ilrllb - (b -/)/(2n + 1), the subsequent Rayleigh quotients satisfy #s < b (b I)/
2n. If lit lib - ( a)/(2n + 1), the subsequent Rayleigh quotients satisfy a + (l a)/
2n < tzr. Further, if
(4.2)

which is the more restrictive ofthe two conditions on Ilr[Ib, then

a’=-a+[n- I’-ul]/2n<ur<b-[n- I’-ull/2n=-b’,

and { m ) converges to a point in [a’, b’].
Proof. We designate the n eigenvalues in [a, b by

a<-Xp+, <=Xp+<- <-Xp+,<-b.

Since [Irllb -< b -/, there must be one of the n eigenvalues of (A, B) in [a, b] within
b u of u. The width g+ of the maximum gap in the spectrum of (A, B) having a right
endpoint to the fight of # is given by

g+ max (kj- kj_ ),
j_i

where k; is the first eigenvalue to the fight of #. If there are m eigenvalues in [a, b] to
the fight of t, 0 =< m -< n 1, then g+ can be bounded by

g+>=(hp+,+-Xi-)/(m+ 1)>=(b-u)/(m+ 1).

When all n eigenvalues in [a, b] lie to the right of u, then since kp+ must be within
of,

g+ _max { []r[lb,(kp+n+ 1- hi)/n} >=(b-I- ]lrllb)/n.
The last bound is the smallest of all and holds for a gap within a, b lying entirely to
the fight of t. To ensure that subsequent Rayleigh quotients cannot pass beyond the
midpoint of this gap, by Theorem it is enough to require that Ilrllb satisfy

I[rllb=<(b-u I[rllb)/2n,

which is the same as the first restriction on Ilrllb in the hypotheses of this theorem. The
location of the gap is known only to the extent that it lies entirely to the right of/z and
within [a, b], so that the best that can be said is that all subsequent quotients must lie
to the left of b (b -/z)/2n.

The conditions to the left of # are established by a parallel argument.
The interval a + (r/ / # )/2n, b (r/ ’ t / 2n must contain t

whenever both conditions on [Ir[Ib are satisfied, and the convergence in the interval follows
from the global convergence of Rayleigh quotient iteration. U]

If no a priori information on the location of eigenvalues is available, it appears
impossible to give rigorous criteria for switching from inverse iteration to Rayleigh quotient
iteration that will guarantee localization ofthe subsequent Rayleigh quotient iterates. In
[16] Szyld introduces the ad hoc criterion

(4.3) IIllb<,
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which appears to perform well in most circumstances. Nonetheless he recognizes that in
switching to Rayleigh quotient iteration based on this criterion, the subsequent Rayleigh
quotients might leave the interval of interest, and his computational strategy involves
reintroducing inverse iteration should that occur. The following simple example illustrates
how that can happen.

The matrix

5/4

has eigenvalues 1/4 and 9/4 relative to I. Suppose we perform inverse iteration with, 0 in order to locate the eigenvalues in the interval 2, 2 and obtain at step s

We calculate ]lqs]l 61 / 16 1/_ < r/= 2. In spite of this, subsequent Rayleigh quotient
iteration converges to 9/4, which lies outside the interval of interest (an immediate
consequence of Theorem 1).

Note that whenever either condition (4.1) ofTheorem 3 or condition (4.2) ofTheo-
rem 4 holds, then Szyld’s condition (4.3) will also be satisfied. In fact, we may compute
from (4.2)

Ilqsll -Ilrs[I / I-sl =--<
(2n+ 1)2[ {(2n+ 1)2+ 1} I-sl =-2l-,sl /]

for all values of n >= 1. A similar argument may be made for (4.1).

5. Computational issues. Our preceding analysis has had the goal of establishing
efficient and accessible criteria for switching from inverse iteration to Rayleigh quotient
iteration for reliable and rapid closure to those eigenpairs that are wanted. Recall that
the results obtained in Theorems 3 and 4 depend only on the availability of eigenvalue
counts in given intervals. This kind of information can be obtained from a variety of
sources. Among them are Sturm sequences [2] and spectrum slicing [10 ], Gerschgorin
discs 13 ], variational inequalities 10 ], and modification by a low rank matrix to obtain
a matrix with known eigenvalues [3 ].

We have incorporated our ideas into a modification of the EISPACK procedure
called TSTURM 15 ], 21 ]. TSTURM accepts a symmetric tridiagonal matrix and an
interval within which eigenvalues are sought, and it returns the eigenvalues and the
corresponding eigenvectors. For each irreducible submatrix in turn, TSTURM uses bi-
section with Sturm sequences until closure is obtained for each eigenvalue within the
specified interval. These computed eigenvalues are then used with inverse iteration to
obtain the corresponding eigenvectors. TSTURM is known to be a reliable and stable
procedure and is the only EISPACK routine available for isolating eigenvalues interior
to the spectrum. Although TSTURM has at best a linear rate of convergence, it can be
expected to be faster than TQL2, the comparable EISPACK QL procedure for tridiagonal
matrices, when fewer than 25 percent ofthe total matrix eigenvalues are contained within
the specified interval.

Though there are some common elements in our work, Scott [11] refined the
TSTURM strategy in a direction somewhat different from what we consider here. Scott’s
strategy involves maintaining eigenvector approximations throughout the iteration while
using the associated sequence of Rayleigh quotients to direct subsequent bisection steps.
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The method that he proposes has an asymptotic cubic rate ofconvergence (as does ours)
and seems best suited to situations where a priori eigenvector information is available,
although it is not restricted to this case. We note also that a variation of the TSTURM
solution strategy has been implemented with substantial success in a multiprocessor
environment by Lo, Philippe, and Sameh 8 ], and we expect that our modifications will
provide further significant improvements in that environment as well.

In essence, our modification simply involves trading bisection steps for Rayleigh
quotient iteration steps when it is safe to do so. Since evaluation of the Sturm sequence
has the same order of complexity as solving a tridiagonal system (such as the system
(1.2) in our case), we expect to reap rich benefits from the cubic convergence rate of
Rayleigh quotient iteration, at least when the mantissa length ofthe computational word
is sufficient to allow calculation in the asymptotic regime before closure is flagged. We
avoid the expense of maintaining a vector iterate in the early stages of the process
as well.

More specifically, let us begin by considering an interval containing a single eigen-
value X that is isolated from adjacent eigenvalues by at least the gap width g. Suppose
further that we begin Rayleigh quotient iteration in a neighborhood of this eigen-
value with an initial residual satisfying IIr011b ----< g/2. We discount rounding errors for the
moment and assume that we are working with a mantissa of length T bits. We shall
have approximately

(5.1) Ilrsllb =< g-211rs-ll
for s 1, 2, (see, for example, [13]). Thus

(5.2) I) bts -< Ilrsllb <= g( Ilrs- lib <- g([IrOIIb/g) 3s =< g 2 -3s.

If g and ) have about the same order of magnitude, the number of Rayleigh quotient
iterations to obtain full precision accuracy is approximately In (T)/In 3. On the other
hand, if bisection is started on an interval of width g containing ), then roughly T-
bisection steps will be needed to achieve the same accuracy. Evaluation of a Sturm se-
quence requires roughly n floating point operations as opposed to about 8n for a single
Rayleigh quotient iteration. Thus we expect a ratio of time in sequential computation
given by the factor

time of Rayleigh iteration 8n In T)/ln 3 8 In (T)
(5.3)

time of bisection n 7"- 1) In 3 T-

In single precision on a VAX 11/780, we have T 24, and the value ofthe ratio is about
1.0, so no advantage can be seen; however for double precision on the same machine
T 56, and it appears that Rayleigh quotient iteration will require only about 5 3 percent
ofthe operations needed for bisection! This casual analysis provides a basis for optimism.
Many factors might affect the performance of Rayleigh iteration; rounding errors and
delays in the onset of cubic convergence could affect our conclusion However in the
computations we have made thus far this anticipated advantage has been borne out.

The general strategy we follow can be viewed as a three-level iteration process, which
for convenience we refer to as TLIP. For each irreducible submatrix in turn we use
bisection with Sturm sequences until an eigenvalue is isolated from all others in a disjoint
subinterval. Then inverse iteration is initiated using the midpoint of the subinterval as
shift until the switching criterion ofTheorem 3 (based on the known distance to adjacent
subintervals) is satisfied. At that point Rayleigh quotient iteration is initiated and con-
tinued to closure for the eigenvalue in that interval.

Although the eigenvalues ofany irreducible tridiagonal matrix are simple, they may
appear multiple due to finite precision, and thus in unusual cases the initial bisection
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phase could go all the way to closure in attempting to isolate an eigenvalue. In normal
circumstances, however, relatively little time is spent in bisection, and the procedure
switches rapidly to inverse iteration and then to Rayleigh quotient iteration.

Our procedure was implemented as a straightforward modification of TSTURM
with one exception. The starting vector for inverse iteration, which in TSTURM is taken
as a multiple of[l, 1, * is replaced by a vector computed to enhance the growth
of a solution vector in the sense of[4]. This change is significant in cases possessing
substantial symmetry , for in TLIP the inverse iteration shift may not be very close to
an exact eigenvalue so that amplification in the direction of the eigenvector is much less
than in TSTURM, where agreement to within a small multiple ofthe machine precision
can typically be ensured.

Our procedure has been tested on a variety of matrices. We include here detailed
results from three such tests together with performance statistics accumulated over a
variety of classes of random matrices. The numerical results presented in Tables 1-3
were all performed using double precision arithmetic on a VAX 11/780. Our results
show an impressive improvement in speed in Examples and 2. No improvement to
speak of is seen in Example 3, which illustrates a situation where TLIP is unable to use
the advantages of Rayleigh quotient iteration due to the near multiplicity of eigenvalues.

The first example we consider is the discrete one-dimensional Laplacian given by

2, i=j,

as 1, i-jl 1,

0, otherwise.

This matrix has all of its eigenvalues in the range 0 to 4. The eigenvalues in the range
1.5 to 2.5 were sought for n 100. Within this interval adjacent eigenvalues typically
agree to two significant digits. Results are summarized in Table 1. Notice that the total
number of iterations performed by TLIP in all three solution phases (i.e., bisection,
inverse, Rayleigh iteration) is very small relative to the large number ofbisections required
by TSTURM. In all but the last eigenvalue (indexed 58) agreement with the values
provided by TSTURM occurred to full precision. The last eigenvalue differed only in
the last decimal digit. Thus, in effect, the final residual values that are listed may be
considered as a measure of quality for the corresponding eigenvectors.

The second example is a severely graded matrix from [2 ], having a very broad
spread in the spectrum. It is defined by

aij

i4, =j,

i--l, i=j+ 1,

j--l, i=j--1,

0, otherwise.

Eigenvalues in the range 2 to 20,000 were sought with n 100. The results for this matrix
are summarized in Table 2. On this problem when TSTURM was run with the internally
generated convergence threshold, the final approximate eigenvectors had residual values
that were unacceptably large (around 10-8), although run times then became competitive
with TLIP. When EPS1 was set to 10 -12, the final TSTURM residuals dropped to ac-
ceptable levels.

For example, in our Example the usual TSTURM starting vector is orthogonal to half ofthe eigenvectors
and is an inappropriate choice as a starting vector for our inverse iteration phase.
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TABLE
Example 1. Discrete Laplacian.

TLIP TSTURM

Inverse Rayleigh Ilrll Ilqll
Eigenindex Bisections iterations iterations residual Bisections residual

43 3 6.02o 50 2.78o-6
44 2 3 2.34o-6 51 4.28o-6
45 2 2 1.86o-- 50 2.15o-6
46 3 2 2 5.64o-, 52 2.55o-6
47 2 2 4.24o- 50 9.49o-7
48 2 2 2 2.50o- 51 2.43o
49 2 2 2.18o- 50 2.17o-6
50 4 2 2 2.08o 53 3.82o
51 2 2 2 2.471o-, 50 3.82 o-,6

52 2 2 2 2.14o-3 51 2.17o-6
53 2 2 4.59o-3 50 2.43o
54 3 2 2 7.12o-, 52 9.49o-
55 2 2 2.18o- 50 2.55o
56 2 2 2 6.30o-, 51 2.15o
57 2 2 7.53o 50 4.28o-6
58 5 3 1.96o-7 54 2.78o

Relative solution time TLIP/TSTURM: 0.55 I.

The third example (see Table 3) is also taken from [2] (which is included in 2 I])
and is a variation of Wilkinson’s test matrix W2 20 ]. This matrix is defined by

aij

110- 10i, i=j= 1,2, 11,

10i- 100, i=j 12, 13, ,21,

1, li-jl 1,

0 otherwise.

TABLE 2
Example 2. I4 matrix.

TLIP TSTURM

Eigenindex Bisections
Inverse Rayleigh Ilrll

iterations iterations residual Bisections residual

2 2
3 2
4 2
5 2
6 2
7 3
8 2
9 2
10 3
11 2

2 3 6.24o-,

2 2 1.15o-
2 2 1.12o-
5 2 9.52o-
2 2 4.17o-
2 2 1.46o-t
2 2 1.49o-t

6.02o-t
4 2 7.47o
2 3 2.07o-,3

Relative solution time TLIP/TSTURM: 0.617.

48
49
5O
52
51
53
54

53
55
55

5.74o-t
8.18o-
2.81 o-t
1.22o-Z
1.41 o-,

1.99o-
1.87o-
1.32o-
1.49o-Z
1.98o-

EPS1 10-12.
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TABLE 3
Example 3. W21 matrix.

TLIP TSTURM

Inverse Rayleigh Ilrll Ilqll
Eigenindex Bisections iterations iterations residual Bisections residual

6 2 2.131o-, 33 3.771o-,,

7 21 2 1.051o-’ 53 4.09

8 6 2.22o 22 5.50o-,

9 30 2 0 7.361o-,3 52 4.541o-,6

10 0 1.341o-, 10 2.81

11 44 0 2.641o-’ 54 1.46o-,

12 0 8.881o-,6 5.431o-’6
13 53 0 2.6610-, 53 2.45

14 0 3.550- 6.9310-6
15 55 0 5.3210-, 55 2.631o-,,

Relative solution time TLIP/TSTURM: 0.982.

Eigenvalues in the range 25 to 75 were sought. The first pair of eigenvalues (indexed 6
and 7 agree to eight decimal digits. The next two pairs agree to 11 and 14 decimal digits,
respectively. The last two pairs of eigenvalues agree to 16 decimal digitsmeffectively the
full precision used. Note that for the last six eigenvalues TLIP is operating essentially as
TSTURM, since the near multiplicity ofthe eigenvalues drives the TLIP bisection phase
to closure.

Table 4 summarizes comparisons performed on 700 random matrices. For these
experiments TLIP and TSTURM were run in double precision on a SUN 3 workstation
equipped with an MC68881 floating point coprocessor. For each matrix that was gen-
erated, roughly 25 percent of the eigenvalues and eigenvectors were found with each
routine. Comparisons were made with respect to speed and accuracy in each case. The
test matrices were separated into seven classes.

Class 1. These one hundred 100 100 matrices correspond to discretizations of
one-dimensional Schrodinger operators with randomly generated potentials bounded by
1.0 in magnitude. Diagonal entries are uniformly distributed in the interval (1, 3) and
off-diagonal entries are fixed at 1.0.

Class 2. These one hundred 50 50 matrices are gently graded from large at the
upper left to small at the lower fight. Consecutive diagonal and off-diagonal entries are
in ratio di / / di z - and ej / / ej z, respectively, where z is uniformly distributed

TABLE 4

Matrix
class

Relative solution
time

TLIP/TSTURM

avg max min

0.423 0.556 0.334
0.422 0.682 0.105
0.563 1.072 0.065
0.392 0.579 0.164
0.279 0.398 0.208
0.338 0.545 0.103
0.139 0.364 0.098

Maximum deviation
from orthogonality

TSTURM TLIP

1.04E-13 5.41E-13
6.54E-12 1.03E-I
1.04E-12 3.52E-12
2.19E-14 3.45E-14
8.67E-12 8.72E-12
5.64E-13 8.78E-13
1.36E-12 1.34E-12

Maximum scaled
final residuals

TSTURM TLIP

3.51E-14 2.99E-13
2.58E-14 1.69E-13
1.56E-14 2.97E-14
5.04E-15 4.94E-14
2.21E-14 2.24E-14
1.62E-14 1.71E-13
2.23E-14 2.19E-14

Comparison of
computed eigenvalues
(number of digits in

agreement)
All 18 17 16

46% 52% 2% 0%
24% 11% 43% 22%
100% 0% 0% 0%
43% 53% 4% 0%
100% 0% 0% 0%
54% 44% 2% 0%
94% 4% 2% 0%
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in (0, 1) and dl e 1.0. Matrix entries typically will vary over 6 to 8 orders of
magnitude.

Class 3. These one hundred 50 50 matrices are steeply graded from small at the
upper left to large at the lower fight. Consecutive diagonal entries are in ratio di / 1/di
z 10 r, where z is uniform in (0, 1), r is an integer exponent uniformly distributed from
0 to 5, and d 1.0. Off-diagonals are generated in the same way. Matrix entries will
vary up to 160 orders of magnitude.

Class 4. These one hundred 50 50 matrices are centrosymmetric and graded
from large to small to large. For to 25, consecutive diagonal entries are in ratio
di/di+ z where z is uniform in (1, 2) and dl 1.0. The remaining diagonal entries
are defined by di d5- i. Off-diagonal entries are fixed at 1.0.

Class 5. These one hundred 50 50 matrices are also centrosymmetric but instead
are graded from small to large to small. For to 25, consecutive diagonal entries are
in ratio di / / d; z where z is uniform in 1, 2) and d 1.0. The remaining diagonal
entries are defined by di d5_ i. Off-diagonal entries are fixed at 1.0.

Class 6. These one hundred 50 50 matrices have random diagonal and off-diagonal
entries uniformly distributed in (- 1, 1).

Class 7. These one hundred 50 50 matrices have random entries in the diagonal
and off-diagonal with the form z 10 where z is uniform in 1, 1) and r is an integer
exponent uniformly distributed from 0 to 5.

For each matrix class, Table 4 lists the average, maximum, and minimum observed
ratios ofTLIP computation time to TSTURM computation time; the maximum observed
deviation from orthonormality ofthe computed eigenvectors (as indicated by Ill Z’Z
where Z is the computed matrix of eigenvectors); the maximum scaled residual norm;
and the relative accuracy ofeigenvalues returned by each routine. The percentages given
under this last heading indicate to what extent TLIP reproduced values given by
TSTURM. For example, within Class 1, 46 percent of all eigenvalues found (namely
4,605) agree to the last digit with the values produced by TSTURM, 52 percent differ
only in the last digit, and the remaining 2 percent differ in the last two digits. The
terminating residuals have been scaled by the norm of the matrix to permit relative
comparisons among trials.

Notice that for the most part, the speedup of TLIP over TSTURM exceeds by a
substantial margin the speedup predicted by (5.3), probably due to the pessimistic residual
bound given by (5.2). The wide variation in performance for Class 3 appears to be due
to the vast range of eigenvalue magnitudes within the search interval. In these circum-
stances, isolation of the eigenvalues is achieved comparatively quickly by bisection. But
then the inverse iteration phase of TLIP may be entered while the isolating interval is
still quite large, thus providing little information on the location of the contained eigen-
value. But while TSTURM continues on with bisection, there is the possibility that the
inverse iteration phase of TLIP will converge much more slowly than bisection since the
selected shift may still be quite far from any eigenvalue. This in turn suggests the need
for a rational criterion for switching between bisection and inverse iteration. We do not
consider this here but leave it as a question for further study.

The brief analysis that yielded (5.3) indicates that if we double our mantissa length
(e.g., change from single to double precision), we might expect to see the TLIP/TSTURM
timing ratios drop by at least 35 percent for usual word lengths and more for longer word
lengths. On a Cray-2, we reran TSTURM and TLIP on Example 3, for which TLIP had
shown little improvement, and obtained timing ratios of 98 percent and 58 percent, for
default precision (T 48) and double precision (T 112), respectivelymultimately
giving performance comparable to what we found with Examples and 2. As we have
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noted earlier, bisection to obtain isolating intervals uses up a good part of the time; but
once the eigenvalues are isolated, the speed of Rayleigh quotient iteration comes into
play with a trebling of the number of significant digits each iteration.

Acknowledgment. The authors have had the benefit of discussions with Professor
Daniel Szyld of Duke University, who found a flaw in the proof of an earlier version of
Theorem and to whom they wish to express their appreciation.
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INHERITED MATRIX ENTRIES: LU FACTORIZATIONS*
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Abstract. For an n-by-n matrix A [ao] which has a unique unit LU factorization A LU with U
[uo], combinatorial circumstances are determined under which u0 aj for a given pair =< j or for all < j
(or all

_
j). Analogous results are stated for other triangular factorizations and for the LU factorization of a

principal submatrix ofA. The relationship of the results to Gaussian elimination and sparse matrix analysis is
discussed.

Key words, matrix factorization, Gaussian elimination, fill-in, directed graphs, sparse matrices
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1. Introduction. An n-by-n matrix A aij] has an LUfactorization if it may be
written as a product A LU in which L [l j] and U u j] are, respectively, lower
and upper triangular n-by-n matrices. If there is such a factorization in which L is non-
singular, then there is one in which all diagonal entries ofL are equal to l; we call such
a factorization in which L has unit diagonal a unit LUfactorization. Our interest here
is in a family of questions of the following type.

(1.1) Under what circumstances does u ij aij for a given pair --< j?
(1.2) Under what circumstances does u ij aij for all pairs < j (or all -< j) ?

We refer to the equalities in (1.1) and (1.2) as local and global inheritance, respectively.
There are several familiar examples in which the phenomena requested by (1.2)

occur. Perhaps the simplest is the case in which A itself is upper triangular. In this event
A LU with L I and U A, so that the upper triangular factor agrees with A above
(and on) the diagonal. Another example is the following tridiagonal matrix A, which
factors as A LU with L Ur:

1 -1 0 1 -1 0
-1 2 -1 1 -1

A= -1 2 "" U= .. "..
-. ". -1 -1

0 -1 2 0 1

Again, the upper triangular factor agrees with A above the diagonal, even though A is
irreducible in this case. A very simple circumstance for the local question (1.1) is the
case 1; it is well known and easy to check that the first row ofA becomes the first
row of U for any matrix A with unit LU factorization. It is the combinatorial basis for
this sort of simplicity and sparsity preservation upon which we focus. If, for example,
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circumstances are such that the upper triangular factor agrees with A above the diagonal
when the lower triangular factor has ’s on the diagonal, halfofthe assumed factorization
may be written down immediately.

In order to ask our questions, we must assume that a unit LU factorization exists.
To avoid possible ambiguities we shall also assume that it is unique, and, fortunately,
this circumstance may be easily characterized. For index sets a,/3

_
{ 1, 2, n }, we

denote the submatrix of the n-by-n matrix A lying in the rows a and columns/3 by
A a [/]. When a, the submatrix is principal and we abbreviate A a a] to A a]. We
shall often be interested in the determinant of a leading principal submatrix ofA and so
adopt the notation dk(A =- det A { 1, 2, k } ]. Our characterization slightly strength-
ens [10, Thin. 4]. Note that this result is well known when A is nonsingular (see, for
example, [9, Cor. 3.5.5 ]).

THEOREM 1.1. The n-by-n matrix A has a unique unit LU factorization if and
only if

dk(A)4=O, k= 1,2, ,n- 1.

Proof. Suppose that all the proper leading principal minors ofA are nonzero, that
is, condition (1.3) is met. Then by [9, Cor. 3.5.5] and the partitioning in [10], the
required unit LU factorization exists and is unique. The converse is similar to that of
[10], the only difference being that we take L (rather than U) as the normalized
matrix. [2]

In view of Theorem 1.1 we shall generally assume that A satisfies condition (1.3).
In the spirit of sparse matrix analysis, we are not interested in circumstances such

as (1.1) and (1.2) involving accidental numerical cancellation. We approach these ques-
tions from a combinatorial point of view, based upon the zero pattern ofA rather than
the values ofthe nonzero entries. For this purpose, recall that a directed graph D consists
ofa set of nodes and some directed edges; a subgraph is based upon the same set ofnodes
and a subset of the edges of D. See [1 for other graph-theoretic terms that we use. With
a given n-by-n matrix A [aij] we associate a directed graph D(A) on nodes l, 2,
n by including the edge (i, j) from toj ifand only if aij O. This then precisely describes
the zero pattern of A.

If, for example,

2]
2A=

2 6 0
then U

2
0 0 -1
0 0 -1 0
0 0 0 -1

and a34 /,/34 0 (see [1, ex. 4.1]). The inheritance of this zero entry is due to the
numerical values of the entries, not to the structure ofD(A). To exclude such instances
of "accidental cancellation," we give the following definition. Given a matrix A with
digraph D(A), we say that two valuesfand g computable from the entries ofA are equal
generically (writtenf= g (genetically)) iff(.4) g() for all such that D(A) D(fl).

We say that an n-by-n matrix A is consistent with a given directed graph D ifD(A)
is a subgraph of D, and let ,/z denote the set of all n-by-n matrices A that satisfy (1.3)
and are consistent with D. The combinatorial phrasings of the matrix questions (1.1)
and (1.2) which we address are then as follows.

(1.1 ’) For which directed graphs D does A e 9 imply that ui ai for a given pair
_j?

(1.2’) For which directed graphs D does A e z imply that uo a for all pairs < j
(or all

_
j)?
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We first answer questions (1.1) and (1.1 ’) with a simple graph-theoretic condition
in 2, and then use this answer to address questions (1.2) and (1.2’) in 3. In 4 we
indicate the analogous solutions for the dual problems regarding L when Uis normalized.
Also in 4 we consider the situation in which both u ij aij for -< j, and li ai for_

j. Some analogues for UL factorizations are stated in 5, and the occurrence of
U(A [/3])i U(A)i is considered in 6. The relationship with known results about
Gaussian elimination is discussed in 2 and further in 7.

2. Local inheritance. In this section we address the local questions and begin with
a sufficient condition for (1.1).

THEOREM 2.1. Let A be an n-by-n matrix satisfying (1.3). Ifthere is no path from
to j >- through { 1, 2, } in D(A), then uij ai9 in the unit LUfactorization

ofA.
Proof. By 7, p. 26 ],

det A[ {1, ,i- 1,i} {1, ,i- 1,j}]
(2.1) ui di- (A)

for j>=i.

Expanding about the th row,

(2.2) det A[ {1, ,i- 1,il 1, ,i- 1,j}l=aodi_,(A),

as there are no paths from toj through { 1, }. Equations (2.1) and (2.2) imply
that u ij a.

The above path condition and an analogous one play an important part in our
work, so we introduce some related terminology. For -< i, j _-< n, A is (i, j) lower
restricted if there is no path oflength >= 2 in D(A) from toj such that all intermediate
nodes on this path are <min { i, j }. Note that A is always (1, j) and i, 1) lower restricted.
Letting i,j { 1, 2, n } and S

_
{ 1, 2, n }, j is reachable from through S

(see [1]) if there is a (simple) path in D (of length >- 2) from to j such that all inter-
mediate nodes on this path are in S. Thus for =< i, j =< n, A is (i, j) lower restricted
if and only if j is not reachable from through S { 1, 2, ..., min { i,j} }. In the
case that < j and A is (i, j) lower restricted, then ao 0 implies that the submatrix
A[ { 1, 2, i, j } is reducible, whereas for ai 4:0 this submatrix may be irreducible.
IfA is (i, i) lower restricted, then A { 1, 2, } is always reducible.

Provided A satisfies (1.3), Theorem 2.1 can be restated as follows. IfA is (i, j) lower
restricted, then u ij aij for given --< j in the unit LU factorization ofA. For example,
if there is a positive integer p such that, for all and j, aij 0 when j >- p + i, then A is
(i, j) lower restricted when j >= p + 1. Thus u ij a; for all pairs (i, j) with j -> p +

1; and in particular ui ao. 0 for all such pairs with j >= p + i. Note that this
situation includes matrices of bandwidth p and lower Hessenberg matrices (p 2).

Although our methodology is different, Theorem 2.1 is closely related to Theorem
of 12 ], which (for -< j) can be interpreted as saying that if aij 0 and node j is not

reachable from node through { 1, 2, }, then ui 0. In this circumstance,
i.e., when node j is not reachable from node through { 1, 2, }, Theorem 2.1
shows that ui ai regardless of the value of aij. However, as examples (2.4) and (2.5)
below illustrate, Theorem of 12 does not characterize the combinatorial circumstances
under which u ij ai even when aij 0; i.e., if u i aij 0 and the equality is due to
the combinatorial structure ofA, then it is not necessarily true that nodej is not reachable
from node through 1, 2, ). We now give a characterization of the combi-
natorial circumstances under which u ij aij (for arbitrary aij), thus answering (1.1 ’).

THEOREM 2.2. Let D be a directed graph on n nodes and let i, j be a given pair,
<-j <- n. Thenfor all.4 lz, ui ai; in the unit LUfactorization of.4 ifand only if
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(i) j is not reachablefrom through { 1, 2, 1}, or
(ii) ifj is reachablefrom through nodes p, p2, p { 1, 2, }, then

detA[{1,Z,...,i-1}-{p,p2,...,p/}]=0 forallAz.
Proof. Expanding the numerator of (2.1) about the ith row (of. (2.2)),

det A[ { 1,... ,i- 1,il 1,... ,i- 1,j}]
(2.3)

aijdi (A) + ., +ai,la,,z,2...ap, det A[ { 1,2, ,i- } {P,P2, ,Pt} ],

where the summation is over all simple paths from to j through p, p2, ..., Pt e
{ 1, ),

_
1, and the sign depends on i, j, and t, (see ). If u ij ao for all

A e z, then each term in this summation must be zero, so either there is no such path
(condition (i)) or the complementary principal minor must be zero (condition (ii)).
Conversely, if (i) is true then Theorem 2.1 gives u i; ai;, while if (ii) is true (2.1) and
(2.3) give this equality. [3

Theorem 2.2 generalizes the well-known results concerning fill-in Gaussian elimi-
ination (see 7), which are an attempt to determine when a nonzero entry will occur
in the (i, j) position during the entire process ofGaussian elimination, given that aj 0.
To illustrate this point, consider the following digraph D (cf. the transpose ofthe example
in 3, p. 944 ])"

Subject only to condition (1.3), u 34 a34 0 in the unit LU factorization ofany matrix
A ,z. However, by [12, Thm. 1] there is fill-in at the (3, 4) position of any such
matrix A ’ ifa31al4 0. We note (using Theorem of[12] and Theorem 2.2)that
if there is fill-in at the (i, j) position for some < j, and if uo ao 0 in the unit LU
factorization ofA, then a 0 for some k < (see also [3 ]).

The following example illustrates that it is possible to have fill-in at the (i,j) position
even though ai 0 and the (i, j) entry of the reduced matrix of Gaussian elimination
is zero throughout the elimination. Let A be any matrix consistent with the digraph of
(2.5) and satisfying 1.3 ).

(2.5)

Then, e.g., by [12, Thm. 1], there is fill-in at the (4, 5) position (provided that
a4a3a35 4 0), although u45 a45 0 and the (4, 5) entry is zero (in the absence of
rounding error) at all stages of the elimination.

The following observation follows from the inheritance in U of a subset of a row of
entries ofA (of. 5, Lemma 2 ).

COROLLARY 2.3. Let D be a directed graph on n nodes with a self loop at each
node. Given { 1, 2, n ), ifui 0for allj > in the unit LUfactorization of
allA z having akk 4 0for k 1, 2, n 1, then D is not strongly connected (that
&, all such A lz are reducible).
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Proof. Since u ij 0 for all such A ID, aij must equal zero and so D cannot have
an edge i, j) for all j > i. Since, for all such A, akk 4 0 for k 1, 2, n 1, condition
(ii) of Theorem 2.2 is vacuous. By condition (i), all such A are (i,j) lower restricted for
all j > i. Thus there is no path from to j in D, so the result follows.

Note that this corollary is, in general, false without the condition that akk 4:0 for
k 1, 2, n 1. For example, with D as in (2.4), u 34 0 (genetically) in the unit
LU factorizations of all A o, although A may be irreducible. A result similar to
Corollary 2.3 is given in [5, Lemma 2]. However, the results of[5] are based on a
different understanding ofwhen a matrix entry is zero/nonzero for combinatorial reasons.
In the above example, u 34 would be considered to be nonzero under the assumptions of
[5 because it is computed from two nonzero values. However, u 34 is in fact identically
zero because ofthe combinatorial structure ofA (and not because ofaccidental numerical
cancellation). Thus our result is more precise in this regard.

When A is a nonsingular M-matrix [2, Chap. 6], then all principal minors ofA are
positive, so A has a unique unit LU factorization (with L and U also M-matrices) and
condition (ii) of Theorem 2.2 is vacuous. In fact this last statement also holds for a
singular, irreducible M-matrix A as every principal submatrix of a matrix in this set
(other than A itself) is a nonsingular M-matrix [2, Thm. 6.4.16 ]. If A is a singular,
reducible M-matrix, then it need not have an LU factorization. However, if in this case
we impose our usual hypothesis (1.3), then A[1, 2, n 1] is a nonsingular M-
matrix, and the same statement holds. Similarly, if A is a positive semidefinite matrix
satisfying (1.3), then condition (ii) of Theorem 2.2 is also vacuous because dn- 4:0
implies that A 1, 2, n is positive definite. Thus we have the following corollary.

COROLLARY 2.4. Let A satisfy (1.3), and be either an n-by-n M-matrix or positive

semidefinite matrix, and let i, j be a given pair with <- j <= n. Then u ij a in the unit
LUfactorization ofA ifand only ifA is i, j) lower restricted.

The analogous result regarding fill-in during Gaussian elimination when the coef-
ficient matrix is a nonsingular M-matrix is given in 6, p. 290 ]. Similarly, Theorem 5.1.2
of[8 is an analogue of the positive semidefinite case. Note that, if A is any M-matrix
that has a unique unit LU factorization, then the sign pattern ofA insures that u ij aij
for all -< j. Moreover, if ui < ai, then the (i,j)entry ofA monotonically decreases to
u i9 during the Gaussian elimination process, implying that an equality u ij ai can never
be due to accidental numerical cancellation.

3. Global inheritance. We now address questions (1.2), (1.2’) and first answer the
more general graph question (1.2’) for all <j. In contrast to the result for local inheritance,
it turns out that the complementary minor condition (Theorem 2.2 (ii)) disappears from
the characterization of global inheritance.

THEOREM 3.1. Let D be a directed graph on n nodes. Then, for all A o andfor
all pairs i, j with < j <= n, ui9 ai9 in the unit LUfactorization ofA ifand only ifj is
not reachablefrom in D through { 1, 2, 1}.

Proof. Assume that for all <j, j is not reachable from in D through
1, 2, ..., }, that is, there is no path from to j through nodes < i. By condition

(i) of Theorem 2.2 this implies that ui aij for all < j.
For the converse, assume that ui9 a;9 for all pairs < j and all A e o. Using

Theorem 2.2, if condition (i) is true for all such pairs and all A e o, then our theorem
is proved. Otherwise let A o and let be the smallest node for which there is a path
in D(A) from toj > through nodes p, P2, Pte {1, 2, 1} such that
det A[a] 0, where a -= {1, 2, ..., 1} {p, P2, "", Pt}. Then there exists a
node m e a such that

(a) amm 0, since det A[a] 0 for alia e o; and
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(b) m lies on a cycle m --, q -- qr m in D(A[1, 2, m]) (since
dm(A :/: O) with some qs, =< s -< r, not in a (since if each node in c having no 1-cycle
lies on a cycle entirely in a, then there exists A z such that det A a] 4: 0).

Thus qs {P, P2, "’", P }, so there exists a path m -, q --, --, qs Pv) --*
--" Pw where pv, Pw {P, P2, Pt, j } and pw min { j, first node > m on

the path from to j }. All intermediate nodes on the path from m to p are <m, and, by
the choice of i, all principal minors ofA 1, 2, m are nonzero. Thus by Theorem
2.2 Umpw :k ampw, which contradicts our assumption. So condition (ii) of Theorem
2.2 cannot hold in this case. [2]

Matrices with digraphs satisfying the condition ofTheorem 3.1 are, in the terminology
of 2, (i, j) lower restricted for all pairs < j; we call such matrices forward lower
restricted. With this terminology and the result ofTheorem 3.1, question (1.2) may now
be answered succinctly as follows.

COROLLARY 3.2. Let A be an n-by-n matrix satisfying (1.3). IfA isforward lower
restricted, then uij aij for all < j in the unit LUfactorization ofA. Conversely, if
uij aij (generically)for all < j, then A isforward lower restricted.

For example, a lower Hessenberg matrix is forward lower restricted, and thus satisfies
the condition of the corollary; see the example after Theorem 2.1. IfA is an M-matrix,
then Corollary 2.4 shows that the conditions ofCorollary 3.2 are necessary and sufficient
without genetic equality.

We now restrict A to be combinatorially symmetric and reconsider our global in-
heritance question (1.2) in this special case. When the undirected graph ofA is a forest,
we define A to be invariantly ordered if it has at most one nonzero entry in each column
below the diagonal; for example, any tridiagonal matrix is invariantly ordered. We note
that if the undirected graph of A is a minimum degree ordered forest (see, e.g., [8]),
then A is invariantly ordered; however the converse is not necessarily true (unless the
graph is a tree). This definition leads to the following characterization; we omit the proof,
which is straightforward.

THEOREM 3.3. Let A be an n-by-n combinatorially symmetric matrix satisfying
(1.3). Ifthe undirected graph ofA is a forest and A is invariantly ordered, then u i ai
for all < j in the unit LUfactorization ofA. Conversely, ifui ai (generically)for all
< j, then the undirected graph ofA is a forest and A is invariantly ordered.

We now consider the more restrictive version of our question (1.2), in which we
characterize inheritance of all entries for _-< j. Note that for the tridiagonal matrix given
in the introduction, u;j ai for all < j but not for all j. By analogy with Corollary
3.2 we have the following result.

COROLLARY 3.4. Let A be an n-by-n matrix satisfying (1.3). IfA is i, j) lower
restrictedfor all pairs <= j, then u afor all <= j in the unit LUfactorization ofA.
Conversely, if ui aij (generically)for all <= j, then A is (i, j) lower restrictedfor all
pairs <= j.

Matrices which satisfy these conditions can have no p-cycle for p >= 2, and thus
must be reducible; in fact, they must be essentially triangular (although not all essentially
triangular matrices satisfy these conditions). In addition, ifA is i, j) lower restricted for
all pairs _-< j, then det A ]-I ’= aii. Some examples of matrices satisfying these condi-
tions are given below, where the entries ai are arbitrary (subject to (1.3)).

a a2 a3 a4
0 a22 0 0
0 a32 a33 a34
0 a42 0 a44

all a12 a13 a14
0 a_2 a23 a24
0 0 a33 0
0 0 a43 a44

a 0 a3 0
0 a22 a23 a24
0 0 a33 0
a4 0 a43 a44
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4. Inheritance in the right unit LUfactorization. Results in the previous two sections
characterize inheritance in the upper triangular factor when the main diagonal entries
ofthe lower triangular factor are all unity. There are obviously analogous characterizations
for inheritance in the lower triangular factor when the diagonal entries of the upper
triangular factor are all unity. We call this the right unit LUfactorization of a matrix ,4.

By taking transposes, A r UrL and it is easy to see that Theorems 2.1 and 2.2 with
{ 1, 2, } replaced by { 1, 2, j } in each case give conditions for lij aij
for particular i, j -< in the fight unit LU factorization of matrix ,4. Thus we have the
result that if A satisfying (1.3) is (i, j) lower restricted, then li aij for a given pair_

j in the fight unit LU factorization ofA.
To characterize global inheritance in this factorization, we introduce another defi-

nition. If a matrix ,4 is (i, j) lower restricted for all pairs > j, then we call A backward
lower restricted. If this condition is true for a matrix ,4 satisfying (1.3), then li aij for
all > j in its fight unit LU factorization. The converse holds if the equality is genetic
(cf. Corollary 3.2). Assuming, in addition to the principal minor condition, that ,4 is
combinatorially symmetric, ira is invariantly ordered then li/= a/. The converse holds
if the equality is genetic (cf. Theorem 3.3). This follows because ifA is combinatorially
symmetric with a forest graph, then A is invariantly ordered if and only if,4 r is. Thus,
for the class of matrices specified above, inheritance in one unit LU factorization implies
inheritance in the other unit LU factorization. Tridiagonal matrices are in this class (see
the example in the introduction).

In the following result we characterize the simultaneous inheritance of entries (in-
cluding those on the diagonal) in both LU factorizations.

THEOREM 4.1. Let
{ 1, 2,..., n- either apq 0 for all q with n >= q > p or else aqp 0 for all q with
n >--q > p, then u ij ai/for all <= j in the unit LU factorization and li/= a for all
>= j in the right unit LUfactorization. The converse holds ifthe equalities are generic.

Proof. Let U u i/] and L lij], respectively, denote the upper and lower factors
in the unit LU and fight unit LU factorizations. Let =< p -< n and assume first that
either apq 0 or else that aqp 0 for all q > p. Thus, in the digraph of,4 there cannot
exist a path ofthe form ql -- P -- q2 for any ql, q2 > P. That is, A is (i, j) lower restricted
for all pairs (i, j), and therefore u ij aj and l/= ai/for all =< j and >- j, respectively.

To prove the converse, assume that u i ai (genetically) and li/= a/(genetically)
for -< j and

_
j, respectively. Let _-< p =< n and p < r =< n, and suppose that

apt O. Ifap v 0 for any q > p, then dqpdpr = 0 implies either that Uqr dqr (when q =< r)
or [qr dqr (when q >_- r). In either case the assumption is contradicted and thus a 0
for all q > p. Similarly, it can be shown that ar 0 for r > p implies that dpq must equal
zero for all q > p.

We call a matrix which satisfies the zero / nonzero pattern ofTheorem 4.1 a sawtooth
matrix, and note that it can be displayed as

A12 ]

where aii are arbitrary and one of A,+1, A+ l,i is 0 while the other is arbitrary. Note
that the first two examples at the end of 3 are sawtooth matrices, but the third
example is not.
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5. UL factorizations. Whereas we have concentrated thus far on LUfactorizations,
we now state results for the analogous problems for UL factorizations of A. Again we
consider the two normalizations; when all diagonal entries of U (respectively, L) are
equal to 1, we call this a left (fight) unit UL factorization. Each of these factorizations
is unique (cf. Theorem 1.1 ifand only ifall proper trailing principal minors are nonzero,
that is, if and only if

(5.1) detA[{n-k+l,...,n}]4O fork= 1,2, ,n- 1.

To consider inheritance of entries, we state a definition which is the analogue of
(i, j) lower restricted. For =< i, j -< n, A is (i, j) upper restricted if there is no path
(of length >- 2) in D(A) from to j such that all intermediate nodes on this path are
>max { i,j}. Note that A is always (i, n) and (n,j) upper restricted. A sufficient condition
for local inheritance then parallels Theorem 2.1. If A satisfies (5.1) and is (i, j) upper
restricted, then li a (ui a) for given >- j (i -< j) in the left (right) unit UL
factorization. Necessary and sufficient conditions for local inheritance can thus be given
by analogy with Theorem 2.2.

For global inheritance we need definitions analogous to those for lower restricted.
A is backward (forward) upper restricted ifA is (i, j) upper restricted for all pairs > j
(i < j). The result analogous to Corollary 3.2 then takes the following form.

Given A satisfying (5.1), if A is backward (forward) upper restricted, then li
a u j. ao) for all > j < j) in the left (right) unit UL factorization ofA.

The following result corresponds to Theorem 3.3, and contains an analogue of the con-
dition that .4 is invariantly ordered.

Given a combinatorially symmetric matrix A satisfying (5.1), if the undirected graph
ofA is a forest and A has at most one nonzero entry in each column above the main
diagonal, then li ao (u;j aj) for all > j (i < j) in the left (right) unit UL
factorization ofA.

On requiring that all off-diagonal entries of A be inherited in L and U, we obtain the
following (with the appropriate normalizations for L and U).

Given an irreducible, combinatorially symmetric matrix satisfying (1.3) and (5.1),
if A is tridiagonal then u0 a for all < j in the unit LU factorization ofA and

1 aij for all > j in the left unit UL factorization ofA.

The converses of the three statements above all hold if the equalities are genetic.

6. Sulmatrix inheritance. Suppose that A has a unique unit LU factorization, and
that some submatrix A[/3] also has such a factorization A[/3] L(A[3])U(A[]); we
now characterize when the i, j entries of U U(A) and U(A [/3]) are equal. For/3
{ 1, 2, p }, -< p -< n, this equality obviously holds for any A satisfying (1.3), and
for all i, j e/3. But for more general/3 this is not necessarily true, and we seek to determine
combinatorial circumstances under which it does hold.

In the case that the i, j entry ofA is inherited by U we have the following result.
Given a directed graph D with a self loop at each node, we let 9 denote the set of all
n-by-n matrices A which have all principal minors nonzero and which are consistent
with D. (Note that b - n.)THEOREM 6.1. Let D be a directed graph with a self loop at each node; let
{ 1, 2, n } and i, j with <- j. Iffor all A ,’, uij a in the unit LUfactor-
ization ofA, then it is also the case that U(A [/])i ao in the correspondingfactoriza-
tion ofA [/3].
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Proof. As all A 9 have nonzero principal minors, we can apply Theorem 2.2
with condition (ii) vacuous. Thus u ij aij for all A e ]9 implies that j is not reachable
from through { 1, 2, ..., 1} in D(A). But if this condition holds on D(A) it
necessarily holds (with respect to/3 fq { 1, 2, ..., }) on the subgraph of D(A)
induced by any set/3 containing and j. Thus, using Theorem 2.2 again, the i, j entry is
also inherited by U(A[3]), and so U(A[3])i ui a

If the conditions of this theorem are relaxed to allow some aii 0, then the result
is not necessarily true. It is also easy to give an example that shows the converse of the
theorem need not be true.

We now give a characterization of inheritance of any given entry in a certain sub-
matrix.

THEOREM 6.2. Let D be a directed graph with a selfloop at each node and let A
’n. Then for given i, j 3 { 1, 2, n } with <- j, U(A[3])is uij for all A
s’ (in the unit LUfactorizations ofA [3] and A ifand only ifevery path from to j in
D through 3" { 1, 2, } passes through nodes only in 3.

Proof. Let vis U(A[3])is. Then (cf. (2.1))

det A[(3" N/3)U { i} (n3)u {j}]
(6.1) v,.s det A 3" n/3]

This numerator can be expanded about the ith row (cf. (2.3)), giving

det A[(3,N/3)U { i} (yn/3)u {j}]
(6.2)

a; det A 3’ n/3] + __+ aiqaqlq2...aqsj det A [(3, n/3) { ql, q2, qs }

where the summation is now over all paths from to j through nodes ql, q2, qs -3" f’l 3, and s

_
1.

Assume first that vj u for all A 9. Then the terms involved in the sum-
mations of (2.3) and (6.2) must be equal for all such A. If for some A there is a path
from to j in 3" which includes a node not in , then this path product multiplied by its
complementary determinant will occur in u (from (2.3)) but not in vi (from (6.2)).
As A has all principal minors nonzero, in particular this complementary determinant is
nonzero, so we have a contradiction.

For the converse, assume that every path from to j in D through 3" passes
through nodes only in . Then the summations in (2.3) and (6.2) are over an identi-
cal set of paths from to j. Thus u ;j. v;j. for all A s if and only if we have for all
such matrices

det A[7- {Pl,P2, ,P/}] det A[(3"N/3)- {P,P2, ,P/}]
(6.3)

det A 3"] det A 3" CI/3]

for all {p, p_, ..., P } - 7 such that there exists a path in D from to j through
P, P, "’", Pt. Now, as each A is assumed to have nonzero principal minors, all sub-
matrices in (6.3) are nonsingular, so that Schur complements exist, and we can use ideas
developed in [1]. Let e be the set of nodes in 3’ q which are on no path from to j.
For any given path as above, let i denote the set of all nodes in - fq # that are on some
path from to j that contains at least one of the nodes p, p, ..., Pt. Note that
{P, P, Pt) - . The nodes can be ordered so thatA is given in partitioned form as

[A[e] 112] IN[ill Az3 ]A[3"O/]
[.Azl 122J

where 122
[A32 A[(3"f))-e-6]
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On taking the Schur complement ofA e in A 3" f3 ]"

det A 3" (’1/3] det A e det (A22 A21A e -IA 12)

But A21A e]-lAl2 must be zero for every matrix A satisfying our assumptions, as otherwise
there would exist a path from toj through 3" f’l/3 including nodes ofe, which contradicts
the definition of e. Consequently, det A 3" N 3] det A e det A22. Similarly, taking the
Schur complement ofA 6] in A22 gives

det A[3" n/3] =det A[e] det A[6] det A[(3"n/3)-e- 6].

But {pl,/32, P } --- t, so the fight side of (6.3) reduces to

(6.4)
det A [- {p,p2, ,Pt}

det A [/i]

Using the same reasoning on the left side of (6.3), it is also equal to (6.4) and the result
follows. D

Note that ifthere is no path from toj in 3" (that is, j is not reachable from through
{ 1, 2, ..., }), then we conclude from Theorems 6.2 and 2.2 that U(A [/3])ij
u ij aij for all A b, giving inheritance of this entry. Obvious analogous results hold
for the other three unit factorizations described in 4 and 5.

7. Relations with Gaussian elimination. The relationship between Gaussian elim-
ination and LU factorization is well known, especially in the numerical analysis literature.
There also is a relationship between Gaussian elimination and Schur complements, so
our results concerning inheritance of entries in U are related to results in ].

Consider an n-by-n matrix A that satisfies (1.3) or, equivalently, for which all Gauss-
ian elimination pivots are nonzero. Inheritance in the matrices L and U of an LU fac-
torization of A is closely related to the concept of fill-in. When aij 0 and node j is
reachable from node through { 1, 2, min (i, j) }, there is said to be fill-in at
the (i, j) position. This idea is particularly important for large, sparse matrices, where it
is desirable to minimize the fill-in; and has been discussed by many authors (see, e.g.,
3 ], 4 ], 8 ], 11 ], 12 ]). Much of the emphasis in the literature concerning fill-in in

sparse matrices concerns the determination of permutation matrices P, Q so that either
PAPr or PAQ has less fill-in than A; we have not discussed this important practical
problem. The relationship between our results and those of[ 12 was given in 2. In 8 ],
consideration is restricted to symmetric positive definite matrices using the undirected
graph ofA and the Cholesky factorization A LL. The following result is an immediate
consequence ofour Theorem 2.2 (and its analogue characterizing inheritance in L), and
is an extension of Theorem of 12 and Theorem 5.1.2 of 8 ].

COROLLARY 7.1. Let A be an n-by-n matrix satisfying (1.3) and suppose that ai
O. Then, ignoring accidental numerical cancellation, ui q 0 if <= j) or li q= 0 if >= j)
in any LUfactorization ofA ifand only if there exists a path - k -- k2 -- --kt -- j in D(A ) with kp { 1, 2, ..., min i, j) }, <- p <= t, and

det A[ {1,2, ,min (i, j)- 1} {k,k2, ,kt} ]0. [[]

Because of condition (ii) of Theorem 2.2, our results are more general and more
precise than those contained in the literature concerning fill-in in sparse matrices. In
addition, we require only that A has a unique unit LU factorization and we characterize
the inheritance of both zero and nonzero entries. As shown by the example following
Theorem 2.2, (see (2.4)), the use of condition (ii) of that theorem to deduce that u ij

aij (generically) is interesting in that the i, j) entry of U may indeed change during the



104 JOHNSON, OLESKY, AND VAN DEN DRIESSCHE

process of determining the LU factorization; however, the equality is guaranteed by the
combinatorial structure.
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Abstract. Some novel variational principles for finding real and complex eigenvalues of the generalized
eigenproblem Ax XDx are formulated and analyzed. A is a general matrix, D is assumed to be real symmetric
and positive definite. One class of principles is based on constrained minimization on the set where Dxll 1.
The other class involves the minimization of smooth functions on the complement of certain closed convex
sets. The minima of these functions occur either at certain eigenvectors, or certain singular vectors, of the
problem. The eigenvalue is determined as a certain functional of the minimizer. A numerical implementation
of these principles is described.
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1. Introduction. This paper describes and analyzes some variational principles for
finding "real and complex" eigenvalues and eigenvectors of general n n matrices. The
principles involve minimizing certain smooth functions on specific subsets ofE (for real
eigenvalues) or 2n 0, 2r] (for complex eigenvalues). The minimizers occur at specific
eigenvectors of the matrix and their norms give the eigenvalue--or its modulus. The
functions are defined so that the optimal value is zero at eigenvectors, and is independent
of the eigenvalue. There are critical points that are not minima of these problems and
they are generalized singular vectors of associated matrices.

These variational principles do not require any symmetry or nonnegativity as-
sumptions. They are quite different from Rayleigh’s principle and related power methods
for finding real eigenvalues ofsymmetric matrices. Also, they appear to be quite different
to the variational characterizations of the largest eigenvalues and corresponding eigen-
vectors of stochastic matrices. In particular, the eigenvalue equations are not obtained
by a direct application of the Lagrange multiplier rule, as in Rayleigh’s principle. The
methods provide information on all the eigenvalues of a nonsingular matrix, not just the
largest or smallest ones.

Partial motivation for this work has been the questions arising in bifurcation and
stability theory. Very often we are interested in studying how the eigenvalues and eigen-
vectors of a family of matrices depend on a parameter. For families of real symmetric
matrices, Rayleigh’s principle provides quick and simple methods for tracking various
eigenvalues. The variational principles to be described here can be used in a similar
manner. Also they provide estimates on the spectral radius of a matrix, and its inverse
when it is nonsingular. In Theorem 8 and its corollaries we also describe various local-
ization theorems on the eigenvalues. At present, it is not at all clear how the numerical
solution of these variational principles compares with other numerical methods of ei-
genvalue estimation or localization. In 6, however, we describe some results on imple-
menting one of these principles for some simple families of matrices.

In 2, we introduce some notation and background material for this problem. This
problem is an example of nonstandard variational principles ofthe type described in ].
The motivation for many ofthese comes from the systematic use ofbasic ideas in convex
analysis, notably the use of conjugate convex functions and their extremality conditions.
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These are described in 2. In 3, we describe an elementary variational principle of
least squares type for finding real eigenvalues of the generalized eigenvalue problem. In

4, a very different principle based on a generalized Young’s inequality is introduced
and analyzed. The principle only finds positive eigenvalues and corresponding eigenvec-
tors. Then 5 describes how either of these variational principles may be extended to
find complex eigenvalues ofgeneral matrices. In 6, we conclude with a simple example
of the numerical application of these principles.

2. Notation and background. Throughout this paper, n will be the usual n-di-
mensional real vector space with the inner product and norm defined by

(x,y)- Z, xy, Ilx[I- x
j=l j

Let A (a0.) be a real n n matrix, not necessarily symmetric. Its transpose is
denoted A r and the norm ofA is

a sup axll.
Ilxll

We shall only use the 2-norm and the corresponding induced matrix norm in this paper.
Our interest is in finding variational principles for the weighted, or generalized,

eigenproblem of finding nontrivial solutions of

(2.1) Ax XDx

where D is a real symmetric, positive definite n n matrix. The standard eigenproblem
has D In being the n n identity matrix, but since our methods work equally well in
this weighted case the more general case will be analyzed.

A nonzero vector x in N n is said to be normalized if Dxl[ and nr { X - IIq n..
Dxll - r }, Sr { x IR n: Oxll r } are the ball, respectively sphere, of radius r, center

the origin in N n with respect to D. When x, y are vectors in N n, then x A y xyr

(xiyj) is a rank matrix. Other terms from linear algebra will be used in the sense defined
in Horn and Johnson 2 ].

Let K be a closed subset of N n, [-oo, oo and F: K -- N be a given function.
Then a infxK F(x) is called the value of F on K. F is said to be bounded below on
K is ct is finite. A point .f in K is a minimizer ofF on K if F(2) ct and we say that a
is attained if F has a minimizer on K.

An interior point 2 ofK is a critical point ofF if either (i) F is not differentiable at
$, or (ii) VF(:) 0 where

VF() (0(),

is the gradient ofF at .
OF

(.2)
OXn

When F is twice-continuously differentiable at x, then its Hessian at x is
D2F(x) (02F(x)/OxiOxj) and is an n n symmetric matrix.

When K is not bounded, we say that F is coercive on K provided

F(x)
Lim inf

It is weakly coercive on K if F(x) -- oo as xll -- oo for x in K.
We shall also use some terminology and results from convex analysis. When f:-- is a given function, then its conjugate convex (or polar) function f*" n ._
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is defined by

(2.2) f*(y)= sup [(x,y)-f(x)].
x

This implies that

(2.3) f(x) +f* (y)

_
(X, y)

for all x, y N". Equality holds in (2.3) if and only if

(2.4) yeOf(x)

where Of(x) { w ": f(y) f(x) >= ( w, y x) for all y in " }. Of(x) is called the
subdifferential off at x and (2.3) is the generalized Young’s inequality (see Zeidler [3,
51.1 ]). Any other undefined terms in this paper should be taken in the same sense as

in [3].
Whenf(x) (1/p)llxl[Vwith -< p < oo, then

Xl(y) whenp=l,

f*(y) -1 Ily__qll whereq P and <p< oo.
q p-1

Here

[ 0 iflly[I -<1,
(2.5) XI(y)

c otherwise

is the indicator function of the unit ball in ".
For this f, inequality (2.3) becomes the classical Young’s inequality

(2.6)
1

xll +-Ilyll (x,y)
P q

for all x, y in N" and where 1/p + /q 1.

(2.7) Equality holds here if and only ifx y 0 or else y Ilxll-Zx
3. Variational criterion for the existence of real eigenvalues. Our interest is in de-

scribing and analyzing some variational principles for the eigenvalues and eigenvectors
of A with respect to D. We shall first describe some criteria of least squares type for
finding real eigenvalues.

Consider the function E: Sl -- [0, defined by

(3.1)
E(x) IIAx- (Ax,Dx)Dxl[ 2

axl[ 2 (ax, Dx) 2.

THEOREM 1. Assume A, D, E, St as above; then we have thefollowing:
(i) a infxs E(x) is nonnegative, and this infimum is attained.
(ii) The eigenproblem (2. l) has a real eigenvalue if and only if is zero. In this

case, a minimizer ofE on Sl is a normalized eigenvector 2 corresponding to the real
eigenvalue (A2, D2)

Proof. Since D is positive definite, S is a compact set. E is a continuous function,
so Weierstrass’ theorem implies a is finite and the infimum is attained. Nonnegativity
follows from (3.1).
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When a 0, then (i) implies there is an g in Sl such that E()= 0 and A
(A2, .D)D. Hence 2 is an eigenvector of (A, D) corresponding to the real eigen-
value X (A2, D).

When (A, D) has a real eigenvalue ,, then there is a vector Y in Sl obeying AY
DY. In this case E(Y) 0 and hence a is zero as claimed.

COROLLARY. The eigenproblem (2.1) has no real eigenvalues if and only ifA is
nonsingular and

I(Ax, Dx)
(3.2) sup =/3 <

Proof. When A is singular then 0 is an eigenvalue of (2.1). When A is nonsingular,
then 11Ax[[ 4 0 for x in Sl. From the theorem, (2.1) has a real eigenvalue if and only if
a is zero which is equivalent to 3 1.

The function E also attains a finite maximum on S1, and it may well have other
critical points. Thus it has local extrema on S1 which are not eigenvectors of (A, D).
The following result shows that they are generalized singular vectors of a shifted matrix
A #D.

LEMMA 2.1. Let be a constrained critical point ofE on Sl. Then there exists real
numbers #l, tz such that obeys

(3.3) (A T_ lD)(A #lD)x #2D2x.

(3.4)

Proof. From (3.1), we have

1/2VE(x) ArAx-(Ax,Dx)(DA +ArD)x.
The constrained critical points ofE on Sl obey

VE(x)=#D2x
from the Lagrange multiplier rule, so when is a constrained critical point, we have
(3.3) with

#l (AY, D2) and /_ =/2 +.
In particular, when D I, the critical points ofE on S1 are singular vectors of the

shifted matrix (A tl 1).
Computationally it is often preferable to work with unconstrained optimization

problems. For this problem, consider El" n .. defined by

(3.5) E, (x) I[Ax- (Ax,Dx)DxI[ 2 +(11Dx[]- 1) 2.

El differs from Eonly by the addition ofa penalty term. Its properties may be summarized
as follows.

THEOREM 2. Assume A, D as before and El is defined by (3.5). Then we have the
following:

(i) El is coercive and continuously differentiable on { 0 }.
(ii) al infx, El(x) is nonnegative and attained.
(iii) (A, D) has a real eigenvalue ifand only ifal O. When a O, a minimizer

ofE1 on is a normalized eigenvector of(A, D) corresponding to the real eigenvalue
X (A2,

(iv) If2 is a nonzero critical point ofEl on ", then there exists constants
such that 2 obeys

(3.3) (A r_ #ID)(A -/.tl D)x tz2D2x.
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Proof. (i) From 3.5 we have

EI(X) [IDxl[2-2[[Dxi] +
since the first term is nonnegative. Since D is positive definite, there exists d > 0 such
that Dxll - d xll for all x in N n.

Hence

(3.6)
El(X) >_ d=[i xl -211 OilIlxll Ilxll’

and thus El is coercive as claimed.
Upon expanding (3.5) we observe each term is differentiable when x is nonzero,

and we find

1 VEI(x)= 1 D2x
rE(x) / (llDxll 1)

IIDxll
with VE(x) given by (3.4).

(ii) Since E1 is coercive and continuous on N n, it is bounded below and attains its
infimum. From 3.5 we have that El (x)

_
0 for all x, as each term is nonnegative.

(iii) This follows from (ii) of Theorem since a 0 if and only if a 0.
(iv) Using (3.4) and the above expression for VE (x), we have that if)? is a critical

point of El, then it is a solution of

DExA tAx- (Ax, Dx)(DA +A rD)x= (1 -II DxII )ii Dxll"
After factoring this fight-hand side, we obtain (3.3) with (A2, D2) as before

and
Here again, when D I, we see that the nonzero critical points of El on [n are

singular vectors ofA I.

4. Variational lrinciples for positive real eigenvalues. The variational principles
described in the last section provide information on all the real eigenvalues of (A, D).
Here we shall describe quite a different variational principle based on the extremality
conditions for Young’s inequality. It will only provide information on positive eigenvalues
and corresponding eigenvectors of (A, D).

Again A is assumed to be a real n n matrix and D is a symmetric, positive definite,
n n real matrix. Define Fp" [ n ._ by

(4.1) Fp(x)-
1

Dxll /1_ axll - (Dx,ax)p q

where < p < and q p/(p 1) is the conjugate index to p.
For R

_
0, let Cn { x e n: Dxll >_- R }. Then Co and CR is the complement

of the open ball with respect to D of center 0 and of radius R. Cn is always a connected,
unbounded, closed set.

Consider the optimization problem of minimizing F on C. Let

(4.2) Otp(R) inf Fp(x).
xCR

The following theorem summarizes the properties of this variational principle. Es-
sentially it says that (A, D) has a positive eigenvalue X obeying X >_- Rp-2 if and only if
ap(R) 0. When this holds, the minimizers of Fp on CR are eigenvectors of (A, D)
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corresponding to positive eigenvalues. To prove this theorem, we need the fol-
lowing lemma.

LEMMA 4.1. Suppose A, D, Fp, p and q as above. Then Fp(x) >- 0 for all x in q
and Fp(:f) 0 ifand only if obeys

(4.3) Ax 11Dxl[ p- Dx.

Proof. Consider the problem of evaluating

g(y)= sup (Dx,y)-=llDx[I v
X.

with < p < . Since D is nonsingular, g is well defined and finite for all y in n. The
supremum is attained when

(4.4) Y Dx]l p- 2Dx.

This implies that g(y) Yl] 2/q where 1/q 1/p or q is the conjugate index to
p. Thus

(4.5)
1

Dx[I p +1 Ilyll ">-- (Dx, y)
p q

for all x, y in and equality holds here if and only (4.4) holds.
Substituting Ax for y we have the lemma.
This may be regarded as a generalized Young’s inequality. Note that when

p 2, F2(x) 1/2llAx- Dx[I 2 is a purely quadratic function which is minimized at
solutions of

Ax Dx.

In the rest of this section we shall only look at cases where p q: 2. Moreover p 2 is a
dividing point between different behavior of the variational principle.

THEOREM 3. Suppose A, D, CR, Fp, and a as above with R > O. When 2 < p <, then we have thefollowing:
Fp is coercive on Cg and ap(R is finite, nonnegative and it is attained.

(ii) Fp(:f) 0 ifand only if2 is solution of(2.1) with

(4.6) [1D211 p- 2.

(iii) (A, D) has a positive real eigenvalue obeying X >-Rp-2 if and only if
ap(R) O.

When < p < 2, and A is nonsingular then and ii hold and iii )’ (2. l) has a
positive real eigenvalue , obeying

k <- Rp- 2 ifand only ifap(R ) O.

Proof. From Lemma 4.1 one has Fp(x)

_
0 for all x in and thus ap(R) >= O.

When p > 2, one has

Fp(X)-IIIDxII-IIAll IIDII Ilxll
P

soD nonsingular impliesF is coercive. F is obviously continuous so it attains its infimum
on CR and (i) holds. Property (ii) holds from Lemma 4.1.

When (2.1) has an eigenvalue X obeying X >- Rp- , then let w be a corresponding
normalized eigenvector of (2.1).
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LetY= X"wwithu (p- 2)-1;then IIDYll X">--RsoyisinCRandyisa
solution of(2.1). Thus Fp(Y) 0

_
ap(R). And hence ap(R) 0. Conversely if ap(R)

0, then from (i) there is an Y in CR such that Fp(Y) 0 and hence from (ii), (A, D)
has a real eigenvalue obeying X

_
Rp- 2 as required.

(4.7)

for all x in n. Thus
1

fp(x)-IIDxll+--llxll- IIAll IIDII Ilxll 2.
P q

When < p < 2, then q > 2 and hence Fp will be coercive. Thus (i), (ii) follow as before.
Now X

_
Rp- 2 implies X

_
R so (iii)’ follows.

For fixed p, let Jtp(R) { Xj: j J(R) } be the set of distinct eigenvalues of (2.1)
obeying Xj

_
Rp -2, when p > 2 or Xj _-< Rp -2 when p < 2.

When e Ap(R), let

Ej { xeNn:Ax ,jDx and Dxll X)/- -}.
Then Ej is the set of critical points of Fp corresponding to the eigenvalue Xj.. If
dim ker (A Xj.D) d, then Ej is diffeomorphic to a sphere of dimension d when
d > 1. When d 1, Ej is a pair of points.

The following result quantifies the solutions of the variational problem.
COROLLARY 1. Assume the conditions ofthe theorem and that ap(R O. Define

Ap(R) and E as above, then the set ofminimizers ofFp on Cg is UjStR) E. l
has afinite number ofbounded, connected components. When each eigenvalue Xj of(2.1)
is simple, then rill consists ofexactly 2J(R) points.

Proof. Since ap(R) 0, the minimizers of Fp on CR must obey Fp(2) 0. The
result now follows from (iii) of Theorem 3 and the definitions above.

The unusual feature of this variational principle is that the eigenvalue , is deter-
mined from the solution by (4.6). It is a functional of the solutionmnot a multiplier
arising from the constraints as in Rayleigh-type principles. When p > 2, the zeros of Fp
oflarger (D-) norms are eigenvectors of(A, D) corresponding to larger real eigenvalues.
When < p < 2, however, they correspond to the smaller positive eigenvalues.

To obtain a variational principle for the negative eigenvalues of A, we substitute
-A for A in (4.1) to obtain

(4.8) p(X) 1 DNII p +1 ii/xll + (Dx,Ax).
P q

We may ask about the critical points of Fp on N" or the local minimizers of Fp on
CR. The following result shows that these points again arise at generalized singular vectors
of(A, D).

THEOREM 4. Assume A, D, Fp as above. When < p < 2, Fp is continuously
differentiable on gq"- { 0 } and when p > 2, is continuously differentiable on gq"-
ker A with

(4.9) VFp(x) Dx[] P- 2D2x + Axl[ q- 2A tax (A rD +DA )x.

When 2 is a critical point ofFp on gq with A2 4 O, then there exist t positive and
2 real such that

(4.10) (A T_ N1D)(A #D)2 =/z2D22.
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When is a local minimizer ofFp on CR, then either A2 0 or (4.1O) again holds.
Ift2 0 in (4.10 then is an eigenvector of 2.1 corresponding to a positive eigenvalue.

Proof. When Ax O, (4.9) follows by standard calculus. If < p < 2 then q > 2
and (4.9) has a continuous extension to n { 0 }.

When 2 is a critical point of Fp with A2 4 0, it must obey

A2"II q-2A TAx-(A TD+DA)x= D21I ’- 2D2x.
Thus (4.10) holds with t IIAxll -" > 0 and ,2 "21 IIDxll--llaxll -. Take

inner products of (4.10 with 2; then

Thus /22 0 implies is an eigenvector of (A, D) corresponding to the eigen-
value t.

When 2 is a local minimizer of Fv on CR with A # 0, then from the extremality
conditions, there is a t

_
0 such that

VFv()-ttD2=0, and u(llDll2-g2)=0.

Thus if Dil > R, we have tt 0 and $ is a critical point ofF. When DII R,
then t may be nonzero and we have (4.10) with_

/ (u DII -:)11 AII -- .
It is worth noting that the Hessian, or second derivative, of F is defined on

N n ker A. From (4.9) we find that

(4.1 l)
D2F,(x)= IIDxlI,’--D + ]IAxlIq-2ArA-(ATD+DA)

+ q- 2 Dxll t’-4Dx /X Dx+ q- 2 AxIl q-4A TAx /X A TAx.
When < p -< 4/3 this may be continuously extended to " { 0 }.

When is a nonzero critical point of Fp, then is said to be nondegenerate if
D2Fp(2) is defined and nonsingular. The Morse index of is the number of negative
eigenvalues of D2Fp(). We know that if : is an eigenvector of (A, D) corresponding
to a positive eigenvalue, the Morse index i(2) will be zero since 2 is a local (in fact
global) minimizer of Fp. It would be interesting to know if there are other relationships
between the Morse indices of critical points and some ordering of the singular values of
A with respect to D.

When p increases to infinity, we have for each x in ’,

(4.12) lim F,(x)= F(x)= XI(DX)+ IIAx[I
p

where X is defined by (2.5) and x is in ’. The problem of minimizing Fo on n is
equivalent to minimizing

(4.13) f(x) IIAxll- (Ax, Dx)
on the closed unit ball B on ’. This is a constrained optimization problem which is
very similar to the problem studied in 3. The main difference is that here the constraint
is that x lie in B while in 3 we required x be in S. The properties of this problem may
be summarized as follows.

THEOREM 5. Assume A, D, fas above, then infx, s, f(x) O. If2 is a nonzero
minimizer offon B then either A2 0 or else Y is a normalized eigenvector of (A, D)
corresponding to a positive eigenvalue.
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Proof. From Schwarz’ inequality

f(x) >= Axll(l Dxll) >- 0

for any x in BI. Since f(0) 0 we have infx B f(x) O.
Iff(Y) 0 with AY q: 0, then we have IIoll and IIAI[ (O, A). This

implies AY ,D.f from the equality condition in Schwarz’ inequality and , must be
positive.

An interesting, related, variational principle is to minimize the function Hp" "{ 0 } -- defined by

(4.14) Hp(x) Ilxl1-2Fp(x)

where Fp is given by (4.1)" Let

-),p= inf Hp(x).
x/0

THEOREM 6. Suppose < p < co, p :/: 2, A is nonsingular and Hp is defined by
(4.14 ). Then we have thefollowing:

(i) Hp is continuous and weakly coercive on n { 0 }.
(ii) "rp >= 0 isfinite and it is attained on { 0 }.
(iii) 3’p 0 ifand only if 2.1 has a positive eigenvalue . In this case minimizes

H on { 0 } ifand only if:f is an eigenvector of A, D) corresponding to the eigenvalue

Proof. We have H(x)

_
0 for all x in R" { 0 } as F(x) 0. SinceF is continuous

one has H continuous. Since A is nonsingular, (4.7) holds so that

H,(x) llnxllP c
p x[I = -q xll - = a Oil.

When D is positive definite we have from (3.6) that

dp cq

(4.15) np(x)--IlxllP-=+--Ilxllq-2-1[al[
p q

Now p > 2 implies that H, is weakly coercive on ’-(0 and thin q < 2. Thus
Limin0 H(x) +.

Equivalently for all positive k, the set ( x e " ( 0 } H(x) k } is closed and
bounded. It will be nonempty for k large nou. Thus 0 will be attained.

We have 0 if and only if there is an 2 e " { 0 } for which F(2) 0. Thus
(iii) follows from Lemma 4.1.

Similarly when < p < 2, then q > 2 and (ii)-(iii) follow from (4.15 just as in
the case p > 2.

Other functionals besides F and H could be used here. Let h: [0, ] be a
continuously differentiable, convex function,f(x) h((Dx, x)), andf* be the conjugate
convex function off. Define F: " R by

(4. ) F(x) =f(x) +f* (Ax)
Then F(x) 0 and F(x) 0 if and only if

(4.17) AxeOf(x) { 2h’((Dx, x)Dx}.
Thus F(2) 0 if and only if2 is an igenvector of(2.1) coespondin to the eienvalu

2h’((Dx, x). Note that the range of the eigenvalues depends on the range of h’,
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where h’ is the derivative of h. When h(s) sP/p, < p < we have a theory similar
to that already developed here.

5. Variational principles for complex eigenvalues. The results of 3 and 4 may
be generalized to provide variational principles for complex eigenvalues of the
system (2.1).

To do this we observe that Xl + i,2 [X[ ei is a complex eigenvalue corresponding
to the eigenvector x u + iv of (2.1) with u, v in n if and only if

(5.1) oW’- ( cos 0A

-sin OA

where

cos oa Xlw

and w
0 v

This reduces the complex eigenvalue problem to one of finding positive eigenvalues
of a 2n 2n system involving the angular variable 0.

Let Wl= ((u,v)eEn:llDullE+]]Dvll2= 1} and consider the function g:
Wl [0, 27r] -- [0, defined by

(u,v;o)-- IIsow-( ow, w>wll -(5.2)
-IIowllZ-(sCow,w) =.

This is obtained from (3.1) by substituting sO0 for A and for D. The analogue of
Theorem now provides criteria for (2.1) to have eigenvalues in a given sector.

THEOREM 7. Assume A, D, g, Wl as above and 0 <- O1 <= O2 <= 2r. Then we have
thefollowing"

(i) a(Ol,02) inf d(u, v;O)
(u,v,O) w x [o,o2]

is nonnegative and is attained.
(ii) The eigenproblem (2.1) has an eigenvalue lying in the sector O <= arg X =< Oz

ifand only ifa(O, 02) O. In this case (, f), O) is a minimizer of on Wl [Ol, 02] if
and qnly if + if is an eigenvector of (2.1) corresponding to the eigenvalue
X ei where

IXl-(se0,) and v=(a,t) r.
Proof. This theorem follows directly from Theorem and the representation (5.1).
Similarly the analogue of (4.1) for this problem is the function ’p" N2,

[0, 27r] -- [0, oz )defined by

(5.3) ’p(w, 0)---1 wll +l se0w 2_ ( w, scow)
P q

with < p < oo and q p(p 1) as before. The analogue of CR is

DR {(U, v,O)eN2" [0, 2r]" On = / Ovll = >_-R 2 }
and the variational problem is to minimize ’p on D" Let

(5.4) p(R) inf rp(U, v, 0).
D

From Theorem 3 and the representation (5.1) we obtain the following result.
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THEOREM 8. Suppose A, D, DR, p, up as above with R > O.
When p > 2, then we have thefollowing:
(i) ’p is coercive on DR and up(R) is nonnegative and is attained.
(ii) ’p( tT, , ) Q ifand only ifY + i is a solution of (2.1) corresponding to

the eigenvalue Xle where

(5.5) IXI 2- ([I D711 / 11DI[ 2)-2.

(iii) A has a complex eigenvalue obeying IXI >- R-= ifand only ifup(R) O.
When < p < 2 with A nonsingular, then (i)-(ii) above hoM and
(iii)’ A has a complex eigenvalue obeying IKI <-- R- ifand only ifup(R) O.
COROLLARY 1. Under the assumptions of the theorem, if D I is the identity

matrix, up(R) > 0 and p > 2 then the spectral radius ofA is less than Rp-2. A is a
contraction ifand only ifup(l) > 0.

Proof. This corollary follows from Theorem 8(iii). The spectral radius of A is
max { IX I" x is an eigenvalue ofA ).

In a similar manner when < p < 2, A is nonsingular, we can obtain bounds on
the spectral radius of A -1. For all values of p, p 4: 2, up(R) will be zero for R small
enough; let

(5.6) Rp inf {R>O:up(R)>O}.

When p > 2, Rp is related to the largest (in absolute value) eigenvalue of (A, D)
by [,[ Rp

p- ; while when p < 2, Rp is related to the least eigenvalue , by the same
expression.

This functional may also be used to localize the eigenvalues. Suppose we wish to
know if (A, D) has any eigenvalues in the region

(5.7) K={ [X[ei’ol<-O<-O2andO<rl <- IX[ =<r2}.
Let og {(w, O) 2n [0102]" rl <= IIwllP-2<=r2} and consider the problem

of minimizing p on
COROLLARY 2. Under the assumptions ofthe theorem with < p < oo, p 4 2, then

(A, D) has an eigenvalue in K ifand only if
(5.8) inf ’p(u, v, 0) 0.

(u,v,o)

Proof. This follows directly from Theorem 8 (ii).
There also are similar results for the function Hp applied to the problem (5.1).
These results may even be generalized to complex eigenproblems for complex ma-

trices C A + iB where A, B are real n n matrices. The equation

(5.9) Cx= Dx
is equivalent to

(5.10) CgoW-- Xl w
where w u, v)r, x u + iv, X [Xle and

cg0= ( cos0 sin0)(A -B).-sinO cos/9 B A

Equation (5.10) is of the form (5.1) or (2.1) with c0 being a real 2n 2n matrix.

6. Numerical imlflementation. The variational principles described in the preceding
sections were developed to help analyze and numerically compute eigenvalues of



116 G. AUCHMUTY

families of matrices. We have implemented the variational principle for finding the posi-
tive real eigenvalues ofA by minimizing Fp on Ca as described in 4 and Theorem 3,
with D I.

This is a constrained optimization problem defined on the complement ofa convex
set. It was converted into an unconstrained problem by adding a penalty term and the
resulting function was Kp: n ._ [ where

(6.1)

where

Kp(x) _1 xll +-I[Axll q- (x,Ax) + Q(e-’ (R-Ilx[[ ))
P q

0 for s=<0,
e>0andl<p<c, p4:2.Q(s)=

e-s fors_0,

This function is C on ". To minimize Kp, a conjugate gradient method with an exact
line search was used. In all the following calculations we took p 3 and e 0.1. Given
an initial vector x() and a choice ofR, we sought the minima ofK3. When the minimal
value was approximately zero, we computed the approximate eigenvalue by

(6.2) , [[Y[[

(since p 3 in Theorem 3(ii)) with being the approximate minimizer and then com-
puted the normalized residual

(6.3) = I11------]--"
If 11 is small, we have , is an approximate eigenvalue ofA. Sometimes the min-

imizing was on the boundary of the domain i111 R) or is a singular vector ofA as
described in Theorem 4. In each of these cases I111 was not small.

We shall describe the numerical results for two simple families of matrices.
Example 1. Let

(6.4) A(#)
-g 2

with u being real. We have that A() is skew-symmetric and its eigenvalues are given by

X__= I(3+ l/i- 4tz2).
They are real when u[ --< 1/2; otherwise A (u) has a pair ofcomplex conjugate eigenvalues
lying on the line Re X .

TABLE
Results ofminimizing K3 with A(t) defined by (6.4).

Initial No. of Minimal
vector iterations value g 11

0.0 a 8 5.519 X 10-12 0.999999 (0.999999, 3.24 X 10-6) 3.4 X 10-6

0.0 b 6 3.02 l0-4 2.000000 (2.48 l0-8, 2.0) 2.1 l0-7

0.2 a 7 1.122 X 10-12 1.041754 (1.01977, 021284) 2.06 l0-6

0.2 b 2.78 10-I 1.95826 (0.40008, 1.91696) 6.17 l0-6

0.4 a 13 5.925 10- 1.200001 (1.07331, 0.53667) 1.18 l0-5

0.4 b 13 4.688 10-1 1.800011 (0.80499, 160998) 1.02 10-5

0.48 a 34 8.53 10- 1.360124 (1.08800, 0.81621) 3.55 10-5

0.6 a 7 7.415 10-3 1.472521 (1.05900, 1.02314) 1.01 10-1

1.0 b 21 1.359 10- 0.79945 -(0.667937, 4.43710) 7.37 10-
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TABLE 2
Results ofminimizing K3 with A(t) defined by (6.6).

Initial No. of Minimal
vector iterations value ,

-1.0 a 15 1.354 10- 0.78282 7.77 10-6

-1.0 b 40 6.657 10- 0.78280 1.80 10-5

0.0 a 17 6.148 10-1 1.000015 1.4 10-5

0.0 b 13 2.045 x 10-3 2.000000 4.6 10-7

1.0 a 50 6.367 10- 1.35702 3.14 10-5

1.0 b 74 6.586 10- 1.69213 2.79 10-5

2.0 a 19 5.68 10-3 1.51058 8.70 10-2

2.0 b 37 5.68 10-3 1.51058 8.70 10-2

Table summarizes the results of computations with p 3, e 0.1, and either (a)
the initial vector xt) (1.0, 0.9) or (b) xt) (0.5, 1.1). For each/z and initial vector
we tabulate the minimal value of K3, the computed minimizer and the value , from
(6.2). The convergence criterion was that

(6.5) ll7K3(.g) II--< 1.0 10 -5.

It is particularly informative to observe the behavior when t > 0.5. In these cases
the minimal value and i] were much larger than those obtained when 0 =< # < 0.5. All
calculations were done in double precision arithmetic on a VAX 11/780.

Example 2. Let

(6.6)
# 0]A(t)= 0 2

-1 0 -3

This matrix has the characteristic polynomial

det (M-A(#)) 3--7 + (6 +u).

This matrix has three real eigenvalues if and only if

1/61 < 7/28/27 - 7.12845108

and it has positive eigenvalues if and only if

<7/28/27-6 1.12845108.

Table 2 summarizes the results of computations with p 3, e 0.1, and R 0.5.
The initial vectors were either (a) (1.5, 0.5, 0.5 or (b) (0.2, 1.2, 0.2) and the convergence
criteria was (6.5) again. For economy of space, we shall omit the minimizing vector.

In this case, with # 2, for many different initial data, we obtained the same
minimizer with the same minimal value of 5.68 10 -3. Since we could not improve on
this, and the residual was not small, we conclude that when # 2.0, A() has no positive
eigenvalue.
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Abstract. A new self-contained approach based on the Drazin generalized inverse is used
to derive many basic results in discrete time, finite state Markov decision processes. A product
form representation for the transition matrix of a stationary policy gives new derivations of the
average reward evaluation equations, Laurent series expansions, as well as the finite test for Blackwell
optimality. This representation also suggests new computational methods.
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1. Introduction. The purpose of this paper is to provide a simple and unified
treatment of undiscounted Markov reward and decision process theory using purely
algebraic methods. The cornerstone of this development is a matrix factorization of a
stochastic matrix based on the Jordan canonical representation. All subsequent results
are obtained using elementary linear algebra. Although the results obtained are not
new, the approach herein is self-contained and more direct than the analytic methods
of Blackwell (1962) and Veinott (1969). Rothblum (1981) has obtained closely related
results but his methods are based on a more involved algebraic foundation. Ohno
(1985) has used the Jordan canonical form in a different way to obtain bounds in
undiscounted Markov decision processes.

Fundamental is the Drazin (1958) generalized inverse and a product form repre-
sentation for it suggested by Campbell and Meyer (1979). The role of the generalized
inverse for analyzing Markov chains has been recognized by many authors; a summary
appears in Meyer (1982). Also, Kemeny (1981) and Hunter (1982), (1988) discussed
the advantages of using generalized inverses in lieu of the usual fundamental matrix
of Kemeny and Snell (1960) for analyzing finite Markov chains.

As shown in Lamond (1985), (1987), the product form representation of the
Drazin inverse can be computed numerically by adapting standard matrix factorization
methods. Hence our mathematically convenient transformation also suggests some
new, efficient algorithms for policy evaluation.

In this paper, we show that the average reward policy evaluation equations of
Howard (1960) are a direct consequence of the matrix decomposition, as is Veinott’s
(1969) Laurent series expansion of the resolvent. Moreover, we show that the recur-
rence relationship for its terms is a special case of a more general singular system of
equations which we solve using the Drazin inverse. Similar equations were also con-
sidered by Veinott (1969). We provide a simple proof of the equivalence of (n m)-
discount optimality and Blackwell optimality in the case that the Blackwell optimal
policy has m recurrent classes (cf. Veinott (1969), (1974)).

We now give a brief overview of this paper. The heart of the paper consists of
3 and 4, which contain the main results on stationary Markov chains and Markov
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reward processes. Section 5 expands on the algebraic aspects .of the policy evaluation
equations and 6 applies the results to Markov decision processes. The Drazin inverse
is defined in 2, first using the axioms of Drazin (1958) and next using the product
form representation of Campbell and Meyer (1979).

In 3, this matrix decomposition approach is used in a new derivation of the
properties of the limiting matrix, the deviation matrix and the fundamental matrix
of a discrete time Markov chain. In 4, the decomposition of the transition matrix is
used to give a direct derivation of the Laurent expansion of the resolvent and of the
discounted value function, when the interest rate is small.

In 5, we formulate the problem of finding the terms of a truncated series as
a finite system of linear equations (as in Veinott (1969)). We show that the terms
of the truncated series can be solved using the Drazin inverse of a special matrix of
coefficients constructed from the Markov matrix of the process.

Finally, the application of the Drazin inverse approach to policy improvement
algorithms is explored in 6, with a new proof of the finite criterion for Blackwell
optimality.

Section 7 provides conclusions and extensions.

2. Definition of the Drazin generalized inverse. Let A be a square n n
complex matrix, and let k be the smallest nonnegative integer such that

rank(Ak+l) rank(Ak).

Then k is said to be the index of A, and is denoted by k ind(A). Following Campbell
Dand vlever 1/j, an n n matrix A such that

ADAAD AD,

AAD ADA,
Ak+IAD Ak

is called a Drazin generalized inverse of A. Evidently, A is nonsingular if and only
if ind(A) 0 and in this case Av A-1 Also, when ind(A) 1, AD is called the
group inverse and is denoted A#.

The following lemma gives a representation of the Drazin inverse of singular
matrices. Recall that the algebraic multiplicity of a complex number # for a square
complex matrix A is the multiplicity of # as a root in the characteristic polynomial
of A. See, e.g., Campbell and Meyer (1979, Thin. 7.2.1) for the proof.

LEMMA 2.1. Suppose A is a singular n n complex matrix. Then there exists
an n n nonsingular complex matrix S such that

(2.1) A-s-l( BO cO) S

where B is nonsingular and C is nilpotent. Moreover, given any such decomposition
of A, the order of C is the algebraic multiplicity of zero for A, ind(A) min(p
1,2,... Cp O) and

(2.2) AD s-I ( B-IO 00) S"

Further, if A is real one can choose S, B and C of (2.1) to be real.
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Note that the Drazin inverse AD is unique even though, for fixed A, there are
many different matrices S and B satisfying (2.1). The Jordan canonical form is one
decomposition of the form given by (2.1). Of course, it does not usually have S as
a real matrix. When A is real, decompositions given by (2.1) for which S is real
are easier to compute than the Jordan form. For example, they do not necessarily
require the computation of all eigenvalues of A. Computational algorithms for such
decompositions are given in Wilkinson (1982) and Campbell and Meyer (1979). Also,
an algorithm for computing AD directly, without decomposing A as in (2.1), is given
in Anstreicher and Rothblum (1987).

The next corollary specializes Lemma 2.1 to the case where ind(A) 1.
COROLLARY 2.2. Suppose A is an n x n complex matrix. Then ind(A) 1 if

and only if for some nonsingular matrix S,

(2.3) A S- ( BO O)SO
where B is a square nonsingular matrix. Moreover, in this case the order of B equals
n- m, where m is the algebraic multiplicity of zero for A, and the Drazin inverse is
given by

(2.4) AD A# S-I ( B-O 00) S"

Further, if A is real one can choose S and B of (2.3) to be real.
This special case is of particular interest for studying Markov decision processes.

Furthermore, decompositions of the form (2.3) and (2.4) can be computed efficiently
using the algorithm of Lamond (1987). As shown in Hunter (1988), many computa-
tional techniques for Markov chains can be expressed in terms of various generalized
inverses.

In this paper, we focus on the Drazin inverse, its factorization in Corollary 2.2
and its use in Markov decision processes.

3. Decomposition of a stochastic matrix. Suppose we are given a dis-
crete time Markov chain with n states and transition matrix P. We assume that its
transition matrix is stochastic, that is, PO >- 0 for i 1,...,n and j 1,...,n,
and n"j= py 1 for i 1,..., n. We assume, for simplicity, that the matrix is in
normal form, i.e., that the states have been ordered in such a way that the transient
states (if any) are first, followed by the recurrent classes, one after the other (see, e.g.,
Gantmacher (1960, page 74)). For example, a chain with two recurrent classes and
some transient states would have a transition matrix P which could be transformed
to appear as

( Poo Po Po )P= 0 Px 0
0 0 P

We remark that for k _> 1, Pkk, the submatrix corresponding to states in the recurrent
class k, is stochastic and irreducible.

In this section, we further the approach of Campbell and Meyer (1979) and use the
Perron-Frobenius theory to obtain a factorization for I- P as in Corollary 2.2. Then
we use this representation to obtain a new derivation of many important properties of
the deviation matrix, the limiting matrix and the fundamental matrix of the associated
Markov chain. Let a(A) denote the spectral radius of a matrix A, i.e., the modulus
of its largest eigenvalue. The following lemma is well known and the main ingredients
of its proof are included for the sake of completeness.
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LEMMA 3.1. If P is a stochastic matrix with m recurrent classes, then there is
a similarity transformation S such that

where I is the m m identity matrix and Q is an (n- m) (n- m) matrix with no
eigenvalue equal to 1. Moreover, a(Q) < 1 and if P is aperiodic, a(Q) < 1.

Proof. It is a classical result (Karlin (1968, Thm. 4.2.1)) that P has the eigen-
value 1 with algebraic multiplicity m and with m linearly independent eigenvectors.
This implies that there exists a nonsingular matrix S such that (3.1) holds. Applying
Lemmas 2.3 and 2.5 of Varga (1962) to the irreducible submatrices Pkk, we have that
a(Poo) < 1 and (:r(Pkk) _< 1 for k 1,..., m. This implies that a(Q) _< 1. The corol-
lary to Theorem 2.3 of Varga (1962) implies that a(Q) < 1 if every Pkk is aperiodic,
k-- 1,...,m. El

Let A I- P. Then Lemma 3.1 implies that A satisfies (2.3) with B I- Q.
This matrix B is nonsingular because Q does not have 1 as an eigenvalue. (One can
see this using the Jordan canonical form: Q is similar to a lower triangular matrix
with all diagonal entries different than 1, so that I- Q is similar to a lower triangular
matrix with nonzero diagonal entries and cannot be singular). Hence the group inverse
A# of A exists and is given by

(3.2) A# S-I ( (I 00) S"

In this context, A# is usually called the deviation matrix of the Markov chain (see
Veinott (1974)).

Another interesting consequence of Lemma 3.1 is that it provides an alternate
proof of the following result of Kemeny and Snell (1960) that was fundamental in
Blackwell (1962). Here we establish the result directly from the representation of P
found in Lemma 3.1.

THEOREM 3.2. If P is a stochastic matrix with m recurrent classes, then there
is a unique matrix P* such that

(3.3) pp* p*p p.p* p*

and rank(P*) m. Moreover

(3.4) P*=S-I( 00 I0) S
and Z (I- P + P*)-I exists, where I i8 the m m identity matrix.

Proof. Decompose P as in (3.1), and apply the same similarity transformation S
to P* to obtain

where Rll is (n- m) (n- m), R22 is m m and R12 and R21 have the appropriate
dimensions. If m n, then P I P* and we are done. Otherwise, using (3.1) and
(3.3), we have (because B I- Q is nonsingular)-
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PP* P* QR Rll Rll -0
QR12 R12 =: R12 0

P*P P* R21Q R21 R21 0

P’P* P* = R22R22 R22 R22 is a projection.

Now because rank(P*) m, this implies that rank(R) m, and hence R22 I
since the only projection of full rank is the identity. So we have (3.4). Also, it trivially
follows that

(3.5) i p + p. s_ ( BO O)
is indeed nonsingular. El

We recall that P* is called the limiting matrix of the Markov chain (P* is also
called the stationary matrix), while Z is called the undamental matrix (Kemeny and
Snell (1960)). The deviation matrix A# is the matrix H of Blackwell (1962). Also,
P* is called the eigenprojection o A at A 1, by Rothblum (1981). The following
well-known properties of P*, A# and Z are useful and are easily derived using (3.1),
(3.2), (3.4), and (3.5). We prove the first one to further illustrate the simplicity of our
approach.

COROLLARY 3.3. Let A# and P* be defined a8 above. Then

(i) (I- P)A# A#(I- P) I- P*,

(ii) A#P P*A# O,

(iii) (I P*)A# A# (I P*) A#,

(iv) P* I- AA#,

(v) Z (A + p,)-i A# + p, and

(vi) ZP* P*.

Proof. We show only (i), the rest follow in a similar manner and are omitted.

(I-P)A# ":-1 ( sO 00) S-1 ( s-10 00) S-- -1 ( IO 0

--’--1 ( I0 I0) ---"--1 ( 00 O) -I-p*I El

The remainder of this section examines some results from Veinott (1969), (1974)
which provide the probabilistic interpretation for the limiting and deviation matrices.

N-1Consider a sequence {Ai i 0, 1, 2,...} of n n matrices, and let BN i=o Ai,
for N 0, 1, 2,.... If limy__. N-1BN A exists, then A is called the Ceshro limit
o/" order one of {Ai }, and we write

lim AN A (C, 1).

Further, if limg--.o By B (C, 1), then we write

E AN=B (C, 1).
N--0

We investigate the limits of sums of powers of a matrix. The following lemma (Veinott
(1974, eq. 14)) is well known and is included for the sake of completeness.
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LEMMA 3.4.
gular. Then

and

Suppose QN i8 bounded, for N- 0, 1, 2,..., and I- Q is nonsin-

lim QN 0 (C, 1)

E QN (I- Q)-I (C, 1).
N--O

Proof. The first limit follows from the identity

N-1

N-1 Q (I Q/=
i=0

The second one follows from the identities

N-1 N-1

N-I( E EQ) (I- Q)2 -N-1 E (I- Qi+I)(/- Q)
i=o i=o i=o

I Q N-I(Q QN+I).

The following expansions (equations (15) and (18) of Veinott (1974)) can now be
obtained as a corollary to our Theorem 3.2. Our proof again uses the matrix decom-
position directly.

COROLLARY 3.5. Suppose P is a stochastic matrix, P* its limiting matrix and
A# its deviation matrix. Then

lim pN p, C, 1)
N--,oo

and

E (pg p,) A# (C, 1).
N--0

Further, if P is aperiodic, then the ordinary limit can be used instead of (C, 1).
Proof. Decompose P as in (3.1). Then

and

QNpY S-1
0 I

QNpg p, S-1 S.
0 0

Since pg is a stochastic matrix, we have that pN is bounded, and hence so is QN.
Moreover, I- Q is nonsingular, by Lemma 3.1. Hence the result follows from Lemma
3.4. If P is aperiodic, then a(Q) < 1 so that

lim QN 0,

directly. El
The (well-known) consequence of Corollary 3.5 is that, for a Markov chain with

stochastic transition matrix P, the entry rij of the limiting matrix P* is the expected
fraction of the time spent in state j, given that the system started in state i. Also, the
entry ai. of the deviation matrix A# is the expected difference between the expected
number of visits to state j when the system starts in state i, and the expected number
of visits to state j when the system starts with the stationary distribution.
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4. Application to discrete time Markov reward processes. Consider
a homogeneous Markov chain {X(t) 0, 1,2,...} with finite state space N
{1,..., n) and stochastic transition matrix P, where

Pi Prob{X(t + 1) j IX(t) i}, i,j 1,...,n.

Suppose also that at the end of every period t, the system earns a reward ri, where
i X(t). We say that r is the vector of immediate rewards. Such a Markov chain
with rewards is called a Markov reward process, and is denoted by the triplet (N, r, P).
Now suppose an arbitrary random variable Y is defined on the Markov chain (X(t)}.
We define the conditional expectation operator Ei as

Ei(Y) E{Y X(O) i} fori=l,...,n.

Let p > 0 be the interest rate for one period. Then/ (1 + #)-1 is the one
period discount factor, with 0 < fl < 1. We are interested in the present value, at
time t 0, of the total reward earned over an infinite horizon. More precisely, we
define the expected total discounted reward function v(p) such that

k=0

i-- 1,...,n.

The expectation can be expressed directly using matrix notation, and we get

(4.1) v(p) E kPkr (I P)-lr.
k=0

The infinite series in (4.1) converges because

lim kpk O,

with 0 </ < 1.
We are interested in the case when /3 is in the neighborhood of 1. Following

Veinott (1969), (1974), we replace the discount factor/3 by the interest rate p, so that

(4.2)

v(p) (1 + p)-[I (1 + p)-lp]
[(1 + p)I- P]-lr
[pI + A]-Ir

where A I- P. The matrix Rp (pI + A) -1 is called the resolvent of A. We now
provide a new, direct derivation of the Laurent expansion for the resolvent (Theorem 2
of Veinott (1969) and Theorem 3 of Veinott (1974)) using the decomposition properties
of the matrix A and its Drazin inverse A#.

THEOREM 4.1. Let be the nonzero eigenvalue of A with smallest modulus. If
O<p<[A then

(4.3) Rp p-lp, + E (-P)i(A#)i+l
i--o
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Proof. By definition,

Rp_(pI+A)-I_s-I(pI+B 0)
-1

0 pI S

s_l ( (pl.-k B)-1 0 )0 p-I S

P-Is-I ( O0 IO)skS-I( (pIq’B)-IO
The first term is p-lp.. Now consider the second term.

[pI + B]-1 [B(pB_ q- i)]-1
[I / pB-1]-IB-1

By hypothesis, a(pB-1) plll < 1, so that

[I q- pB-1]-1 Z (-P)i(B-1)i"
i=0

But
S-1 ( (B-l)/0

so the second term above equals

0O) S=(A#)i

E(-p)i(A#)i+1

i=0

which gives the desired result. El
Although we formulated Theorem 4.1 in the specific case A I- P, we remark

that it is valid for any matrix A such that ind(A) 1. It is an extension of the simple
case when the matrix A is nonsingular (i.e., ind(A) 0). Then, (4.3) becomes

Rp Z (-P)i(A-1)i+l
i--0

Theorem 4.1 is itself a special case of a result of Rothblum (1981, Thm. 3.1), in which
a matrix A with ind(A) k _> 0 has terms in p-i, for i 0,..., k. An extension
of Rothblum’s theorem to the case of a general pair (A + pB)-1, where A and B are
arbitrary square matrices, is derived in Lamond (1989).

COROLLARY 4.2. Let. g P’r, h A#r and

(4.4) wi (1)i(A#)i+1 r, i=1,2,....

Then

(4.5) v(p) p-lg + h + Z piwi"
i=1

Proof. The corollary is proved by substituting (4.3) into (4.2). E!
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This Laurent expansion of the discounted reward function v(p) is fundamental
for the notion of discount optimality (Veinott (1969)) that will be discussed in 6.
Observe that our derivation uses only the property that ind(A) 1, that is, that the
matrix A can be decomposed as in (2.3).

The term g is called the gain of the process and h is its bias (e.g., Denardo (1973)).
This terminology is justified because, by Corollary 3.5,

g= lim pkr (C, 1)

and

(Pkr g) (C, 1)
k--0

(using ordinary limits if P is aperiodic).
We conclude this section with a very simple derivation of a well-known and im-

portant equation for computing the gain and bias (see Howard (1960) and Blackwell
(1962)). This equation is usually derived using a partial series expansion, but here it
follows directly from the generalized inverse representation for P*.

PROPOSITION 4.3. Let g and h be defined as in Corollary 4.2. Then g and h
satisfy

(4.6) h r g + Ph.

Proof. We use the fact that P* I- AA#. Then

g (I- AA#)r r- A(A#r) r (I- P)h.

The result follows by rearranging terms.

5. Singular systems of equations. The technique of Proposition 4.3 for
obtaining the gain and the bias vectors as solutions of a system of singular linear
equations was extended in Veinott (1969) and Miller and Veinott (1969) to obtain all
the terms wi of Corollary 4.2 by solving an augmented system of linear equations.

Let A be an n n matrix of index 1 (i.e., decomposition (2.3) is valid), and
suppose b is a given column vector. Recall that the projection matrix W I-AA# is
given by (3.4). In the special case A I- P with P a (stochastic) transition matrix,
we have W P*, the limiting matrix. The following lemma is well known (see, e.g.,
Corollary 3.1.1 of Hunter (1982)) and provides a basic mechanism for solving systems
of singular equations using the group inverse. We give a new proof based on the
decomposition property. While this proof is not the shortest possible, we include it
because this factorization can be used to compute solution vectors without computing
the group inverse matrix itself (see Lamond (1987)).

LEMMA 5.1. The (singular) system of equations Ax b has a solution if and
only if Wb O. Further, if Wb O, then for arbitrary y

(5.1) x=A#b+Wy

is a solution of Ax b.



GENERALIZED INVERSES IN MARKOV PROCESSES 127

Proof. Let

x2Xl ) b_ S_l ( bl and y-S-l( yl

Then

Ax-- S-1 ( sO 00) S-1 (Xl) -1 ( 52

which is equivalent to

B 0 Xl bl )0

This system has a solution if and only if b 0, which is equivalent to Wb 0,
because

Wb---l( 0
0 I b b

Now we assume that b 0 and we take x A#b + Wy, for some arbitrary vector y.
We have

Ax AA#b + AWy

-’---1 ( B0 0) (u-100 0) (bl)
__

(S 0
0 0 0 0 I/\Yl/y2

The promised extension of Proposition 4.3 follows as a simple consequence of the
lemma and we give it without proof. The result is from page 1650 of Veinott (1969).
The terms g, h and wi, i 1,2,..., are obtained by applying the theorem with
A I- P, b r, where r is the vector of one-period rewards, and bi 0 for i :fi 2.
Then g Xl, h x2 and wi xi+.

THEOREM 5.2. Let (bi,i 1,2,...} be a sequence of n-vectors and W
I- AA#. Then the system of equations

(5.2) Axl bl,

(5.3) xi_ -{- Axi bi, i 2, 3,...

has a solution if and only if

(5.4) Wbl --0.

Furthermore, if (5.4) holds, the solution is unique and is given by

(5.5) xi A#(bi xi-1) -- Wbi+l, i 1,2,...

where xo O.
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As pointed out in Veinott (1969) and Miller and Veinott (1969), and as will be
discussed in the next section, it is sufficient to evaluate only a finite number of terms
wi. Hence we now consider truncated systems of equations. Let A be an n n complex
matrix such that ind(A) < 1 (i.e., A is either nonsingular or else it satisfies (2.3)). For
k _> 1, we define the matrix A(k) as the block Jordan matrix of order k that has A
for its diagonal blocks. For example, A(1) A and for k 3, we have

A 0 O)A(3)- I A 0
0 I A

We are interested in solving the system of equations-

(5.6) A(k)x(k) =b(k)

where x(k) and b(k) are partitioned so that they be conformable with A. For example,
the gain and bias terms of Proposition 4.3 satisfy the system

A 0, (:):
In the case when the matrix A is nonsingular, it is well known (and easy to verify)
that the solution can be expressed as x(k) A(k)-lb(k) where A(k) -1 is a block
lower triangular matrix such that for i _> j, the block (i, j) is given by

(5.7) (_ 1)i-j (A_ )i-j-hi.

We now obtain a similar expression when the matrix A is singular, in the case
when ind(A) 1, so that A# exists and with W I- AA# as before. The proof of
the following lemma is given in Lamond (1985, Lemma 3.2.6).

LEMMA 5.3. If A is singular but satisfies (2.3), then A(k), k >_ 1, has index k
and its Drazin inverse A(k)D is a block lower triangular matrix such that its block
(i, j), i >_ j, is given by

(5.8) (--1)i-j (A#)i-j+1.

It is straightforward to verify that A(k)A(k)D is a block diagonal matrix with all
diagonal blocks equal to AA#. The consequence is that y(k) A(k)Db(k) is not a
solution of (5.6) in general, because AA#bi : bi for i >_ 2. Nonetheless, we can use
A(k)D to construct a solution. Define a new matrix R(k) whose only nonzero blocks
are on the superdiagonal and are all equal to W I- AA#. For example, R(1) 0
and with k 3 we have

R(3)= 0 0 W
0 0 0

THEOREM 5.4. If the system Axl bl has a solution, then the system
A(k)x(k) b(k) has a solution given by

(5.9) x(k) [A(k)D + R(k)]b(k).

Moreover, X1 X2
for any vector y.

,xk- are uniquely determined while Xk + Wy is also a solution,
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Proof. Expanding the matrix product in (5.9) gives precisely the solution of
(5.5). Because the system was truncated, the kth equation has a nonunique solution,
as prescribed by Lemma 5.1. El

Of course, (5.9) gives precisely the same solution vector as obtained in Veinott
(1969), (1974). See Veinott (1969, p. 1651) for a computational algorithm that takes
advantage of the special structure available when A I- P with P stochastic. See
Lamond (1987) for an algorithm using matrix factorization (valid for any matrix A of
index 1).

6. Application to finite state and action Markov decision processes.
Now consider a system in which an action must be taken before a transition occurs.
Let N {1,..., n} be the (finite) state space, and let Ai be the finite set of actions
that can be taken when the system is in state i, for i 1,..., n. The system evolv.es
in time according to the process {X(t) t 0, 1, 2,-..}, where X(t) is the state of the
system at time t. Let {a(t) :t 0, 1, 2,...} be the sequence of selected actions, with
a(t) Ax(,).

We assume that the system satisfies the Markov property and that the transition
probabilities do not depend explicitly on time. Hence we define

Pijk Prob{X(t + 1) j IX(t) i,a(t) k},

for k E A and i, j 1,..., n. The Markov property implies that

Prob{X(t + 1) j lX(O),a(O),... ,X(t),a(t)} Prob{X(t + 1) j lX(t),a(t)}.

Immediately before a transition occurs, the system earns an (expected) reward r.k
where k a(t) and i X(t). The action a(t) is selected according to a function r,
called a policy, such that

a(t) r(t,X(O),a(O),...,X(t- 1),a(t- 1),X(t)) for t 0,1,2,....

Now let us denote by P the transition probability function, by r the reward function
and by H the set of all policies. Then the above model is called a Markoy decision
process and is denoted by the quadruple (N, r, P, II).

For a given policy r E II and interest rate p > 0, we define the expected total
discounted reward function v (p) such that

Mk+lra(k) ’k=O

i 1,...,n,

where fl (1 + p)-1 and E is the conditional expectation operator under policy r.
That is, for an arbitrary random variable Y defined from {X(t)} and {a(t)}, we have

E (Y) Er(Y X(O) i}, i---- 1,...,n,

where the expectation is taken under policy
The problem is to find a policy r II that maximizes v (p) in some sense, for

i 1,..., n. Now define a function 5 to be a decision rule if 5i Ai, for i 1,-.., n,
and let A At A2 An be the set of all decision rules. Then a policy r is
said to be a Markov policy if

r(t,X(O),a(O),... ,X(t)) 5i(t),
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where i X(t) and 5(t) E A. Moreover, a Markov policy r is said to be stationary if
5(t) 6(0) for all t.

For discounted problems with an infinite time horizon, there exists a stationary
policy that is optimal (Blackwell (1962, corollary to Thin. 3). Hence there is no loss of
generality in restricting the problem to stationary policies. For simplicity of notation,
we will denote a stationary policy by its decision rule 5, and the set of stationary
policies by A.

For a fixed, stationary policy 5 E A, the system is equivalent to the Markov
reward process (N,r,PS), as in 4, with transition matrix P P and reward
vector r r. For a given interest rate p > 0 and discount factor (1 + p)-l, the
expected total discounted reward v (p) is given by

v (P) E i+
i--0

as in 4. Following Miller and Veinott (1969), we say that a policy 5 is p-optimal if

(6.1) v (p) >_ v (p) V-/ A.

It was shown by Blackwell (1962) that there exists a policy 6 A and a p* > 0 such
that 5 is p-optimal for all p in 0 < p < p*. Such a policy is said to be Blackwe11
optimal. Motivated by the series (4.5), Veinott (1969), (1974) defined a policy 5 to be
k-discount optimal if

(6.2) lim p-k[v(p)- vV(p)] k 0 W/G A.
p’,0

(Veinott’s definition also extends to the case of p < 0, but we will stick to the pos-
itive case, which Veinott(1969) calls k+ discount optimality.) As special cases, a
-1-discount optimal policy is also said to be gain optimal, while a 0-discount optimal
policy is also said to be bias optimal (Denardo (1970)) or nearly optimal (Blackwell
(1962)).

The policy iteration method of Howard (1960) and Blackwell (1962) produces a
policy 6 that is gain optimal. This method has been extended by Veinott (1966) to
find a bias optimal policy -and Miller and Veinott (1969) to find a Blackwell optimal
policy. Veinott (1969) modified it to find a k-discount optimal policy, for any k _> -1.

i -1 0, 1 be the terms of the Laurent series (4.5)More precisely, let wi,
for a policy 5 A (here w_1 g is the gain and Wo5 h is the bias). Then (6.2)
implies that 5 is k-discount optimal if

k k

(6.3)
i=-1 i=-1

for all small enough p > 0. The extended algorithm evaluates w5-1, Wo, , Wk+ to
show that no other policy is lexicographically better, up to wk.

Now let n be the number of states of the process. Miller and Veinott (1969)
showed that a policy is Blackwell optimal if and only if it is n-discount optimal. This
result was extended by Denardo (1971) who showed that an (n- 1)-discount optimal
policy is Blackwell optimal. Then Veinott (1974), using the fact that rank(A) n-m,
where A I- P and m is the number of recurrent classes of P, showed that any
(n- m)-discount optimal policy is Blackwell optimal. We give a new proof of the
latter result, using our matrix decomposition approach. As Miller and Veinott (1969),
we need the following lemma from Gantmacher (1959), which we state without proof.
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LEMMA 6.1. Let M be a k k matrix and L a linear subspace of Ktk. If Mix E L
for i- O, 1,...,k- 1, then Mix L for i-- k,k + 1,....

(The idea is that for i >_ k, Mix is a linear combination of x, Mx,..., Mk-ix).
This implies the following theorem.

THEOREM 6.2. Suppose that some policy A has m recurrent classes (i.e.,
for1 < m < n}. Suppose also that some policy "7 A is such that w wi,

fori>n-m.i- -1,0,...,n- m. Then w w
Proof. First, observe that in the special case m n, the result is trivially true

because g g, A I- P 0, and (A)# 0, so that h Wo Wl 0.
This implies that h 0. Now by (4.4),

w? (-1) ((A’)#)ih 0 wi i>0.

In the case m < n, both policies have the same gain and bias, i.e w5_1 w’/--1 g
and Wo -w h. Equation (4.4)implies that

(_1) ((A)#)(6.4) w h, i _> 0.

Decompose A as in (2.3), and define

where Yi,x and yi,2 have dimensions (n- m) and m, respectively. Define also

z Sh S.A.#r
z2 0 O) Sr

0

Hence z2 0. Multiply (6.4) by S to get

(Yi’I ) Sw (-1)iss-I ( 0 00) Sh
--(--1)i ( (s-1)i0 00) (Z1)z2

so that

(6.5) Yi,1 (-1)i(B-X)iz,
Yi,2 O.

i>0.

Now apply the same transformation S to AU, giving

(6.6)

and define

Equation (5.3), with i=i+l, A- A and bi+l -O, together with (6.6), gives

(6.7) (Xll X12) (Xi+l,1) (xi,1) i O.
X21 X22 Xi+l,2 xi,2
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By hypothesis, xi,1 yi,1 and xi,2 0, for i 0,

Using (6.5), we get

...,n-mso

i=O,...,n-m- 1.

(6.8) (XB- I)(B-)zl 0

and

(6.9) X21(B-)+z =0.

Now recall that Zl is a vector of dimension (n- m). Define a linear subspace L of
n-m such that x E L if and only if (XIIB-1 I)x O. Then (6.8) implies that

(B-)z E L, for i 0, ..., n m 1. By Lemma 6.1, it is true also for i _> n m
and hence (6.8) is also valid for i >_ n- m. The same argument applies to (6.9) as
well.

We still have to show that it implies that x, yi, and xi,2 Yi, 0, for
i > n- m. By Theorem 5.2, the recurrence (6.7) has a unique solution. Equations

(6.8) and (6.9) imply that X,l Yi,1 (-1)(B-1) zl and x,2 y, 0 is that
solution for every i _> 0.

As in Veinott (1969), Miller and Veinott (1969) and Veinott (1974), we now apply
the above result to dynamic programming.

THEOREM 6.3. A policy with m recurrent classes is Blackwell optimal if and
only if it is (n- m)-discount optimal.

Proof. The theorem is proved by applying Theorem 6.2 to (6.3). El
It implies, in general, that a policy is Blackwell optimal if and only if it is (n- 1)-

discount optimal (because m _> 1, always). We will now use this result and the
notation of the previous section to formulate a policy iteration algorithm in a unified
way. We first recall that with a fixed interest rate p, the policy iteration method for
finding a p-optimal policy can be formulated as follows, with - (1 + p)-.

Step 0. Select an arbitrary policy 5 A.
Step 1. Policy evaluation.

Compute v (A)-r, where A I-/P.
Step 2. Policy Improvement.

Find / A subject to r / Pv maxzx{r //P’v}.
(Choose /= 5 if possible).

Step 3. If /= 5 then stop
else set 5 ff and go to Step 1.

Using the notation of 5, we can now formulate the policy iteration method for
finding a k discount optimal policy as follows. Let k + 3 (we need to evaluate

terms W-l,Wo,...,wk+). We simply replace steps 1 and 2 above as follows. At
step 1, compute

(6.10) x () [A ()D + R5 ()]b (),
where b2 r and b 0 for i 2. At step 2, find " A s.t.

(6.11) bn() + Pn()x5 () nea{bn ()+ Pn()x ()},
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where P(n) I(n)-A() and the maximization is done lexicographically (see, e.g.,
Veinott (1974)).

It is to be seen whether the latter algorithm could be formulated as a specialization
of the method of Newton for solving systems of nonlinear equations, as the former was
by Puterman and Brumelle (1979) using the ordinary inverse (A)-1.

It is important to note, however, that the formulation of (6.10) is not the most
for/=appropriate for computations. Indeed, we saw in 5 that the terms wi,

-1,..., k, can be evaluated successively. Hence it is more efficient to combine steps 1
and 2 in such a way that only those terms which are really required be computed.

There are two ways to do it. One is to successively evaluate x (i) wi-3 and
produce A such that

Ai {q E Ai-1 bU(i) + PUx(i) >_ bV(i) + PVx(i),V? e Ai_l}

where Ao A, and stop at the smallest i _< k for which Ai has only one element.
This element is the policy -/of step 2. (If Ak has more than one element, choose any

A).
Another way is to stop at the smallest i _< k for which A does not contain 5,

and choose A arbitrarily. Then is a better policy than 5, although it is not
necessarily the best improvement. This latter approach might require fewer terms to
be evaluated than the former.

7. Conclusions and extensions. The following are the main results with
respect to our approach of Markov decision processes. Lemma 3.1 gives the basic
decomposition of a transition matrix, which is used to define the limiting and fun-
damental matrices algebraically in Theorem 3.2. Then Corollary 3.5 identifies the
algebraic definitions with the probabilistic notions of limiting and deviation matrices.

The results of particular interest for decision processes are Theorem 4.1, giving the
Laurent expansion of the resolvent, and Proposition 4.3, which provides a particularly
immediate derivation of the standard policy evaluation equation. Theorem 6.2 gives
a fairly convincing proof of the finite test for Blackwell optimality of a stationary
policy. Note that more than half the space taken by this proof is just notation. The
mathematical argument itself if brief.

The computational aspects of the matrix factorization are discussed in Lamond
(1985), (1987). Extensions to continuous time Markov decision processes and to semi-
Markov decision processes are discussed in Lamond (1985). It is an open question
whether Drazin inverse theory can be applied to processes with countably infinite
state space and generator driven processes such as diffusion processes.

Acknowledgments. We would like to thank the associate editor, Uriel G. Roth-
blum, and anonymous referees for their stimulating comments and careful reading of
earlier versions of this paper.
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NUMERICAL SOLUTION OF THE EIGENVALUE PROBLEM FOR
HERMITIAN TOEPLITZ MATRICES*
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Abstract. An iterative procedure is proposed for computing the eigenvalues and eigenvectors ofHermitian
Toeplitz matrices. The computational cost per eigenvalue-eigenvector for a matrix of order n is O(n2) in serial
mode. Results of numerical experiments on Kac-Murdock-Szeg6 matrices and randomly generated real sym-
metric Toeplitz matrices of orders 100, 150, 300, 500, and 1,000 are included.

Key words. Toeplitz, Hermitian, symmetric, eigenvalue, eigenvector, Levinson-Durbin Algorithm
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1. Introduction. Here we present a method for computing the eigenvalues and ei-
genvectors of Hermitian Toeplitz matrices, i.e., matrices of the form

Tn ti-j)in,jffi

with tr t-r. The method rests specifically and crucially on the special structure of Tn.
There are efficient algorithms that exploit this simple structure to invert such matrices,
or to solve systems TnX Y. There is also an extensive literature on the asymptotic
distribution of the eigenvalues of a family { T } of Hermitian Toeplitz matrices as n -oo, in the case where the { tm } are the Fourier coefficients of a functionf which satisfies
suitable integrability conditions. However, the development of efficient methods designed
specifically to compute the eigenvalues and eigenvectors of these matrices is still in its
early stages.

Several recent papers 5 ], 7 ], 9 ], 18 ], 23 have dealt with the spectral structure
of Hermitian Toeplitz matrices, and numerical methods aimed mainly at finding the
smallest eigenvalue of a positive definite Hermitian Toeplitz matrix have appeared [8 ],
[11 ], [14], [15 ]. Some of these use inverse iteration with Rayleigh quotient shifting,
exploiting the Levinson algorithm [17] for solving Toeplitz systems. Trench 22 has
proposed a method which, on the basis of preliminary numerical experiments, appears
to provide an effective procedure for computing the eigenvalues of Hermitian Toeplitz
matrices generated by rational functions, at a cost per eigenvalue essentially independent
ofthe order ofthe matrix. (Autocorrelation matrices ofARMA (Autoregressive Moving
Average) processes are of this kind.)

The method presented here combines the Levinson-Durbin Algorithm 6 for the
shifted matrices Tm ,Im(1

_
m

_
n 1) with an iterative root-finding procedure to

locate the zeros of the rational function

(1) q(X)=Pn(X)/P- (),

where

(2) pm(,) det [Tm-XIm], <=m<-_n.

The basic idea of this approach did not originate with us. Cybenko and Van Loan 8
used the Levinson-Durbin Algorithm and Newton’s method to compute the smallest
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Department of Mathematics, Trinity University, 715 Stadium Drive, San Antonio, Texas 78284
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eigenvalue of a symmetric positive definite Toeplitz matrix, and our work should be
considered to be a continuation of theirs. However, our method will determine any
eigenvalue of T, that is not also an eigenvalue ofany ofthe nested submatrices TI, ,
T,_ (an assumption also required by Cybenko and Van Loan). The corresponding
eigenvectors are obtained as by-products.

Delsarte and Genin 9 have used arguments based on the Levinson-Durbin Al-
gorithm as applied to the shifted matrices Tm- klm to obtain theoretical results concerning
the spectra of Hermitian Toeplitz matrices. For a result related to their work, see also
Wilkes and Hayes 23 ].

2. The theoretical basis for the method. Most of the results in this section are not
new, although we believe that this presentation in specific reference to the eigenvalue
problem is somewhat more explicit and complete than previous discussions. In any case,
it seems appropriate to include it here for the reader’s convenience.

Since the eigenvalues of T, are real, we assume throughout that , is real. Let

Un- [tl,t2, ,t,_ 1]

If is not an eigenvalue of T_ 1, then let

be the solution of

(t transpose).

(3)

and define

X._ (X)= [x,._ (X), ,x._ ,,._ ,(X)]’

T_ XI_ )X_ (X)= U_ ,

[-’ ](4) Yn(X)=
Xn_,(X)

Recall the definitions (1) and (2) of q.(,) and Pm(h). In the following,
Euclidean norm.

(5)

and

(6)

is the

THEOREM 1. lfX is not an eigenvalue of T._ 1, then

If, in addition, X is an eigenvalue of T,, then Y,( is an associated eigenvector.
Proof. We partition T ,I in the form

(7) T,_Xl=[to_ t,_, ].U.- T.- hI,,-

Subtract xj,._ (,) times column j + from the first column of (7) for j 1, n
1, and invoke (3) to obtain

ito x- tY._
P.(X)

0

(to- X-

which implies (5). From (3)-(5) and (7), we have

(8) (T.-XI.)Y.(X)=-q.(X)[1,O, 0]t;

hence, if h is an eigenvalue of Tn, then Y,,(X) is an associated eigenvector.
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(9)

To verify (6), we differentiate 5 ):

q’n(X)=-l-O_,X’n_,(X)
-1 -_ (X)( T_ - XI_ ,)X,_ (,),

where the second equality follows from (3) and the Hermitian symmetry of Tn-l
,In_ 1. Since differentiating (3) shows that

Tn-1-- )kin-l)X l()k)--’Xn (k),

(9) implies (6).
Formula (6) is due to Cybenko and Van Loan 8 ]; however, they did not explicitly

identify q(,) as the ratio p()/p_
Except for a missing minus sign on the fight, (3) is the Yule-Walker equation for

Tn ,I (cf. 6 ). The following theorem is essentially a statement ofthe Levinson-
Durbin Algorithm for solving (3), with minor changes to account for the fact that the
diagonal element of the matrix in (3) is to , rather than unity. We omit the proof.

THEOREM 2. IfTm XIm is nonsingularfor

_
m <- n l, then (3) can be solved

recursively as follows. Let

(10) xl(X) t/(to- )), Al (3) to-- ,,
and, for 2

_
m

_
n- 1,

(11)

(12)

and

Am()k)=[1 -[xm-l,m-l(X)12lAm-l(X),

Xm(X)-- A;(X) tin-- tm-X,m-(X)
j----I

(13) Xjm(k)’-Xj,m- l()k)--Xmm(k)2m-j,m- l()k), <-j<-m- 1.

For convenience, we say that a real number X is nondefective with respect to T. if it
is not an eigenvalue of any ofthe principal submatrices T, ..., T,_ 1. Conversely, , is
defective with respect to T, if it is an cigenvllue of any of these matrices. An eigenvalue
of T, which is not simultaneously an eigenvalue ofany of the principal submatrices will
be said to be a nondefective eigenvalue of Tn. From the Cauchy Separation Theorem, a
nondefective eigenvalue must be of multiplicity one. (Note that these are nonstandard
usages of defective and nondefective.)

Cybenko [6] has shown that if m

_
2 and

Lm(X)

0 0 0
--Xl,m-1() 0 0
--X2,m-1()k) --Xl,m- 2()k) 0

--Xm-l,m-l(k) --Xm-2,m-2(k) Xl,l (k)

then

(14) LTm(X)(Tm- Xlm)Lm(k)=diag [Am(X), ml()l.

Because of Sylvester’s law of inertia, this implies the following theorem, which has been
used previously in the algorithms ofCybenko and Van Loan 8 and Hu and Kung 15
for computing the smallest eigenvalue of a positive definite Hermitian Toeplitz matrix,
and is also crucial for the more general algorithm presented here.
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THEOREM 3. Let Negm (X) be the number of eigenvalues of Tm (counting multi-
plicities) less than . Then Negm () equals the number of negative values among
{ A (), Am() }, provided that is nondefective with respect to Tin.

Since det Lm(,) 1, (14) implies that
m

(15) Pm(X) H Am(k), _m<--n,
j=l

which is essentially equivalent to a formula obtained in [21 for the determinant of a
Hermitian Toeplitz matrix. Setting m n in (15 shows that p,(,) A,( ,)p, (h);
hence

(16) qn(),) A,(),).

Henceforth we will use q(h) and A(h) interchangeably.
Note that it is not necessary to carry out the computations in (13) for m n

in order to compute q(),) from (16), as it would be if we wished to use (5) obtained
earlier. (However, (16) requires that Tm hlm be nonsingular for -< m -< n 1, while
(5) requires only that T_ )I_ be nonsingular.)

THEOREM 4. Suppose that a and [3 are nondefective with respect to T, and that
(a, [3) contains exactly one eigenvalue (with multiplicity one) of T. Suppose also that
neither a nor [3 is an eigenvalue of T. Then (a, #) contains no eigenvalues of T_ if
and only if An(a) > 0 and An(/3) < 0.

Proof. Since Negn (3) + Negn (a) by assumption, Theorem 3 implies that the
set { AI (/3), An(/3) } has exactly one more negative member than the set { A1 (ct),
An(a)}. Therefore, if either An(a) < 0 or An(/3) > 0, the set
must contain more negative members than the set { AI(ct), ..., An_ (a)}, and therefore
(a, /3) contains at least one eigenvalue of Tn-1, by Theorem 3. On the other hand,
if An(a) > 0 and An(/3) < 0, then the two sets mentioned in the last sentence must con-
tain the same number of negative elements, and Theorem 3 implies that Negn-1 (/3)
Negn-1 (a), i.e., that Tn-1 has no eigenvalues in (a,/3).

As observed in 8 ], the idea ofcomputingPn(X)/Pn- () by partitioning a Hermitian
matrix as in (7) and then locating its zeros by combining inertia computations with a
root finding method has been used by other authors (see, e.g., 19 and 24 ); however,
this approach requires O(n 3) operations for the general Hermitian matrix, rather than
the O(n2) required for Toeplitz matrices.

In connection with his work on real centrosymmetric matrices, Andrew l] has
defined a vector V vl, vn] to be symmetric if

(17) vj=vn-j+ , <-j<=n,

or skew-symmetric if

(18) vj -vn-j + 1, _j <= n.
Cantoni and Butler 5 have shown that if T is a real symmetric Toeplitz matrix of

order n, then R has an orthonormal basis consisting of n n/2 symmetric and n/2
skew-symmetric eigenvectors of T. (Here [x] is the integer part ofx.) For convenience,
let us say that an eigenvalue of Tn is even or odd if it has an associated eigenvector
satisfying 17 ) or (18), respectively. It is clear from (11) with m n that X is a non-
defective eigenvalue of a real symmetric Toeplitz matrix if and only if xn-l,n-1()k)

1. From the form ofthe associated eigenvector Yn(),) in (4), we can see more specifically
that ), is a nondefective even eigenvalue of Tn if and only if xn--l,n-(X) -1, or a
nondefective odd eigenvalue if and only ifxn- l,n -1 (),) 1.
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3. The iterative procedure. If h is defective with respect to Tn, then qn(h) can-
not be computed by means of Theorem 3. For practical purposes it is more appro-
priate to observe that qn(h) cannot be computed in this way if at least one of the
quantities A (h), An-1(),) is so small as to cause overflow in (12) for some m in
{ 1, ..., n }. We will discuss this further in 5; however, for now it suffices to say
that in the numerical experiments reported in 4, which comprise the computation of
thousands of eigenvalues, there was not a single instance in which computation was
terminated for this reason. Therefore, we will assume in this section that the eigenvalues
of Tn (or at least those that we are trying to compute) are nondefective, and that none
of the approximants to the eigenvalues generated by the procedure that we are about to
describe are sufficiently close to being defective so as to cause overflow in (12).

We use an iterative procedure to locate the eigenvalues of Tn as the zeros of qn
Pn/Pn-1. The iteration terminates when the difference between successive iterates is suf-
ficiently small. In the following description of the procedure, we assume that An(h) 4:0
for every value of 2 encountered during the iteration. This is for convenience only;
obviously, if An(X) "underflows" to zero, then is an acceptable approximation to an
eigenvalue. (This did not occur in any of our computations.)

Let the eigenvalues of Tn be

hl hE hn,

and suppose that we wish to find a single nondefective eigenvalue ,. Our first task is to
find an interval (a,/) containing ,, but not containing any other eigenvalues of T
or any eigenvalues of T_ . On such an interval q(,) is continuous. Obviously a and

satisfy the first requirement if and only if

(19) Neg (a)= i- and Neg ()= i,

and, given this, Theorem 4 implies that the second holds if and only if

(20) An(a)> 0 and

In the following, Negn (),) is computed by means of Theorem 3.
To start, we find ct and , by trial and error, such that

(21) Negn (ct)

_
and Negn (/)

_
i.

If (19) and (20) hold for this ct and/, then this phase of the computation is finished. If
not, let 3" (a + )/2. If Negn (3’)

_
1, replace

by 3". Repeat this until (19) and (20) both hold, which must occur after finitely
many steps.

Since q is continuous on the interval (ct, ) that we have just determined, we can
now switch from bisection to a more efficient zero finding method to locate hi. The
method of false position [20] was unacceptably slow, but the Pegasus modification of
this method yielded consistently good results. Since this procedure is well described in
the literature (see, e.g., [10 ], [20]), we will not describe it here, except to say that if
{/zj} is the sequence of iterates produced by the Pegasus computation, starting
with/o a and/z fl, then we terminate this phase of the computation at the first
integer r such that

(22) [/Zr-/Zr- <.5(1 +/Zr) 10 -K,
where K is a suitable positive integer. We then compute An(/zr) from (10)-(13), and
continue (13) with m n (which is not required to compute An(/r) as mentioned
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earlier) to compute xl,n-(#r), "’", Xn-2,,-(#r). Then we use Newton’s method to
obtain a final approximation to

+=-A()/ZX()

(of. (6) and (16)).
This application of Newton’s method is "for good measure," and can probably be

omitted without great loss. We included it without rigorously evaluating its effect because
in some cases it appeared to allow the use ofa smaller integer Kin (22) without degrading
the results, and we report it here since it was used in most ofthe computations reported
in {} 4. We did not use Newton’s method as our principal iterative technique (after de-
termining a and/ as in (19) and (20)), since it could produce a sequence of iterates
that converges to another eigenvalue or that does not converge at all. The Pegasus method
does not suffer from this defect, and it has a respectable order of convergence (approx-
imately 1.642).

It may be of interest to note that Newton’s method as applied to this problem is
actually a form of Rayleigh quotient iteration. To see this, suppose that , is an approx-
imation to an eigenvalue of T,. Then the vector Y(,) in (4) is an approximation to a
corresponding eigenvector, and a new approximation , to the eigenvalue can be obtained
by computing the Rayleigh quotient

(23) ,
However, from (8) and (16),

so that

Since

]’(x)TY(X)

TnYn(h) hYn(h)- An(h)[l,0, ,0] t,

F’,,(x) T,,Y,,(X)-- Xll Y(X)II = + A,(X).

Y,,(x) I1: + Ilx,,_ l(X) 2 =-za,(x)

(cf. (6) and (16)), it now follows that the Rayleigh quotient , in (23) can be re-
written as , x- A,(X)/A;,(X).

which establishes our point.
Now suppose that we wish to find eigenvalues ),p, ..., Xq, where

_
p < q

_
n.

Since it would be wasteful to simply apply the procedure just described independently
for p, , q, we will define a method for finding/jp_ 1, "’", q such that

(24) /ji-1 < hi</ji, p_i_q.

Having accomplished this, we then apply the above described procedure for p, ...,
q, taking the initial points in the search for ),i to be a i_ and fl =/. (Clearly, (24)
implies (21) in this case.) It is to be understood that as each i is determined, A(i) is
retained for subsequent use.

The inequalities (24) are equivalent to

Neg,, (/_ ,)_p- 1,

(25) Neg, (j) i, p =<
_
q- 1,

Neg (/)

_
q.
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We specify the method for choosing r-1, "’",/jq inductively. We start by choosing a
and b, by trial and error, such that Negn (a)

_
p and Negn (b)

_
q, and let/Jr-

a and q b. Now suppose that at some step of our inductive procedure/Jr- and/
have been specified, but at least one ofthe intermediate points/Jr, "’",/Jq- has not. Let
r and s be the smallest integers such that p

_
r < s

_
q and/jr has not been selected,

while s has. Define

(26)

and k Neg, (3"). If r p and k < p (which can occur only if the inequality holds
in (25)), then we replace/Jr-1 by 3’. Similarly, ifs q and k > q, then we replace/jo by
3". In all other cases, r-

_
k

_
s, and we let/jk 3".

This procedure merely replaces a previously selected k unless k satisfies the stronger
inequalities r

_
k

_
s 1; however, the bisection (26) will obviously cause the selection

process to be completed in a finite number of steps.
Since i- is no longer needed after ,i has been obtained, , can be stored in the

location previously occupied by/j_ 1.

4. Computational results. We considered real symmetric matrices only. All com-
putations reported here were performed in double precision (15+ decimal places) in
Fortran 77. The computations for all matrices of order less than 1,000 were performed
on an IBM PC AT. Those for matrices of order 1,000 were performed on an IBM PS/2
Model 60. Both machines are equipped with the 80287 coprocessor. Due to the limitations
of available computing equipment, we made no attempt to use parallel processing to
solve the Levinson-Durbin system (3). Therefore, the computation of each eigenvalue
and its associated eigenvector with our implementation ofthe proposed method requires
O(n2) steps, where the "constant" buried in the "O" depends, ofcourse, on the number
of iterations required for the given eigenvalue. Although this number depends on the
eigenvalue itselfand on the starting values (a and/3), its average value over all eigenvalue-
eigenvector pairs for a matrix of order n appears to be essentially independent of n. Of
course, it depends on K in (22). In the computations reported here, we took K 10.

We consider two kinds of matrices: the Kac-Murdoek-Szeg6 (KMS) matrices

(27) Tn--’(pli-jl)in,j= (0<O< 1)

discussed in 13 and 16 ], and matrices

T. (ti _j)i,j 1,

in which the defining elements to, "", t,_ were randomly generated with a uniform
distribution in [- 10, 10 ].

The eigenvalues ofthe KMS matrices can be computed quite easily, even on a hand-
held calculator. It is shown in 13 that if

(28) sin (n+ 1)3"-2o sin n3"+p2 sin (n- 1)3"=0,

then the quantity

(29) X (1 t92)(1 219 cos 3" + 19 2)-1

is an eigenvalue of T, in (27). Moreover, it is also shown in [13] that (28) has roots
’l, "’", "r, satisfying the inequalities

r 2x mr
n+l n+l n+l
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TABLE
Distribution offractional errors f} in the eigenvalues ofKMS matrices oforder n 100.

p .2 .3 .4 .5 .6 .7 .8 .9 .95 .995

10-s, 10-7) 0 0 0 0 0 0 0 0 0
[10-1, 10-9) 0 0 0 0 0 0 0 0 0 18
[10-11, 10-1) 0 0 0 0 0 0 0 0 0 19
[10-12, 10-11 0 3 0 0 0 12 34
10-13, 10-12) 7 2 4 15 33 53 24
[10-14, l0-13) 3 50 9 14 23 31 47 49 29 3
[10-15, 10-14) 41 31 60 64 61 54 31 16 5 2
[10-16, l0-15) 47 0 27 17 l0 8 6 0 0
[0, 10-16) 8 9 3 3 3 2 0 0

Average number of function evaluations per eigenvalue 10.33.
Average running time per matrix 23.26 rain.

Given such precise information on their locations, it is a simple matter to find ,, ,
n by standard root-finding methods, and then to compute the eigenvalues , < ,2 <

< k. from

(30) i=(1--p2)(1--2pCOSn-i++p2)-, -i<=n.

For a considerable extension of this idea, see [22 ].
We used the algorithm proposed here to compute all eigenvalues ofKMS matrices

of orders n 100, 300, 500, and 1,000 for various values of p. We also computed the
same eigenvalues by the "exact" method; that is, by solving (28) iteratively with the
Pegasus procedure to obtain /, ..., "t,, and then computing , ..., ),, from (30).
We terminated the iteration for each , as soon as the difference between successive
iterates was less than 10 -4. We then computed the fractional error

(31) f=(i-)/i,
where , and ,; are the estimates of , obtained from our general algorithm and the
"exact" method, respectively. The distributions of these fractional errors are shown in
Tables 1, 2, 3, and 4; e.g., Table shows that for n 100 and p .5, 14 ofthe fractional
errors were in the interval 10 -4, 10-3).

Tables 5 and 6 summarize results obtained in computing all eigenvalues of 20 ran-
domly generated matrices of order 100, 24 of order 150, 22 of order 300, five of order
500, and two of order 1,000. As mentioned above, the eigenveetors were obtained as
byproducts. We attempted to assess the results as follows.

TABLE 2
Distribution offractional errors {f} in the eigenvalues ofKMS matrices oforder n 300.

p .2 .3 .4 .5 .6 .7 .8 .9 .95

10-1 i, 10-1) 0 0 0 0 0 0 2 8
[10-12, 10-11 0 2 4 6 10 15 93
[10-13, 10-12) 7 5 13 15 17 39 76 160 144
[10-14, 10-13) 66 80 102 137 165 178 167 107 48
l0-15, 10-14) 157 150 142 119 98 62 40 14 5
10-16, 10-15) 60 57 37 24 12 14 5 2

[0, 10-16) 10 7 5 3 4 0 2 0

Average number of function evaluations per eigenvalue 10.21.
Average running time per matrix 10.25 hrs.
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TABLE 3
Distribution offractional errors f} in eigen-

values ofKMS matrices oforder n 500.

p .5 .95

10-1, 10-9) 0
10-11, 10-1) 0 19
[10-12, 10-11 5 211
[10-13 10-12 47 214
10-14, 10-13) 260 47
10-15, 10-14) 159 6
10-16, 10-15) 27

[0, 10-16) 2

We computed

(32) Qi q(,i) I, -< =< n
(or, equivalently, Qi A,(,i) 1), where ,i is the final estimate of ,i. We also computed

(33) Ri min { Ixn- ,,- (i) 11, Ix, ,,- (Xi) + 11 }.
It is obvious from (1) that Qi 0 if i ,i. Also, since ,i is an eigenvalue of Tn if
x,,_ ,,,_ (hi) +--1, Ri 0 if Xi ,i. Table 5 shows the percentage distributions of { Qi }
and { Ri }. Here n is the order of the matrix and m is the number of matrices of that
order for which the results are given. Under each value of n there are two columns,
headed Q and R, which show the percentage distributions of { Q; } and { Ri }, respectively,
for all m matrices of the given order n. For example, 34.58 percent of the { Qi } and
11.74 percent of the {R} fell in the interval [10 -9, 10 -s) for n 300.

After a considerable portion of the computations summarized in Table 5 had been
completed, we decided that a more decisive measure of error should be calculated, even
though it engendered a substantial increase in computation time, namely,

(34) tri Z, iY,,(,i) / Y,,(,i) II,
since Y(,i) (as defined in (4) with X ,i) is an approximate ,i-eigenvector. Table 6
shows the percentage distribution of { ai } for a subclass of the matrices considered in
Table 5; again, m is the number ofmatrices ofthe given order n included in this subclass.

The computations in (10)-(13) require approximately n2 flops for each ,. With
K 10 in (22), these computations were performed on the average approximately eleven

TABLE 4
Distribution offractional er-

rors {f} in the eigenvalues ofthe
KMS matrix.

1oooTn (.9 ti-gl ).- 1.

10-9, 10-8)
10-1, 10-9)
10-12, 10-1)
[10-12, 10-1)
10-13, 10-12)
10-14, 10-13)
10-15, 10-14)

[0, 10-15)

3
33

313
507
127
15
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TABLE 5
Percentage distributions of Q and R} for randomly generated matrices.

n 100 150 300 500 1000
m 20 24 22 5 2

Q R Q R Q R Q R Q R

1, O) 00.00 00.00 00.00 00.00 00.02 00.00 00.00 00.00 00.00 00.00
10-!, 00.00 00.00 00.00 00.00 00.03 00.02 00.08 00.00 00.15 00.00
10-2, 10-1 00.00 00.00 00.06 00.00 00.03 00.02 00.04 00.04 00.20 00.00
10-3, 10-2) 00.00 00.00 00.03 00.00 00.14 00.00 00.16 00.04 00.90 00.05
10-4, 10-3 00.15 00.00 00.17 00.06 00.30 00.06 00.56 00.04 02.15 00.15
10-, 10-4) 00.45 00.05 00.39 00.06 00.97 00.15 02.60 00.08 07.95 00.55
[10-6, 10-) 00.50 00.10 01.17 00.19 03.23 00.33 07.92 00.88 19.25 02.40
[10-7 10-6 02.50 00.35 03.33 00.53 09.55 01.21 20.20 02.36 30.90 07.55
[10-8 10-7 05.15 00.95 10.50 01.39 24.29 04.94 32.12 09.40 27.50 16.50
10-9, 10-8) 15.90 03.50 23.50 05.11 34.58 11.74 25.80 18.92 08.65 25.75
I0-1, 10-9) 28.60 09.25 35.83 14.14 20.47 24.80 08.64 28.96 01.80 27.35
[10-I1 10-1 30.20 20.40 19.47 25.47 05.27 28.64 01.80 24.52 00.40 13.65
[10-12, 10-1 13.45 27.60 04.75 29.58 00.98 19.53 00.04 11.24 00.10 04.75
[10-13, 10-t2) 02.60 22.70 00.78 16.31 00.14 06.52 00.00 02.88 00.05 00.90
10-14, 10-13 00.45 11.60 00.03 05.56 00.02 01.64 00.04 00.56 00.00 00.35

[0, 10-14) 00.05 03.50 00.00 01.61 00.00 00.41 00.00 00.08 00.00 00.05

Average number of function evaluations per eigenvalue: 10.92, 10.89, 10.81, 10.84.

times per eigenvalue (and this was essentially independent ofthe particular matrix or its
order). Let us extrapolate from these eornputations and assume that this method requires
approximately M(K)n2 flops per eigenvalue, whereM(10) 11. By comparison, standard
QR requires approximately 2 n3/3 flops for the preliminary tridiagonalization of Tn, after
which all the eigenvalues can be computed with O(n) flops 12, 8.2 ]. On the basis of
this count only, it would seem that the method presented here has a dear advantage over
standard QR if it is desired to compute N eigenvalues (1 N < n) of Tn, provided that
N is small compared to (2 n)/ 3M(K), while, the advantage shifts to standard QR if this

TABLE 6
Percentage distribution oferrors r} for randomly generated matrices.

n 100 150 300 500 1000
m= 10 6 5 2 2

10-4, 10- 00.00 00.00 00.07 00.00 00.05
10-, 10-4 00.00 00.00 00.00 00.10 00.35
10-6, 10- 00.00 00.00 00.07 00.20 00.90
10-7, 10-6) 00.00 00.33 00.47 00.10 07.00
lO-8, lO-7) 00.30 00.67 03.20 09.20 28.25
[10-9 10-8 01.40 03.33 17.93 35.40 45.85
[lO-t, 10-9) 12.50 19.11 46.47 43.00 14.80
[lO-1, lO-1) 36.10 51.89 26.87 09.70 01.90
[10-12, 10-11 40.40 20.67 03.93 01.20 00.85
[10-13, 10-12) 07.60 03.33 01.00 00.20 00.05
10-t4, 10-t3 01.70 00.67 00.00 00.00 00.00

[0, 10-14) 00.00 00.00 00.00 00.00 00.00

Average number of function evaluations per eigenvalue: 10.92, 10.89,
10.81, 10.84.



TOEPLITZ EIGENVALUE PROBLEM 145

is not so. In the context of parallel processing, the determination of the crossover point
is more complicated; since the computations for distinct eigenvalues are completely in-
dependent of each other with the present method, it is straightforward to distribute the
labor ofcomputing many eigenvectors among multiple processors. Moreover, the memory
requirement for the present method is O(n), compared to O( n2) for standard QR.

The approximate average running times required on the IBM PC AT to find all
eigenvalues and eigenvectors of Tn, with K 10 in (22) and without computing i
(cf. (34)), were 24 rain., 81 rain., 10.6 hrs., and 49 hrs. for n 100, 150, 300, and 500,
respectively. For those runs in which i was computed, the average running times were
approximately 27 min., 88 min., 11.6 hrs., and 54 hrs., respectively. For the matrices of
order 1,000 the average running time per eigenvalue-eigenvector pair was approximately
15 min. on the PS/2 Model 60.

5. The effects of defectiveness. Our program included a command to terminate
computation of qn(X) An(,) if

(35) l1 --X2m-l,m-1 ()k) < 10 -s

for some m in { 1, n }. The purpose of this test is to prevent overflow in (12) if
X is too close to an eigenvalue of one of the principal submatrices TI, "",

In the computations reported in 4 we took J 9 (recall that K 10 in (22)), and
termination for this reason never occurred. Thus, the practical effect of defectiveness is
not that it is likely to cause overflow (although this can be forced to happen in contrived
situations), rather, it affects the accuracy of the results.

In most cases where the error indicators J;, Qi, and Ri, were relatively large, we
were able to ascertain that the eigenvalues in question were close to being defective. For
example, it can be seen in Table 5 that Qi was in the interval [1, 0) for one ofthe 6,600
eigenvalues computed for randomly generated matrices of order 300. This was
122.418638510399, with q30o(,) 8.45. To test for defectiveness, we reduced J in (35)
to four and attempted to compute q300(,). The calculation terminated with m 298.
Subsequent calculation showed that q298() .31 X 10-5, indicating that was close to
an eigenvalue of T298. Examination of other cases in which the error indicators were
unusually large yielded similar results.

The results in Table for the KMS matrix with p .5 and n 100 show that the
fractional errorJ for one eigenvalue is in the interval 10 -s, 10 -7), while all the others
are less than 10 -2. The eigenvalue for which this occurred is ), 1, which is defective;
indeed, it is straightforward to verify that if .5 and n 3m + (m 0, 1, 2, ...),
then - r/ 3 satisfies (28) and therefore, from (29), X is an eigenvalue of T. Hence,
X is an eigenvalue of 33 principal submatrices of Too.

Although our results indicate that defectiveness in the sense that we have defined it
is not a major problem for the matrices that we have considered, it would still be worth-
while to develop methods to overcome it. Clearly, defectiveness is a problem--theoret-
ically--mainly because the Levinson-Durbin Algorithm for solving the Yule-Walker
equation (3) requires that all the principal submatdces of T XI be nonsingular, i.e.,
that T ,I be "strongly nonsingular." Alternative methods have been proposed for
solving Toeplitz systems with matrices that are not strongly nonsingular; for discussions
of such methods see 2 ]-[4 ]. A possible direction for future research would be to in-
corporate some of the ideas in these references into the present method.

Acknowledgment. The author thanks G. Cybenko and the referees for several sug-
gestions for improving the manuscript.
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INVARIANT FACTOR ASSIGNMENT ON HIGHER-ORDER SYSTEMS
USING STATE-FEEDBACK*

ION ZABALLA-)-

Abstract. Some of the known results concerning invariant factor assignment by means of state-feedback
on first-order systems to systems with higher order are extended. Also, some problems concerning realizations
of the transfer function matrix of such systems are studied.

Key words, invariant factors, state-feedback, linearization, realization

AMS(MOS) subject classifications. 15A18, 93B15, 93B55

1. Introduction. Consider the following first-order time invariant system:

(t) Ax(t) + Bu(t)

where A Kn n and B K m (K R or C). In 4 ], Lancaster and Maroulas have dealt
with the problem of finding a feedback matrix F Kmn such that, on writing u(t)
Fx(t) + v(t), the new system

2( t) (A + BF)x( t) + By(t)

has a fundamental rnatdx A + BFwith prescribed spectral properties, namely, prescribed
Jordan canonical form. (They worked with complex matrices.)

It is well known that the Jordan form ofa complex matrixA is completely determined,
up to a permutation of its diagonal blocks, by the eigenvalues and the sizes ofthe Jordan
blocks associated to them. (Occasionally these sizes are called the Segre characteristic of
A .) In other words, the Jordan form ofA is determined by its elementary divisors and
then by its invariant factors.

If system (1) is completely controllable (i.e., the dimension of the controllable sub-
space of (A, B):

n-I

(A,B)= Z ImAjB
j=0

is n), then a well-known result by Rosenbroek see 5, p. 190 or 6 states the following.
ROSENBROCK’S THEOREM. If ’l,’’’, "Yn are monic polynomials such that

:> -y+ ,
_ _

n (the symbol :> is used to mean "divides") and

d(’yj)=n
j=l

and system (1) is completely controllable, then there exists afeedback matrix F Krn n

such that A + BF has ", " as invariantfactors, ifand only if
(2) ,yi 1, _i_n-m,

(3) (k, ,km) ( (d(’Yn), ,d(’Yn-m+ 1))
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where k

_ _
km are the controllability indices of (A, B), d(o) denotes degree, and

-< is the symbol ofmajorization in the Hardy, Littlewood, and Polya sense.
(See [8] for a definition of controllability indices and -<.)
So, when K is C and in spite ofthe possibility ofprescribing arbitrarily the spectrum

ofA + BF, the Jordan form of this matrix must be constrained to verify (3).
On the other hand, if system (1) is not completely controllable (i.e., dim qf < n)

then the spectrum ofA + BF can no longer be prescribed arbitrarily (see [3, p. 204 ],
4 ]), but still we can say how far its Jordan canonical form may be assigned.

THEOREM [10]. Under the same conditions as in Rosenbrock’s Theorem, if
K F is an arbitraryfield and a :> :> an are the invariantfactors of (A, B) (i.e.,
those of the polynomial matrix [XIn A, -B]), then there exists a feedback matrix
F. Fm n such thatA + BFhas "y, ..., "n as invariantfactors ifand only ifthefollowing
conditions hoM:

(4) 7i- , :> ai :> "ri, -< i-< n,

(5) (k, ,km) -’< (d(o’m) ,d(a))

where k

_ _
km are the controllability indices of (A, B),

/3J /3J=/3 ...o/3+J, /3=l.c.m. (oti-j,’Yi-m), <-i<=n+j,

O _j

_
m and ai ,yi for < 1.

Taking into account that the controllability of(A, B) is equivalent to the condition
ai for

_ _
n (see 8, p. 124 ]), it is easily seen that Theorem contains that of

Rosenbrock as a particular case (see 10 ). Furthermore, Theorem solves completely
the problem ofthe possible canonical forms for the similarity available under state feed-
back, including, of course, pole assignability.

In 2, and following the suggestion made in 4 ], we will extend this result to higher-
order systems. Section 3 is devoted to analyzing the possible realization of the transfer
function matrix of higher-order systems as defined in 2.

2. Higher-order systems. Consider now a p-order system of the form

_Px d.Jx( t)
Bu( t)

d’x(t)
Aj dt

(6)
dtP =0

where Aj Knxn, 0 < j <_ p 1, and B Knm. Put
p--I

L(h)=Inh- AXj

j=0

and define

(7) y(t)=

x(t)

dx( t)
dt

d-x(t)

then, a first-order system equivalent to (6) is

(8) (t)=Cy(t)+Du(t)
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where C K"p "p is the first companion matrix of L(,), i.e.,

(9) C

o I, o o
o o I, o
o o o I,
Ao Al A2 Ap-l

Following [4], state feedback is interpreted in the form
p- dJx(t)

(11) u(t)= F dt +v(t)
j=0

where F Km x ,. The performance of a state feedback as that of (11) on system (6)
yields the transformed system

dPx( t P dJx( t
(A+BF) dt--=Bv(t)dtP =0

and associated to it we have the matrix polynomial
p-I

L(x) =/.x- Z (A+ BF.)X.
j=0

By using the same substitution as in (7), we obtain the following equivalent first-order
system:

(t) (C+ DF)y(t) + Dr(t)

where

F--[Fo, ,Fp_ I].Kmnp.

Our main result in this section is Theorem 2.
THEOREM 2. Let K F be an arbitraryfield, let al :> :> a, be the invariant

factors ofthe matrix polynomial [L(,), -B] F[,] "t"+m), and let " :> :> 3’, be
monic polynomials such that

d(’r)=np.
j=l

Let k _... _
km be the controllability indices of (C,D). There exist matrices

Fj. Fmxn, 0 _j

_
p such that L(X) has "r, "’", ",/,as invariantfactors ifand only

ifconditions (4) and 5 hold.
Proof. Let us put ei ai_tp_ ),,

_ _
pn. (Recall that a for < 1.) Write

x/. -I. o o o
Q(X)=

0 In -I, 0 0
0 0 0 M, --In ’F[k]npxnp

I. o o o o

P(X)

I 0 0 0
0 I, 0 0
0 0 I, 0

L,-I(,) Lv-(),) LI(,) Lo(,)

.F k]pn pn
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where L0(X) I, and Lg(,) XLg_ (X) Av_j, Nj N p 1. (See [2, p. 131.) Then
P(X) and Q(,) are unimodular matrices and

P( X XI"v C’ D [ I"(p L(X) 0 I.

[hI,p-C,-D] and [I,P-lo L(x)O -BO]
are equivalent polynomial matrices, and therefore they have the same invariant factors.
Bearing in mind that a, ..., a, are the invariant factors of[L(h), -B], we can conclude
that el, "", .pn are the invariant factors of (C, D).

Let i "ri-(v-1),,

_ _
pn (3’ for < 1). By Theorem 1, there exists

F E Fmnp such that C + DF has/tl, "", div, as invariant factors if and only if

(12) i_m:>’ei’>’i, <=i_pn,

(13) k km -((d(o’m) ,d(

where

J B= 1.c.m. (i-j, hi- m),

_i_pn+j, O<-j<-m.

Let F be the submatrix of F formed by all its rows and the columns jnth, ...,
(j + 1)nth, 0

_
j

_
p 1. It is easily seen that C + DF is the first companion matrix of

L(X). So [2, p. 13], C + DF and diag (1(_ ),, L(X)) have the same invariant factors.
That is to say,/t, ...,/tv are the invariant factors of

I(p- l)n 0 ]0 L(x)
But ii for

_ _
(p 1)n and i+(v-1), "r’i, <-

_
n. Hence 3’1, "Y, are

the invariant factors of L(h). So, to complete the proof of the theorem we have only to
see that (12) and (13 are equivalent to (4) and (5), respectively, which is easily done
taking into account the definition of the e’s and it’s. V1

Since [L(,), B] and (C, D) have the same nontrivial invariant factors (i.e., those
different from one) and, as we said before, a characterization of the controllability of
(C, D) is that all its invariant factors are equal to one, we can say that system (6) is
completely controllable if all the invariant factors of L(,), B are equal to one. In such
a case, we get the following generalization ofRosenbrock’s result to higher-order systems.

COROLLARY 1. Under the same conditions as in Theorem 2, if(6) is a completely
controllable system, then there exist matrices Fj Fm x ,, 0 _ j <= p such that L( ),)
has "r 1, "’", "r, as invariantfactors ifand only ifconditions (2) and 3 ) hoM.

The proof of this Corollary can be obtained from Theorem 2 in the same way as
Rosenbrock’s Theorem can be obtained from Theorem (see 10 ]).

The pair C, D) as defined by 9 and (10) summarizes all the information we need
to solve the problem of the invariant factor assignment on higher-order systems. The
same can be said about another pair (C, Dl such that Cl PCP-1 and DI PDQ for
some nonsingular matrices Pand Q. But all these pairs (C1, DI provide more information
than we need, because they are such that Cl is a linearization 2, p. 12 ofL(X) and the
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invariant factors of L() do not play a role in the solution of the problem. (Of course,
the invariant factors ofL(,) are related to those of L(,), B (see 9 ), but this relation
is not manifest in the solution. Whatever the invariant factors ofL(,) are, the important
matter is which are the invariant factors of [L(X), B].) Thus, an important problem to
be solved is characterizing the pairs (C, D ), which can provide all the structure infor-
mation of [L(X), B] needed to solve the problem of invariant factor assignment. We
will delve deeply into this point by dealing with the possible realizations of the transfer
function matrix of system (6) (assuming that the outputs are the states), L(,)- B.

3. Realizations of L(,)-IB. First of all, it should be noted that if

(14) H:=[In,O, ,0]F""p,

then H(,/ C)-D is a state-space realization ofL( ,)- B. (To see this, it is enough
to apply in a suitable way transformations (i)-(iv) and Theorem 3.4 of 5, p. 59 to

Mnp- C

On the one hand, ifH(M- CI)-II and H(M- C)-ID are two minimal (or
ieducible) ste-sace reizations ofL( X)-IB then for 1, 2, (G, D) is completely
controllable (c.c.) and G, H) is comNetely obseable (c.o.). Or in other words, using
the teinology of[5 ], the matrices in state-sace fo,

[M-CI -D] p2()=[-C2 -D2]P(X)=
-H 0 -HE 0

have no decoupling zeros. Hence, by the corollary of Theorem 3.1 of 5, p. 106 ], PI (k)
and P2 (,) are system similar, i.e. 5, p. 56 there exists a nonsingular matrix U such that

H2 HIU-1 C2 UCl U-l DE UDI
Thus, C, C2 are similar, and [9] (C, D and (C2, D2) have the same controllability
indices.

On the other hand, if L(,) and B are relatively left prime (i.e., all the invariant
factors of [L(,), B] are equal to one), then H(Mnp C)-D is a minimal state-space
realization of L )- B (C, D and H will denote those matrices given by (9), (10),
and (14), respectively). In fact, (C, H) is constructed to be c.o. and (C, D) is c.c.
because (C, D) and [L(,), B] have the same nontrivial invariant factors. Thus, if
H M C)-D is another minimal state-space realization ofL()-B, then C and C
are similar and therefore 2, p. 15 C is another linearization ofL().

Hence, ifL(,) and B are relatively left prime, all the necessary information needed
to solve the problem of invariant factor assignment is provided by any pair (C, D )
such that C is a linearization ofL(,), C, D is c.c., and there exists a matrix H such
that C, H is c.o. and L( X)-B H(M C )-D. And since in this case C and C
are similar the size of C is np np.

If L(,) and B are not left relatively prime, then we can still get a minimal state-
space realization ofL( ,)- B. LetH(M- C)-D be such a minimal realization. Since
(C, D is c.c., this pair and [L(,), B] no longer have the same invariant factors. Thus,
whenever we consider minimal realizations ofL(,)-Bwe are losing part ofthe structure
information of [L(,), B]. Nevertheless, we can give the following result.

THEOREM 3. For 1, 2 let ti be positive integers and Hie Fnxti, Ci . Ftiti,
Di- Ftixm matrices such that (Ci, Hi) is a c.o. pair. lffor 1, 2, Hi(M- Ci)-Di are
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two state-space realizations of the same rational function matrix T(h), then C,, D,
and (CE, DE) have the same controllability indices.

Proof. For 1, 2 and by using Algorithm 7.2 of 5, p. 81 ],

ai( x [ hIt’- -Di

can be brought by system similarity to the form (Kalman form)

bis,- Cil -Ci2 -Dil
Pi(h) 0 hlt,-s,-Ci3 0

-Hil -Hi2 0

where (Ci,, Di, are c.c. and (Ci,, Hi, are c.o. In other words, for 1, 2

Pil h [ Ms’- Ci’-Hi, -Dil

has no decoupling zeros. Since Pi(h) and Qi(h) are system similar, they give rise to the
same transfer function matrix [5, p. 59 ], and so

0 hI,,-s,-Ci3 0

Hil (his,- Ci, )-’ Dil, 1,2.

As PI (h) and P21 (,) have no decoupling zeros, by Theorem 3.2 of 5, p. 108 ], we can
conclude that s, s2 (say s, s2 s) and again by the corollary of Theorem 3.1 of
[5, p. 106], it turns out that P,() and P2 (h) are system similar, and therefore there
exists a nonsingular matrix U F s such that

C2 UC,,U-’ and DE1 UDII.
So, (C,, D, and (C2, D2) have the same controllability indices and the theorem
follows from the fact that the controllability indices of (Ci, Di) are those of (Ci,, Di, ),

1, 2 [8, Lemma 2.8].
After this theorem the controllability indices of [L(h), B] are the controllability

indices of the pair C,, D, in any state-space realization H, Mr Cl )-lD ofL( h)-’B
such that C,, H, is c.o., i.e., ifH, M C, )-’ D, is any minimal realization ofL( h)-’ B
then the controllability indices of [L(,), B] are those of

Since any state-space realization H, Mr C, )-1 D, ofL( h)-’ B such that (C, H
is c.o. keeps the information about the controllability indices of [L(h),B] and
H(Mnp-C)-D gives complete information concerning the invariant factors of
[L(,), B], a new question arises in a natural way: What realizations ofL( h)-’B provide
information concerning the invariant factors of L(,), B]?

THEOREM 4. Let H, M C, )-’ D, be a realization ofL(h)-’ B such that C H )
is a c.o. pair. Let

[Cll0 c13C12 D,,]0 and [E,0 c3C2 DI2]0
be the Kalman forms of (C,, Dl) and (C, D), respectively. Then [L(X), B] and
C,, D, have the same controllability indices and nontrivial invariantfactors ifand only

ifwe have thefollowing:
C, and El are similar;

(ii) C, D) and C D, are P-equivalent.
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(See 8 for a definition ofI-equivalence. This equivalence relation is called "block-
similarity" in 3 ].)

Proof. We already proved the necessity of (i) in Theorem 3. Moreover, C, D) and
(C, D are I-equivalent if and only if ([ 8, Thm. 2.12 they have the same invariant
factors and the same controllability indices. The theorem follows from the fact that the
controllability indices and the nontrivial invariant factors of[L(,), B] are those of (C,
D). E]

One way to construct a pair (C, D with the same controllability indices and the
same nontrivial invariant factor as [L(X), B] is the following:

(1) Get a minimal state-space realization of L(X)-B by means of one of the
several available procedures (for instance, see 5, p. 122 ]), and let HI l( Ms Cll )-1Dll
be such a minimal realization. The dimension of this realization, s, is np q where
q , d(aj), a :> :> a, being the invariant factors of [L(X), B].

(2) Let at+l,"’, a be the invariant factors of [L(X), B] different from one.
Denote by Ni a companion matrix of at / , 1, , n put

C12 =diag (N ,Nn_ t)- F x ’.

(3) Let X be an s q arbitrary matrix.
(4) Write

C
C X

and DI
0 C12 0

Then, (CI, D) is a pair with the same controllability indices and the same non-
trivial invariant factors as [L(,), B]. Furthermore, if H [HI 0] Fnnp, then
H(Ip CI)-IDI is a state-space realization of L(h)-B. It should be observed that
this realization is such that (CI, H) is not c.o. Indeed the assumption of complete
observability in the previous statements was made to ensure that the controllable part of
the system is also observable, but everything would be still fight by removing the condition
of observability from the uncontrollable part of the system.

We conclude with three final remarks:
(a) There are pairs (C, D with the same nontrivial invariant factors and con-

trollability indices as [L(,), B] such that CI is not a linearization ofL(,).
(b) Conditions (i) and (ii) in Theorem 4 are equivalent to the existence ofmatrices

PI Fss, P2 Fqq, Q Fmm, and R e Fm/q, P, e2, and Q nonsingular, such that

PI 0 CII C12 DII
0 P 0

0 P2 0 C3 0 0 R Q 0 C3 0

(c) If C is an np np matrix such that there is D Fn" m with (C, D ) having
the nontrivial invariant factors and controllability indices of[L(,), B], then C is similar
to a two block-triangular matrix (its Kalman form) with the diagonal blocks prescribed
up to similarity. The characterization of the invariant factors of this type of matrices is
a very interesting and important problem in matrix theory, and the connections of this
problem with others in the different branches ofmathematics is amazing. For an interesting
exposition of such connections the reader is referred to [7 ].
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Abstract. The growth factor plays an important role in the error analysis of Gaussian elimination. It is
well known that when partial pivoting or complete pivoting is used the growth factor is usually small, but
it can be large. The examples of large growth usually quoted involve contrived matrices that are unlikely to
occur in practice. We present real and complex n n matrices arising from practical applications that, for any
pivoting strategy, yield growth factors bounded below by n/2 and n, respectively. These matrices enable us to
improve the known lower bounds on the largest possible growth factor in the case of complete pivoting. For
partial pivoting, we classify the set of real matrices for which the growth factor is 2"-1 Finally, we show that
large element growth does not necessarily lead to a large backward error in the solution of a particular linear
system, and we comment on the practical implications of this result.

Key words. Gaussian elimination, growth factor, partial pivoting, complete pivoting, backward error analysis,
stability

AMS(MOS) subject classifications, primary 65F05, 65G05

1. Introduction. In his famous backward error analysis, Wilkinson proved that if
the linear system Ax b, where A is n n, is solved in floating point arithmetic by
Gaussian elimination with partial pivoting or complete pivoting, then the computed
solution satisfies (see, for example, 27, p. 108 ])

(1.1a) (A+E)=b,

where

1. lb) Ell
Here, p(n) is a cubic polynomial in n, u is the unit roundoff, and o. is the growthfactor,
defined in terms of the quantities a o occurring during the elimination by

maxi,j,k 0,o,, p,,(.4) .
max,.s aol

As Wilkinson notes, the term p(n) arises from bounds in the analysis that are rarely
attained, and for practical purposes we can replace p(n) by n in (1.1 b). Hence whether
or not the bound in (1.1b) compares favourably with the "ideal" bound
depends on the size of the growth factor.

Although the growth factor is one of the most well-known quantities in numerical
analysis, its behaviour when pivoting is used is not completely understood. Current
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knowledge, in the context of general, dense matrices, can be summarised as follows. For
clarity we will denote the growth factors for partial and complete pivoting by pv and
p c, respectively.

Partial lfivoting. (The pivot element is selected as the element of largest absolute
value in the active part ofthe pivot column.) The bound ov __< 2n- holds and is attained
for matrices An e Rn x n of the following form 28, p. 212 ]"

(1.2) A

0 0 0
-1 0 0
-1 -1 0
-1 -1 -1
-1 -1 -1 -1

and also forJn DA,,D, D diag (1, -1, 1, -1, ..., (-1)+ ) [26, p. 289]. Concerning
the size of p in practice, Wilkinson [28, pp. 213-214 says: "It is our experience that
any substantial increase in size ofelements ofsuccessive Ar is extremely uncommon even
with partial pivoting... No example which has arisen naturally has in my experience
given an increase by a factor as large as 16." We are aware of no reports in the literature
of experiences contrary to these related by Wilkinson over two decades ago. The largest
growth factor that we have seen reported for a matrix not ofthe type (1.2) is p00 35.1,
occurring for a symmetric matrix with elements from the uniform distribution on
[- 1, 18 ]; an earlier "record" value is p0 23, occurring for a random matrix of Is,
0s and s 10, p. 1.21 ].

Complete lfivoting. (The pivot element is selected as the element oflargest absolute
value in the whole of the remaining square submatrix.) Wilkinson [26, pp. 282-285
has shown that with complete pivoting

lc < nl/2( 213 .n l/(n-1)) l/2 Cn l/2nl/41g n

and that this bound is not attainable. He states in 26, p. 285 that "no matrix has been
encountered in practice for which p/p was as large as 8," and in 28, p. 213 that
"no matrix has yet been discovered for which f(r) > r." (Pi (n + l)st pivot,
f(r) Pr.)

Cryer 7 defines

(1.3) g(n) sup p(A).
A. Rnxn

The following results are known:
g(2) 2 (trivial).
g(3) 2 4; Tornheim (see 7 ]) and Cohen 6 ].
g(4) 4; Cryer [7].
g(5) < 5.005; Cohen [6].

Tornheim (see [7 ]) has shown that O,(H,)

_
n for any n n Hadamard matrix

Hn. H, is a Hadamard matrix if each his {- 1, } and the rows of H, are mutually
orthogonal. Hadamard matrices exist only for certain n; a necessary condition for their
existence if n > 2 is that n is a multiple of four. For more about Hadamard matrices see
[14, Chap. 14] and [25].
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Cryer [7 conjectured that for real matrices p(A) -< n, with equality if and only if
A is a Hadamard matrix. This conjecture is known to be false for complex matrices
because Tornheim has constructed a 3 3 complex matrix A for which I(A) > 3
(see [7]).

As the summary above indicates, most of what is known about the growth factor
had been discovered by the early 1970s. Recently, Trefethen 23 has drawn attention
to the shortcomings of our knowledge about the growth factor and asked, as one of his
three mysteries, "Why is the growth ofdements during elimination [with partial pivoting]
negligible in practice?" Trefethen and Schreiber 24 have proposed a statistical analysis
to explain why the growth factor is usually small for partial pivoting.

In this work we take a different approach from that of Trefethen and Schreiber.
Instead of trying to explain small growth we pursue examples of large growth, and we
investigate the implications of a large growth factor for numerical stability.

In 2 we present several families of real matrices for which # c is bounded below
by approximately n/2, and one family of complex matrices for which ac >_ n. Thus we
obtain new lower bounds for g(n) valid for all n. We also classify the real matrices for
which 2n-, finding this to be a much richer class than might at first be thought.

In 3 we reappraise the role of the growth factor in the backward error analysis of
Gaussian elimination. We demonstrate that when solving linear systems by Gaussian
elimination with partial pivoting large growth does not always induce a large backward
error---there are certain, special right-hand sides for which the growth has no detrimental
effect on the solution. We discuss the practical implications of this property for linear
equation solvers.

2. Matrices with a large growth factor. We begin with a result that shows how to
obtain a lower bound for the growth factor in Gaussian elimination. The bound applies
whatever strategy is used for interchanging rows and columns, but we will be concerned
only with partial and complete pivoting.

THEOREM 2.1. Let ACn" be nonsingular, and set ct=maxi,j lal, /-
maxi,j I(A-l)il, and 0 (a)-l. Then 0 <= n, andfor any permutation matrices P and
Q such that PAQ has an LUfactorisation, the growthfactor p for Gaussian elimination
without pivoting on PAQ satisfies n O.

Proof The inequality 0 < n follows from -_ a(A -)ji 1. Consider an LU
factorisation PAQ LU computed by Gaussian elimination. We have

lul erU-el lerU-’Z-e lerah-erel
(A-)0.[ for some i,j

(k)Hence maxi,j,k ]ai2 -- ]Unn - and the result follows, r-1

Remarks. (1) 0 -1 aft satisfies r(A)/n2

_
0 -1 <= too(A), where the condition

numberK(A) A IIa- Clearly, A has to be very well-conditioned for the theorem
to provide a lower bound 0 near the maximum of n.

(2) In the case of partial pivoting Q 1, and the proof of Theorem 2.1 shows that
we can take fl max2 I(A-)21, which leads to a lower bound 0 potentially larger than
the one in the theorem.

(3) The relation u; (A-)i2 is used also in [4], with the aim of investigating
cases where Unn is small.
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To illustrate the theorem, consider a Hadamard matrix H. We have HH= nI,
and so H n-Hr,. Since h01 1, the theorem gives p

_
n. As a special case we

obtain p(H,)

_
n, as in [7] (this derivation is essentially the same as the one in [7 ]).

We present six further matrices to which the theorem can profitably be applied:

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

pnQ= 2n/ sin2n/ i) i,j=l 4

F= (Aj)n= 2mi,j=l

cos( (i-1)(J-m 1)Tr), <i_<m+1___

sin m + 2

_
-< n

n r,s

C1 and C2 are examples of Vandermonde-like matrices C(al, ix2, On)
T,. (ctj) based on the Chebyshev polynomials Tk. For further details ofVandermonde-

like matrices and their applications see [16].) For C the points aj cos ((j 1)r/
(n 1)) are the extrema of T,_ 1, and for C2 the points aj cos ((j 1/2)r/n) are the
zeros of T,. The Chebyshev polynomials satisfy orthogonality conditions over both these
sets ofpoints 15, pp. 472-473 ]. Using these orthogonality properties, we can show that

CIDCI
(n-1._.___)D_ D=diag (1/2, 1, 1/2)

and

C2C n diag (1, 1/2, 1/2,..., 1/2).
Hence C]-1 (2/(n 1))DCID, and Theorem 2.1 yields O,,(C1) - (n 1)/2. It is not
hard to show that for partial pivoting u,, n 1, and so o(C) - n 1. Similarly,
C n-Cf diag (1, 2, 2, 2), and Theorem 2.1 gives o,,(C_) >- n/2.

S is the symmetric, orthogonal eigenveetor matrix for the second difference matrix
(the tridiagonal matrix with typical row (-1, 2, -1)) [22, p. 457 ]. Theorem 2.1 gives
0,(S)

_
( n + 1) / 2. Another application in which S and C2 appear is the analysis oftime

series 1, 6.5 ].
Q is symmetric and orthogonal [19] and Theorem 2.1 yields o,,(Q) - (2n + 1)/4.
The matrix F, of even order n 2m, arises in the derivation of approximations to

linear operators for periodic functions. Hamming 15, pp. 522-524 shows that

F- =-nZFrdiag(d)’ di= {1/2’1 otherwise.i=1,m,

Hence Theorem 2.1 yields o,(F)

_
n/ 2.



LARGE GROWTH FACTORS 159

Finally, V is a complex Vandermonde matrix based on the roots of unity. It occurs
in Fast Fourier Transform theory 22, pp. 292, 448 ]. VnV hi, so V-l n -l Vu and
Theorem 2.1 gives p n(V)

_
n.

These matrices are not isolated examples: for each, the lower bound 0 for p is
insensitive to small perturbations of the matrix. To see this, note that for A-IEll <
(say), in the notation of Theorem 2.1,

O(A + E)-l= a(A + E)#(A + E)<=(or(A)+ a(E))((A + O( Eliot))

0(A)-l(1 + O( Ell o)).
Regarding the perturbation E as the backward error in a computed LU factorisation, it
follows also that, as long as E is not too large, the computed growth factors will satisfy
the theoretical lower bounds to within roundoff.

It is natural to ask what are the actual growth factors p and p for the matrices
above. In numerical tests we found # and # generally to be bigger than the lower
bounds, but appreciably less than n, except in the case of Vin (2.6) for which numerical
evidence suggests that p(V) p,(V) n.

All the above matrices are natural, noncontrived ones that arise in practical appli-
cations. For n 50 (say), for both partial and complete pivoting, each of the matrices
produces growth factors which exceed the generally accepted "maximum values in prac-
tice", such as the value 16 mentioned by Wilkinson in 28 ]. It is rather surprising that
the growth factor properties ofthese examples have not previously been recognised. One
possible explanation is that since each ofthe matrices is either an orthogonal or a diagonal
scaling of an orthogonal matrix, Gaussian elimination may rarely have been applied to
these matrices. (The growth factor properties of C and C2 were discovered incidentally
when making a numerical comparison between Gaussian elimination with partial pivoting
and a fast O(n2) algorithm [16].)

These examples provide new lower bounds for the maximum growth factor with
complete pivoting. Specifically, we have, for g(n) in (1.3),

n+l
g(n) > oc,,(S)> for all n.

2

N. I. M. Gould (private communication) has suggested a way to obtain slightly sharper
bounds: it is easy to show that

0() 0 -and so, taking A S, g(2n)

_
a(B)

_
O(B) 2O(S) n + l, which improves on the

lower bound (2n / 1)/2. (Of course, for n such that a Hadamard matrix H exists,
g(n)

_
n is a better bound; and for n _-< 5 see the results quoted in 1.) Further-

more, defining

g(n) sup ,o (A),
AeCnxn

we have
Cg(n)p,,(V)n.

The growth factors discussed above are relatively mild in the context of partial
pivoting, since O(n)growth falls significantly short ofthe potential O(2). To investigate
larger growth factors we have to make specific use of the properties of partial pivoting.
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The following result shows that Wilkinson’s example in which 0P 2 n- is attained is
just one from a nontrivial class of matrices with this property.

THEOREM 2.2. All real n n matrices A for which OP(A) 2- are oftheform
T oa]A=DM
0

whereD diag (+ 1), M is unit lower triangular with mo for >j, T is a nonsingular
upper triangular matrix oforder n 1, d (1, 2, 4, 2 ) r, and 0 is a scalar such
that 0 a, maxi,j ao[.

Proof. Gaussian elimination with partial pivoting applied to a matrix A gives a
factorisation B PA LU, where P is a permutation matrix. It is easy to show that
u01 - 2 i- maxrz brl, with equality for s only ifthere is equality for 1, 2, ..-,

s 1. Thus 0 2 "- implies that the last column of U has the form ODd, and also that
b, maxi,j b0[. By considering the final column ofB, and imposing the requirement

that 1/01 - 1, it is easy to show that the unit lower triangular matrix L must have the
form L DMD. It follows that at each stage of the reduction every multiplier is ___1;
hence no interchanges are performed, that is, P 1. The only requirement on T is that
it be nonsingular, for if t, 0 then the ith elimination stage would be skipped because
of a zero pivot column, and no growth would be produced on that stage, ffl

In the case n 5, the general form ofA is

A=D

t t2 t3 t4 t9
-t --tl2 -t- t22 --t3 -I-/23 --t4-l-/24 19
--tll --t12 t22 -’/13 t23 q- t33 --tl4-/24 -1- t34 t9
--tl --/12 --/22 --t3 t23 t33 --t4--/24-- t34-1-/44 19
--tl --tE--t2 --t3--t23--t33 --t4--tE4--t34--t44 19

We mention that it is straightforward to extend Theorem 2.2 to complex matrices.
As well as being of theoretical interest, the matrices given in this section are useful

test matrices for linear equation solvers. Note that K(A) can be bounded above and
below by multiples ofK(T), so T can be used to vary the condition ofA. By varying
the elements m0 (i > j) and the vector d in Theorem 2.2 we can construct matrices for
whichp achieves any desired value between and 2-. Indeed in practice it is expedient
to modify M in Theorem 2.2 so that m01 < for > j, to ensure that rounding errors
do not affect the pivot sequence (and hence the computed growth factor).

3. Implications of a large growth factor. If the growth factor p n is large then in the
backward error result (1.1) the bound for Eli is large. Whether or not Ell itself is
large when p is large depends on the sharpness of the bound. Since the bound is inde-
pendent of b, and E clearly is not, we might suspect that the bound can be weak; in this
section we will show that this is indeed the case.

We need to make use of an elementwise form of backward error analysis. Let A
R . From 8 the computed solution $ from Gaussian elimination (assuming, without
loss of generality, no interchanges) satisfies

(3.1a) (A +F).= b,

where

(3.1b) IFI (2+)1/-51 I1, "y=nu/(1-nu),

and where A /:r is the computed LU factorisation and FI (I JSj I).
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As our use ofthe notation E in (1.1) and F in (3.1) suggests, the backward error for
solution ofAx b is not uniquely defined: G satisfying (A + G) b can be replaced
by G + H for any H whose rows are orthogonal to . However, it is well known that of
the infinitely many backward error matrices there is a unique one of minimal
Frobenius norm,

(3.2) G= I111=

where the residual r b A, and IIGIle (,g.)/2 (see [9, p. 171] for a proof and
discussion, albeit in a different context). Of course, for the minimal Frobenius norm
backward error matrix G to be an appropriate one to consider, A should be reasonably
well-scaled.

Our aim is to obtain an informative bound for the minimal backward error 1(71.
To do this we write r b A F, from (3.1a), and invoke the bound (3.1b),
obtaining

Irl- IFI I1 _(2 /)ILI 10111.
Hence

(3.3) IGI Irl I1 r ,(2+,) r1111"’’’--------ILl 1011111

Our observation is that any large growth, which necessarily takes the form of large
elements of when partial pivoting is used, will not fully affect the backward error for
a particular if

Ill01 I111 << 011i111.
Since al - 2- max ai], large growth can occur only toward the (n, n) position
of ; consequently any , bounded by (say)

I1- 1111(,2-,2 -2, ,2-n)r

can be shown to satisfy III 01 I111 - 211 h I111 no matter how large 011
For example, for any A, consider the use ofpartial pivoting for the particular system

Ax b with x e. Assume x x satisfies IIxll - 2-/n; this will certainly be
the case if, making use of(1.1), xoo(A)4n-p(n)nu < 1. Then

ILl It3111 ILl 101 le-xl Zmax lale/ ILl 1011xl,

where e (1, 1, 1)r, and thus

ILl 1011111_ Ilall / n2- llailoollSxll-211hlloo.
Hence, using (3.3), we have

IlGlloo- 2-r(2 +-r) IlAllo(l + 0(2-")),

which is an ideal backward error result, containing no growth factor term.
To illustrate the analysis we describe some numerical experiments performed using

Gaussian elimination with partial pivoting and the perturbation B A + 0.1 eer of
Wilkinson’s extreme growth matrix An in 1.2 ). This perturbation ofthe (n, n) element
has the effect of causing rounding errors to be committed in the computation of the
LU factorisation. Note that element growth occurs only in the last column of Bn dur-
ing Gaussian elimination with partial pivoting. For several n we solved five different
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linear systems B,,x b, and computed the backward error for the LU factorisation,
B,, LII/IIn I1 (note that this is unique for a given norm), and the minimal

backward error in the Frobenius norm for each system solved, Ilrll/( Bn IIFIIII). For
four of the linear systems, we selected x or b as vectors suggested by the analysis; for the
final system we used a random b with elements from the uniform distribution on [0, ].

The computations were performed using the WATFOR-77 Fortran 77 compiler on
a PC-AT compatible machine. Solutions were computed in single precision (IEEE stan-
dard, u 1.19 10-7), using LINPACK’s SGEFA/SGESL. The residuals r and Bn
Lwere computed in double precision. The results are displayed in Table 3.1.

The backward errors for the LU factorisation are seen to be somewhat smaller than
the large growth factor might lead us to expect, though still "alarmingly" large, except
for n 10. For x el the backward errors are all identically zero and x; in this
example the errors in the LU factorisation are nullified in the substitutions. The backward
errors are also perfectly acceptable for b e. Here the explanation is that x
(B-1 )n u so that u,,,,x,, 1; thus the large elements in the last column of vanish
in the product I1 I1 in (3.3). The backward errors for b el, b e, and the random
b, all reflect the large backward error in the LU factorisation, as we would expect: the
nonnegligible x components pick out the large last column of in the product 1 I1.

To summarise, we have shown the following" When a linear system Ax b is solved
by Gaussian elimination with partial pivoting, the backward error for the computed
solution , b -all/(ll A IIF 11112), can, in certain special cases, be substantially smaller
than the backward error for the LU factorisation, A LOllF A F, ifthe latter is large.
Thus, strictly, the growth factor, or any other quantity appearing in a measure or bound
ofA LU, is an unreliable indicator of the stability of a particular solution . We do
not clairfi that this result is new, nor do we think that it will surprise anyone who has
worked in backward error analysis. Examples of references that allude to the result in
some way are [11, p. 73] and [20]. However we are not aware of a published analysis
like the one above, and we feel that the result deserves to be better known.

It is important to stress that large growth is indeed very uncommon with partial
pivoting (see the quotation from 28 in 1), and that when it does occur there is a high
probability that it will adversely affect the stability ofthe computed solution .. Neverthe-
less, the result above has implications for how one uses a linear equation solver.

For example, consider the use of threshold versions of partial pivoting (including
no pivoting at all); here large growth factors are much more common, and it is standard
practice to monitor stability by estimating the error in the factorisation, A LO 5 ],
[11 ]-[ 13 ]. If the estimate is large then a popular course of action is to carry out a

TABLE 3.1
Results.

(u 1.19 10-7)

10
20
3O
40
5O
60

4.7E2
4.8E5
4,9E8

5.0E 11
5.1E14
5.2E 17

3.0E-6
1.7E-3
4.5E-3
3.4E-3
2.7E-3
5.7E-2

2=el b en b e b e b random

0.0 1.5E-8 3.1E-6 4.4E-6 2.3E-6
0.0 5.5E-9 1.2E-3 1.6E-3 2.4E-4
0.0 1.5E- 11 3.2E-3 4.5E-3 1.1 E-
0.0 1.1E-14 2.4E-3 3.4E-3 3.7E-2
0.0 1.1E-17 1.9E-3 2.7E-3 4.4E-2
0.0 1.5E-19 1.6E-3 2.3E-3 8.9E-2
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refactorisation with a different pivot sequence. Our view is that if just a single system
involving A must be solved, it is worthwhile to proceed with the substitutions and to
base refactorisation decisions on the easily computed actual backward error (3.2) rather
than on (estimates of) A L0, which may be misleading, as we have shown. For
example, having computed : we might form r b A. (in single precision), evaluate
the backward error IIGIIF Ilrll2/11112, and test whether IIGIIF - /IIAIIF, where/i is an
appropriate tolerance (depending on the unit roundoff, at least). Even if is unacceptable,
the substitutions need not have been wasted, for we may be able to achieve stability
through the use of a few steps of iterative refinement 2 ], 3 ], 17 ], 21 ].

A more general way to express these views is that it is better to use a posteriori
estimates that reflect the actual rounding errors encountered, rather than error estimates
based on a priori analysis, such as (1.1). For a discussion of this philosophy we can do
no better than refer the reader to Wilkinson’s eloquent exposition in 29 ].
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SOLVING SPARSE LINEAR SYSTEMS
WITH SPARSE BACKWARD ERROR*

M. ARIOLI, J. W. DEMMEL, AND I. S. DUFF

Abstract. When solving sparse linear systems, it is desirable to produce the solution of a nearby sparse
problem with the same sparsity structure. This kind of backward stability helps guarantee, for example, that a
problem with the same physical connectivity as the original has been solved. Theorems ofOettli, Prager [Numer
Math., 6 (1964), pp. 405-409] and Skeel [Math. Comput., 35 (1980), pp. 817-832] show that one step of
iterative refinement, even with single precision accumulation of residuals, guarantees such a small backward
error if the final matrix is not too ill-conditioned and the solution components do not vary too much in
magnitude. These results are incorporated into the stopping criterion of the iterative refinement step ofa direct
sparse matrix solver, and numerical experiments verify that the algorithm frequently stops after one step of
iterative refinement with a componentwise relative backward error at the level of the machine precision. Fur-
therrnore, calculating this stopping criterion is very inexpensive. A condition estimator corresponding to this
new backward error is discussed that provides an error estimate for the computed solution. This error estimate
is generally tighter than estimates provided by standard condition estimators. We also consider the effects of
using a drop tolerance during the LU decomposition.

Key words, sparse matrix, backward error, iterative refinement, componentwise error, error estimate, con-
dition number

AMS(MOS) subject classifications. 65F05, 65G05, 65F35

1. Introduction. When solving systems of n linear equations Ax b by means of
Gaussian elimination with pivoting, a classical analysis (Wilkinson (1961)) shows that
we should expect to get the exact solution of a slightly different linear system
(A + 8A) b + 8b where 8A and 8b are both small with respect to A and b. By
small we mean small in norm, i.e., IIAII - kllAll and I[bll - kllbll where is a ma-
trix norm, e is the machine precision (that is, the greatest positive number such that
fl (1 + e), the floating-point representation of (1 + e), equals one), and k is the product
of the pivot growth factor and a modestly growing function of the dimension n. This
classical view permits any entry of 6A or/ib to be equally large, and in particular A +
6A may be dense even if A is quite sparse. This is unsatisfactory because zero entries of
A may represent nonexistent physical connections in a system being modeled, and so
may be known exactly.

A more satisfying approach to backward error than merely bounding [IAll and
6bl[ would permit the user to specify scaling factors e0

_
0 andf

_
O for each entry of

tA and tb, and would compute the smallest

_
0 such that

(1) 16aj I- oe0, 16bl
By setting some e0 to zero, we can insist that, if o < , the corresponding aj are known
exactly. For example, if e0 aol and f bl, o bounds the relative perturbation in
each component ofA and b needed to make an exact solution, and, in particular,
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and b have the same sparsity structures as A and b. We will call this o the componentwise
relative backward error. It is important to use this different error estimate when considering
these restricted perturbations, since Gear (1975) has shown that the conventional error
bounds are not appropriate in this case. It turns out that the backward error o is quite
easy to compute, and in fact costs as little as two matrix-vector multiplications.

In the following, if u and v are vectors of entries ui and vi and Q and P are matrices
of entries qij and Pij, [U[ is the vector of entries u[, [Q[ is the matrix of entries
u

_
v means u

_
vi for all i, and Q

_
P means q

_
p for all and j.

THEOREM (Oettli and Prager (1964)). The smallest o satisfying (1) is given by

(2) o max
(E[[ +f)i"

In this expression, 0/0 should be interpreted as 0 and /0 ( O) as infinity.
implies that no o satisfying (1) exists. In particular, the smallest componentwise relative
perturbation ofA and b that makes an exact solution is

IA-bl(3) o max
(IAI Il + [hi)i"

Thus, this theorem gives an a posteriori measure ofthe backward error that is cheap
to compute.

Gaussian elimination with pivoting does not guarantee that the backward error o
will be small for all possible E and f. However, a theorem of Skeel (1980) shows that as
long as A is not too ill-conditioned, and as long as the quantities (IAII 1) in the de-
nominator of(3) do not vary too much in magnitude, then one step ofitemtive refinement
is enough to guarantee that o will be small for the componentwise relative backward
error in (3). This is true even if the residual r A b is computed in the same
arithmetic precision as used for the Gaussian elimination. The actual conditions under
which the following theorem is true are quite complicated, and we refer for details to
Skeel (1980, Thm. 5.1).

THEOREM 2 (Skeel (1980)). Let be the machine precision, and let the arith-
metic be such that the floating-point result fl (a b) of the operation a b,
{ +, -, , /}) satisfies fl (a b) (a b)(1 + e), with [el -< . There is a function
f(A, b), typically behaving as O(n), such that when theproduct of (A) IAi IA-
and r(A, x) - max/(IAI [xl)i/mini (IAI Ixl) is less than (f(A, b)e) -l, and there is no
overflow or underflow, thefollowing iterative refinement algorithm will converge after one
update of:

Solve Ax b using Gaussian elimination, obtaining solution and saving the LU
factors;
Compute the residual r A b using arithmetic ofmachine precision )
while o maxlrl/(lAI Il + Ibl) > (n + 1)e do
begin

Solve Ad rfor d using the saved LUfactors ofA;
Update d;
Compute the residual r Af b using arithmetic ofmachine precision e)

end;

This theorem may also be extended to take into account underflow and the possibility
that, for lack of a guard digit in the hardware, we can only assert that

fl(a+_b)=a(1 + e)_+b(1 +e2),

where ell <= , Demmel (1984)).
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For sparse systems, it is also possible to improve the stopping criterion of Theorem
2 by changing n to ,, the maximum number of nonzero entries in one row of A.

Note that this theorem contradicts the usual advice that iterative refinement is not
worth doing unless the residual r A b is computed using arithmetic of machine
precision e 2. Note also that the theorem does not say that the refined solution will be
more accurate, just that it reflects the structure ofthe original problem more closely than
the unrefined solution. If each of the nonzero entries of the original A is uncertain in its
least significant bit and if o e, then we could say that we have computed the solution
as accurately as the data warrants, since the answer is exact for a problem indistinguishable
from the problem we really wanted to solve.

To use Theorem 2 as the basis ofa practical scheme for solving sparse linear systems,
some modifications are necessary. In particular, when solving sparse linear systems where
both A and b are sparse (or b has components of widely varying magnitude), it often
happens that the quantity a(A, x) in Theorem 2 is huge, and convergence does not
occur. Therefore, since our main goal is to guarantee sparsity in A, we must make another
choice for f, taking less account of the smaller components bi. This can be done quite
easily using a modification of Theorem 1, and is discussed in 2.2.

There is a new condition number corresponding to the new definition ofbackward
error in (1). In the case of E ]A[ and f ]b[, this condition number is just
A-I [AI II. This new condition number is no larger than the traditional condition

number [IA- [IA[I. In fact, it may be much smaller than IIA- [IAII if the rows of A
are badly scaled. Thus, combining the componentwise relative backward error with the
new condition number, we obtain bounds for the real error that are independent of row
scaling. We discuss this further in 2.1.

It has become common to use inexpensive estimators for the usual condition number
A-II A to estimate a bound for the error in the computed solution ofAx (Cline

et al. 1979 ), Higham (1987a), Dongarra et al. 1979 ). In 4, we present an inexpensive
and accurate condition estimator for the new condition number IA-I A Ill (and its
variations). The new condition estimator is based on recent work by Hager (1984) and
Higham (1987a), (1987b).

Finally, we tested our algorithm and associated condition estimator in a modified
version ofthe sparse linear system solver MA28 (Duff 1977) from the Harwell Subroutine
Library, which uses the pivotal strategy of Markowitz (1957) and a relative pivot test

,(k) (k)

j>k

(k)on the elements akj of the kth Divot row. Here u (the threshold parameter) is a preas-
sisned factor, usually set to 0.1. MA28 can also drop entries ofL and U that tall below
a "drop tolerance" to attempt to further decrease the fill-in. The L and U factors are
used to solve Ax b for x by forward and back substitution in the usual way, followed
by some steps of iterative refinement. We report on the details ofthe experiments in 5.
Our conclusion is that a stopping criterion such as the one in Theorem 2 (but suitably
modified as discussed in 5) is a reliable and inexpensive stopping criterion for iterative
refinement, often stopping after one or no update of x. When drop tolerances are used
and we have convergence, the rate ofconvergence degrades slightly but is still quite good.
The new condition estimator of 4 also proves to be inexpensive to calculate and is an
accurate estimate on our test matrices, usually providing good accuracy for the cost of
a few forward and back substitutions with the LU factors of A.

The rest ofthis paper is organized as follows. Section 2 discusses the componentwise
backward error further and also the conditioning ofAx b with respect to this backward
error measure. We extend the analysis of Skeel (1980) to allow sparsity in the right-hand
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sides and introduce an automatic scheme for permitting larger perturbations in the right-
hand sides where this is needed to maintain the sparsity ofthe matrix in the error bounds.
Section 3 examines how the statement ofTheorem 2 must change when either the floating-
point arithmetic has no guard digit (such as on the CRAY) or underflow occurs. Section
4 presents a condition estimator corresponding to componentwise relative backward
error. Section 5 discusses the numerical experiments. Section 6 has conclusions.

2. Backward error and conditioning.
2.1. Condition number. The condition number ofa problem is the least upper bound

of the ratio of the norm of perturbation in the solution to the norm of the perturbation
in the input data, in the limit as the perturbation in the input data goes to zero. To
compute it, we need a norm for the perturbation Ax in the solution as well as a norm
for the perturbations AA and Ab in the input data. We adopt the notation A rather than
at this point because AA and Ab are allowed any values whereas we use the notation

to indicate particular values associated with the algorithmic error. The norm for the input
data will depend on E and f as described above: AA, Ab)]] E, is defined as the smallest

such that [AA[

_
E and lab[ - of. For the norm of the output, we choose the

usual sup norm ]]x]l - max xl, to cater for zero components in x. With this notation
we can write

(4)
IIAxllo/llxiloo

r, (A, b) - lira sup
,,-* o (zXA, Ab) ,f
Ab’-’ 0

where x + Ax (A + AA)- (b + Ab). Following Skeel (1979), this may be easily eval-
uated as follows:

(5) rE, f(A,b)
[A- IEIxl + IA-I f 11

For example, if we choose E AI and f bl for the componentwise relative error,

(6) OtlAl,lbl(A b)= IA-IIAI, Ixl + IA-I Ibl II
IIxll

Sometimes it is convenient to have a condition number which is independent of the
right-hand side b. Since

(7) IA-I IAI Ixl I1(R)<, (A b)<2 IA-I IAI Ixl II

and A- A Ix[ / x A- A we gt the simpler condition number

(8) ro(A)--[I IA- IA111-0.5 roo.ouo(A,b).

The purpose of the condition number is, of course, to provide error bounds: ifA is
perturbed by 16A] - [A] and b by Ibl - lbl, and if is small enough, then x will
be perturbed by no more than about toK AI,bI(A, b). More rigorously, Skeel ( 1979 shows
that, for w defined as in (3),

(9)

Similarly, if we define

(10)

xll , Wrl Al,lbl (A, b)
[Ixll- 1--WrlAl(A)

r(A)- IIIA-’ IEI],
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we have, for 0 defined as in (2),

(11) xll o,,:,, (A, b)
Ilxll o,,c(A)"

It is easy to see that the problem is no more badly conditioned with respect to the
componentwise relative backward error measure than with respect to the usual normed
backward error measure. This is because

(12) x(A)-IIA-’IIoIIAII
_

IA-I IAI iI-"SAt(A).
It is possible for KIAI(A) to be much smaller than K(A). For example, we can make r(A)
arbitrarily large by multiplying one ofthe rows ofA by a large enough constant. However,
rlAI(A) is independent of the row scaling of A.

2.2. Backward error. As stated in the Introduction, in practice it is necessary to
modify the choice f bl of the componentwise relative backward error. This need
arises because of the factor a(A, x) in Theorem 2; when a(A, x) is large, convergence
ofthe backward error to in (3) to the roundotflevel is not guaranteed. Take, for example,
A sparse and irreducible, and x sparse such that some bi j aijxj are zero because each
aijxj 0. Since A- is structurally full (Duffet al. (1985)), x will be structurally full as
well, so that a computed component ,k can be zero only through exact cancellation. In
practice, this means that all components of the computed solution i will be nonzero,
with the entries that should be zero containing roundoff error of unpredictable sign.
Therefore both r (A b)i and ([AI 11 / bl)i may be small but of similar orders
of magnitude, so that to stays large even after some steps of iterative refinement.

Ideally, we would like to choose f to satisfy the following four criteria:
(i) The backward error to (in (2)) usually converges to machine precision after

one step of iterative refinement;
(ii) tof is "small" compared to b;
(iii) the resulting error bound in (11) is as small as possible; and
(iv) to is row-scaling independent.
We have experimented with two choices for f that come close to meeting these

four criteria; this will be borne out by the numerical experiments in 5. It turns out we
must sacrifice the sparsity structure of b to guarantee a small backward error bound to

(criterion (i)). A trivial way to do this is to set E 0 and f rl/e A hi/
whence/iA 0, ib r and o e. Of course this is unsatisfactory because 5b r may
be much larger in norm than b if the system is ill-conditioned, violating criterion (ii).
Our approach is to keep E AI and choosef larger than bl only if it is necessary to
keep to small.

We will choose f in an a posteriori way, letting it depend on the computation as
follows. Let w AI I1 / bl be the vector of denominators in (3). We then choose
a threshold r for each w, so that when w > r we can use the usual scaling factor f
bl. Otherwise, when wi - ri, we choose a larger f. Correspondingly, we divide the

equations of Ax b into two categories, those where w > r, and those where wi
We may assume without loss ofgenerality that the leading rn equations ofAx b, which
we denote by At)x bt), belong to the first category, and the remaining n rn equations
At2)x bt2) belong to the second. As stated above, we will let ft) bt) in the first
category. There are several possibilities for r, but in practice the following one has
worked well: ri 1000ne( IIA.IIIIII / Ibl), where A. is the ith row of A. Note that
r is about 1000 times larger than the maximum possible roundotf error committed in
computing w, and wi can only be less than r if each product aoj is tiny. We performed
other runs to check the sensitivity of this choice and found that a change of say a factor
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of 10 (to 100) could occasionally change the number ofiterations and the error estimate
but usually not by much. We note, however, that this can be viewed as a local choice
and could be varied while performing iterative refinement, possibly increasing it in order
to decrease 0.

Given the vector r of the thresholds ri, we can choose f(2) in at least two ways.
First, we let f(2) Atz) lellll where e is the column vector ofall ones. This corresponds
to the usual normwise backward error, and so the components r of the residual are
almost guaranteed to be small compared to these f2), insofar as Gaussian elimination
alone guarantees a small residual in the norm sense. Since we have not modified the
definition ofE, we are further guaranteed a solution that preserves the sparsity structure
of A.

There is a difficulty with this choice of f, however: we are no longer guaranteed
that bll is small compared to Ilbll This can only happen when A is very ill-condi-
tioned, since IIAt2)IIIIII/Ilbll is a lower bound on the condition number IIA
of A. We have constructed artificial examples where this happens, but not observed it
in practice. There is also the possibility that large components in f will make the condition
number KIAI,f(A, b) too large and so make the error estimate KIAI,f(A, b) too pessimistic,
but note that this condition number is still bounded by 2rlAI(A). We may avoid this
possibility as follows. Given the two backward errors

(13) o_=max
IA<)-b <) I 2,

the residual satisfies

(14)

and, to first order, the error is bounded by

(15)

dx A-r
_

I[IA-I rill
Ilxll Ilxll Ilxll

IA-I( IA()lll+lb()l)0 ( o )IA-tl IA2)I I1 +f(2)

The advantage ofthis formulation is that components of f(2) may be very large compared
to the components of (2), causing 2 to be very small and r to be correspondingly
large but without affecting o or r This formulation is tested in the numerical exper-
iments in 5.

A second possible choice for f(2) is to use f(2) [Iblloe. This choice of fiE) assures
us that a small backward error indeed means [16b oo/[I b will be small, but gives us less
assurance that the backward error will converge to machine precision. We have not seen
it fail in practice. As with the other choice of f, we can bound the error using two
backward errors defined as in (13) and the sum of their products with two condition
numbers as in (15 ). Section 5 also reports on numerical experience with this backward
error measure.
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Both the previous choices for f(2) can violate one of the criteria (ii) or (iv). The
choice f(2) IA(2)lell:ll guarantees that 0)i, l, 2, are row-scaling independent (cri-
terion (iv)), while it can violate criterion (ii). The choice f(2) IIDllooe satisfies criterion
(ii), but the corresponding 0)2 is row-scaling dependent. Both, as we shall see, satisfy
criteria (i) and (iii).

We also see that the bound depends on the accuracy with which we can compute
the residual r and the backwards error 0) in (2). How much can roundoff contaminate
the computed 0), especially when r A b is computed by an arithmetic with machine
precision e? A standard error analysis shows that the error in the computed r, r, is
bounded by (3, + 1)e(IAI I1 + b I), where is the maximum number of nonzero
entries in a row of A. When E [AI and f b I, this means that the computed 0)

cannot differ from the true 0) by more than about +_( + 1)e which will be within
the tolerance of our sparse modification of Skeel’s stopping criterion in Theorem 2.
Since the computed 0) is almost certainly at least about 3’e, the final error bound
0)rlAI.IbI(A b), can be low by no more than a factor of two. The same is true for 0)i,

i= 1,2.
At this point, we might ask what choice of E and f minimizes the resulting error

estimate (11). It is easy to see that any choice ofE and f such that E x + f is a multiple
of r I, say E 0 and f It I, yields the following minimum product:

0)KE, f(A, b) IA-t Irl [l/Ilxll.
Since the true error is IIxll! Ilxli IlA-arll/tlxll, we see that the bound is as tight
as ignoring signs in r allows. For this special choice of E and f, we should also add
(’r + 1)(IAI Il + bl) to rl since roundoff may lower the computed value of rl by
the same amount. The choice E 0 and f rl / (3’ / 1)e(lAI Il / bl) yields a
new error bound of

(16) xll IllA-’l rill
Ilxll Ilxll

-I-(’y-I- l)erlAl,lbl (A, b).

Thus we see that the condition number tClAl,lbl(A b) plays a central role independent of
the notion of backward error, just because it reflects the possible roundoff errors in the
computed residual. Furthermore, after only a few steps of iterative refinement Theorem
2 guarantees that, to first order, the bound (9) will be about the same as the bound (16 ).
In our experiments we have seen that, usually, the estimates of the real error given
by (9) and (15) have the same order of accuracy as the estimates obtained by the
bound (l 6).

Note that if we set e0. IIAII and 3 I]bll the backward error of with respect
to E and f is given by ]]A b]] /( []AI] ]]11 / IIbll ). It is also easy to see that

I[A- II[IAllllxll + IIA- I]ol]bll
(17) rE, f(A,b) Ilxll
which is within a factor of 2n of IIA- [Ioo ][AII. Thus, this choice of E and f, which
permits equally large perturbations in all entries ofA and b, gives essentially the same
backward error and condition number as the usual normed backward error.

We note, in conclusion, that Skeel’s original motivation (Skeel 1979) was to analyze
the effects of row and column scaling ofA on the accuracy and the stability of the LU
factorization. He concluded that the optimal way to scale depended on the solution: the
columns should be scaled (thus scaling the solution components) so that the components
of the scaled solution are all equal in magnitude, and the rows should be scaled so each
component of ]A[] x] (x is the solution) is equal in magnitude. This is unfortunately
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hard to use in practice since it requires much information about the solution. Fortunately,
one step of iterative refinement tends to overcome the effects of bad row scaling, as we
have seen.

3. Different models of floating-point arithmetic. Theorem 2 assumes that arithmetic
is implemented rather cleanly, i.e., that the floating-point result fl (a b) ofthe operation
a b, ( { +, -, , / } satisfies

(18) fl (ab)=(ab)(1 +e)

with el - e, where is the machine precision. This model eliminates both the possibility
of underflow as well as machines like the CRAYs, where for lack of a guard digit in the
hardware we can only assert that

(19) fl (a+_.b)=a(1 +e)+b(1 +e2)

where levi - e. Thus, when a and b are very close and we are subtracting, this model
permits a large relative error in the computed difference. For example, on any CRAY
or many CDC machines, the computed difference of any power of two and the next
smaller floating-point number is wrong by a factor of two (see, Kahan (1981)).

Despite this difficulty, it is possible to carry through the proof of Theorem 2 using
the weaker model (19) instead of (18) and arrive at essentially the same conclusion: one
step of iterative refinement, even without computing the residual using arithmetic of
machine precision 2, is enough to guarantee a small componentwise relative backward
error as long as the matrix is not too ill-conditioned and a(A, x) is not too large. We
might expect problems in bounding the error in the computed residual fl (A b), since
the result might be off by a factor of two, but in the analysis this potential error is
dominated by the error in computing A, so the proofgoes through. Similarly, the error
in updating d is swamped by larger errors.

The other exception to the model in (18) is underflow. The extension of error
analysis to include underflow is discussed in some detail by Demmel (1984), and wejust
summarize the results here. In place of (18 we use the model

(20) fl (a b) (a b)(1 + e)+

where el - as before, and represents the underflow error. Let h be the underflow
threshold, that is the smallest positive, normalized floating-point number. Then, on ma-
chines where computed quantities which would be smaller than , are replaced by zero,
I1 is bounded by . On machines with IEEE standard floating-point arithmetic (see
(IEEE 1985), (IEEE 1987)), gradual underflow lowers the bound on I1 to ex.

The statement ofTheorem 2 must be modified as follows to account for underflow.
For gradual underflow, we can say the following. If the inputs A and b and the output
are normalized (that is, exceed ), in magnitude), and if the residuals are computed by

an arithmetic ofmachine precision either or e2, then gradual underflow can only degrade
performance to the level of the residual computation using the arithmetic of machine
precision e. For conventional underflow, the norms of A, b, and must exceed ,/ for
this statement to be true.

The use of extended range and precision in intermediate computations does not
change these conclusions. Assuming r and d are stored in the same format as A, b and, underflows in r and d have the same potential effects on performance as they did when
they were not computed in extended format.

We have not yet considered the effect of underflow on the rate of convergence of
the iteration. There are matrices for which the iteration converges only if underflows do
not occur, but the matrices are so ill-conditioned as to make the computed solution
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untrustworthy anyway. As long as some entry ofA is large enough( for gradual undertow
and ),/ for conventional undertow) then underflows will have an effect on the conver-
gence rate comparable to roundoff.

4. An estimator for SlAl,lbl (A, b). To estimate the accuracy ofa computed solution
of Ax b, two ingredients are needed: a bound on the backward error (however it is
measured) and a condition number with respect to the choice of backward error. As
discussed in 2.2, the product of the two previous quantities provides an approximate
upper bound on the relative error in the computed solution.

In the case of the conventional normwise backward error, the condition number is
essentially given by g(A) A-11 Ail . There has been much work on such estimators
for g(A) in recent years for example, Cline et al. 1979; see Higham (1987a) for a complete
list ofreferences), and cheap, reliable estimators are available in standard software pack-
ages such as LINPACK (Dongarra et al. (1979)). It is natural to seek an analogous
estimator for glAl,lbl(A, b).

From (5) we see that the quantity we need to estimate is

(21) IA-lmlxl / IA-I g IIo IX-al(Elxl /f)llooo
In place of the true solution x, we may use its computed approximation . In the case
of cempenentwise relative backward error, we may also just use the simpler condition
number KIAI(A that requires us to estimate

(22) IA- IAI IIo I11A- IAlel[oo
where e is the vector of all ones. Either way, we need to be able to estimate

(23) IA- Igll

where g is a nonnegative vector that is easy to compute (in the above examples it costs
just one matrix-vector multiply).

Let G diag (g, ..., g). Then g Ge and

(24) IA- Igll IA- IGell IA-’GIeII IA-GI IIA-GII
IIA-ZGII can be estimated by the algorithm of Hager (1984) and Higham (1987a),
(1987b) that estimates the one-norm (or infinity-norm) of a n X n matrix given the
ability to multiply a vector by both the matrix and its transpose. We can multiply any
vector z by the operator A-G by multiplying z by the diagonal matrix G, and
then solving Ay Gz using the LU factorization of A. Multiplying by (A-G) r is
equally easy.

Our estimate of condition numbers KIAI,IbI(A, b) includes a dependence on the
calculated solution. We also performed runs for different solutions (for example, x
2, 1, ..., n) and found little sensitivity. Note that the experiments in Set in 5
give us results close to the upper bound of twice x Al"

5. Numerical experiments. In this section, we discuss numerical experiments sup-
porting our earlier analysis and discussion. The issues involved are the effectiveness of
using arithmetic of machine precision in the computation of the residual, the choice
of values for f ( 2.2), the effectiveness of our new condition numbers, and the use of
drop tolerances.

To do this investigation, we group our experiments into four sets. In Set 1, we do
not have any sparsity in the fight-hand side: we show that the computation ofthe residual
in arithmetic of machine precision e is satisfactory and illustrate our analysis in the
standard case assumed by Skeel (1980). In Sets 2 and 3, we show the extension to sparse
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right-hand sides and test different choices for f. Finally, we examine the use of drop
tolerances in the runs in Set 4.

We perform the experiments by modifying the sparse linear system solver MA28
in the Harwell Subroutine Library (Duff (1977)). The Set 4 runs are easy to perform
because MA28 can drop entries ofL and U that fall below a tolerance, called drop to! in
our tables (drop tol 0 corresponds to standard Gaussian elimination). The resulting
L and U factors are then used to solve Ax b for x by forward and back substitution in
the usual way, followed by some steps of iterative refinement.

All our runs are on a common set of test matrices from the Harwell-Boeing test set
(Duff, Grimes, and Lewis 1987 )). Their names, number ofnonzero entries and condition
numbers r(A) and rlAI(A) are given in Table 1. The name of each matrix includes its
dimensions, for example, GRE115 is 115 by 115. The two matrices of order 216 have
the same structure, but they have quite different numerical values. We also ran our tests
on some other matrices from the set and obtained results broadly comparable with these
displayed.

For each run, we chose the value ofthe solution x and then we computed the right-
hand side b by multiplying the solution by the test matrix. All matrices have also been
scaled before computing the right-hand side, thus obtaining two test problems for each
matrix. The scaling is computed using the Harwell routine MC19, which makes the
nonzeros of the scaled matrix near to unity by minimizing the sum of the squares of
logarithms of the moduli of the nonzeros (Curtis and Reid (1972)). This scaling does
not guarantee that r(A) and rlAI(A) must decrease (see Table l) although on many
matrices the effect is very beneficial, particularly for the classical condition number. This

TABLE
Condition numbers before and after scaling.

Before scaling

r(A) K’IAI (A)
After scaling

K’(A) K’IAi(A
GREll5 421 0.93D+02 0.86D+02 0.69D+04 0.13D+03

GRE185 975 0.38D+06 0.15D+06 0.39D+06 0.14D+06

GRE216A 812 0.28D+03 0.22D+03 0.20D+03 0.18D+03
GRE216B 812 0.83D+15 0.29D+14 0.56D+08 0.85D+07

GRE343 1310 0.47D+03 0.37D+03 0.30D+03 0.26D+03
GRE512 1976 0.46D+03 0.37D+03 0.40D+03 0.36D+03
GRE1107 5664 0.18D+09 0.98D+08 0.77D+10 0.24D+09
WEST67 294 0.91D+03 0.31D+03 0.30D+03 0.13D+03
WEST132 413 0.11D+13 0.80D+07 0.94D+04 0.21D+04

WEST156 362 0.12D+32 0.38D+09 0.91D+12 0.15D+09
WEST167 506 0.69D+11 0.52D+06 0.46D+04 0.12D+04
WEST381 2134 0.53D+07 0.38D+05 0.38D+06 0.53D+04
WEST479 1888 0.49D+12 0.37D+07 0.27D+06 0.20D+05
WEST497 1721 0.38D+12 0.13D+07 0.42D+07 0.63D+04
WEST655 2808 0.49D+12 0.37D+07 0.42D+06 0.36D+05
WEST989 3518 0.13D+l3 0.10D+08 0.58D+06 0.52D+05
WEST1505 5414 0.14D+13 0.10D+08 0.67D+08 0.21D+07
WEST2021 7310 0.28D+13 0.21D+08 0.86D+06 0.10D+06
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is particularly so for the GRE216B example, where, before the scaling, the matrix was
essentially singular. Note in general that many of the matrices are poorly conditioned,
particularly before scaling.

In all the runs, the standard normwise backward error

Ilrll(25) r/- IIAIIoollllo + Ilblloo’
the condition number r(A) and the error bound r(A) were computed and compared
to the other backward errors, condition numbers and error bounds.

All tests were done on an IBM 3084. In single precision the machine precision e is
16 -5 10 -6. In double precision it is 16 -3 2 X 10 -16. The main data for our
numerical experiments are presented in Tables A1-A15 in the Appendix. In this section,
we display summaries of these results.

In all cases, the stopping criterion was

Stop ifo
_

e or o does not decrease by at least afactor oftwo.
All the runs used IBM double precision, except for the experiments in single and
mixed precision in Set 1. This stopping criterion differs from that used in Theorem 2
(o

_
(n + 1)e). The value in Theorem 2 can be too large, especially for very large and

sparse matrices, and the iterative refinement could stop too early. Generally, our stopping
criterion terminates the iterative refinement with a value of less than e. Ifthe convergence
is slow (for example, using double precision, the GRE216B matrix in Table A7 stops
after four iterations with 0.4 10 -5 2e), our stopping criterion recognizes this
early. However, the final value of is still of order e. Somewhat surprisingly we find
there is no advantage in including a factor (-}, + 1) in our stopping criterion. Indeed, its
inclusion would often result in no iterations, and there are only few occasions in Sets 1-
3 where the o

_
e criterion is not met. Note that, in the runs in Sets 2-4, is replaced

by o + o2 (as in 13 )-( 15 ). Ifwe used a similar condition on r/, in most ofthe examples
we did not perform any steps of iterative refinement because the first solution satisfied
the stopping criterion, but, before scaling, the estimation ofthe error ]]lixll /]lxll given
by rr(A) was very poor because of the very large value of r(A).

We discuss the experiments for each of our four sets of values in turn. In all the
following tables, the row corresponding to "Num. iter." gives the number of steps per-
formed by the iterative refinement algorithm and the row corresponding to "Num. cases"
gives the number ofexamples for which the iterative refinement performed that number
ofiterations. By "Error" we denote the max-norm ofthe difference between the computed
solution and the actual solution used to generate the right-hand side, divided by the max-
norm of the actual solution.

) ) i= 2,j= 2, 3, 4, thecompo-In the following, we denote by o and by ,,
nentwise backward errors defined by (13) and the corresponding condition numbers
defined by (15 ). The superscript identifies the set of tests.

Set 1.
For these tests, the fight-hand sides b were chosen so that the true solution x had

all components equal to one, so that all equations belonged to category 1. Thus the
backwards error was given by oI) as defined in (13), the condition number K ,) and the
error bound by olr{, as defined in (15). Because all the equations belong to category

() (2)1, , II.II(A, b), and o 0. The drop tolerance was zero. These tests were
run in single precision, double precision, and mixed precision (all single precision, except
for double precision computation of residuals). The Tables A1-AS in the Appendix are



176 M. ARIOLI, J. W. DEMMEL, AND I. S. DUFF

TABLE 2
Summary ofresultsfor the condition numbersfor Set 1.

Logo

Logo

x’(A) (Before scaling
(A) (After scaling

l Before scaling)
(1) (After scaling)

Logm(c(A)

rain avr max

-1.9 4.1 19

-0.38 1.4 6.5

Before sealing

min avr max

--0.26 3.6 22

After scaling

min avr max

-0.26 0.91 3.5

relative to Set 1. In Table 2, summarizing the results in Table A1, we observe that the
condition number K tJl) is always less, for both scaled and unsealed matrices, than twice
the classical condition number K(A), as must be the case from the theory. In some

l) is much better than r(A) (for example, in the WEST156 example beforeexamples, 1
scaling l) < 3.2 10-23(A)). Moreover, Table 2 shows that the classical condition
number K(A), without any form of scaling, is rather unreliable as a measure of the ill-
conditioning of the system. Table 3 (sumrnadzing the results in Tables A2 and A3)
reflects the previous considerations, so that the estimation o l)

r tl) ofthe error is generally
quite tight, while rr(A) can be too pessimistic before scaling. Note that it is possible for
our bound to be less tight than that from the classical theory but, when this happens in
the experiments, our bound is only three times greater than the classical one in the
worst case.

Throughout, our estimate ofcondition numbers rll,ll(A, b) includes a dependence
on the calculated solution. We also performed runs for different solutions (for example,

TABLE 3
Summary ofresultsfor Set 1.

Num. iter.

Num. cases

Logo(/)

Logo(tO*)
Logo

r/x’(A)
Error

Logo Error
/r(A)Log 10 (.,0I) l’ah

Before scaling

0 1 > 2

0 17 1

rain avr max

-18 -16 -16

-16 -16 -16

0.78 4.7 22

0.48 1.5 2.5

-0.32 3.2 20

After scaling

rain avr max

-17 -16 -16

-16 -16 -16

0.93 2.0 4.1

0.43 1.4 3.3

-0.41 0.53 3.0

0 1 _> 2

1 16 1
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Xi i2, 1, "", n) and found little sensitivity. Note that our choice ofx in Set gives
us results close to the upper bound of twice IIA In Tables A4 and A5, we report the
results ofthe algorithm using single and mixed precision. Unfortunately, the test matrices

(1)are in many cases so ill-conditioned that the iterative refinement diverged, that is 0)

increased after some steps as in, for example, GRE1107 and the GRE216B example in
Table A4. In practice, IBM single precision is too poor to produce good results, and the
use of mixed precision does not help. Note, however, that our algorithm still terminates
after only a few steps. In every case, we tried running the iterative refinement for twenty
steps and in no cases did we get much improvement over the results shown. Our algorithm
for computing the condition numbers encounters numerical difficulties partly because
of the ill-conditioning of these matrices and partly because we use threshold pivoting in
the LU factorization. We would have used iterative refinement in this computation, but
this would be at variance with our desire for a cheap estimator. Our feeling is that single
precision calculations are inappropriate here.

Set 2.
For these tests we chose ri 1000ne(llA.[lllllo / Ibl) and f(2)= IAt2)lellllo,

where e is the column vector of all ones. This leads to the backward errors 0)2)
and 0)t22) defined in (13) and the condition numbers ..(2) and K (2) and error bound
0)12). (2) q_ 0)2(2)K(2) defined in (15) The fight-hand sides were chosen so that the true
solution x had every fifth entry equal to one (x x6 x 1) and the rest zero.
The drop tolerance was zero. These tests were done in double precision only. Tables A6-
A8 show the results of runs on Set 2. We present a summary of these results in Tables 4
and 5. We also ran all the test examples of Set 2 replacing zero with 10-6 in x and
obtained similar results. It is necessary to emphasize that, in most ofthe examples of Set
2, the standard 0) computed by (3) was very large (sometimes of order one), so that we
would get no useful information if we use a very large value for r. Note that, in all our
runs, 0)(22) is very small compared with 0)2), in agreement with our comments
after (15 ).

It may appear that our error estimate is sometimes poor, but the relatively good
solution obtained is really fortuitous as can be seen by the results in the Appendix using

TABLE 4
Summary ofresults for the condition numbersfor Set 2.

x’(A) (Before scalingLog lo r(A) (After scaling

Log 1o

Log lo

K"(2) (Before scaling

(After scaling

(Before scaling

After scaling

Log 0(tc(A)

Log 10(r(A)

-1.9 4.1 19

-0.37 1.3 7.0

-0.43 1.6 6.1

Before scaling

min avr max

0.45 4.3 23

0.52 4.3 23

After scaling

min avr max

0.26 1.5 3.8

0.30 1.8 5.2
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TABLE 5
Summary ofresultsfor Set 2.

Num. iter.

Num. cases

Logo()

Logo(W))
-(0(2)Log lo( 2

r/r(A)Lg Error

(02) K.(2) 4" (02(2) K"(2)
0)I 0)2Log o Error

Loglo r/r(A)
0,}2) r(2),,,, + 0,,2(2).,,,(2)

Before scaling

0 1 > 2

1 13 4

rain avr max

-23 -17 -16

-16 -16 -15

-32 -27 -19

0.65 4.5 19

0.58 1.7 4.3

--0.17 2.8 16

After scaling

0 1 > 2

2 12 4

-17 -17 -16

-16 -16 -15

-31 -28 -19

0.97 2.2 4.0

0.50 1.6 2.7

-0.23 0.63 2.4

the same matrix but with a different right-hand side (the examples shown by the GRE1107
results in Tables A3 and A8 and by the GRE216B results in Tables A2 and A7).

Set 3.
For these tests we chose ri 1000n(llA.llo[lll + Ibl) just as in Set 2, and

ft’) Ilblle, where e is the column vector of all ones. This leads to backward errors
oI 3) and ot23) defined in (13) and the condition numbers g (3) and (3) and error bound
t.O 13)gWl(3) .. W(23).,(3)^to defined in (15). The right-hand sides were chosen so that the true
solution x had every fifth entry equal to one and the rest zero. The drop tolerance was

TABLE 6
Summary ofresultsfor the condition numbersfor Set 3.

Log lo

Log lo

Log lo

r(A) Before scaling
r(A) (After scaling

Before scaling)

(After scaling

Before scaling

(After scaling

Loglo(r(A)/

Log o(r(A) t))

min avr max

-1.9 4.1 19

-0.37 1.3 7.0

-1.9 4.0 14

Before scaling

min avr max

0.45 4.3 23

0.10 0.97 6.4

After scaling

min avr max

0.26 1.5 3.8

0.38 0.86 2.6
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zero. These tests were done in double precision only. The Tables A9-A 11 are relative to
Set 3 of parameters, and we summarize these in Tables 6 and 7. Comparing Tables 4

(2) and r (2) (3)and 6 we observe that, while r : are usually quite close, r can be much larger
3) is 1016 timest3) (for example, see the WEST156 example before scaling, where rthan r

t3)) and the error estimation can be pessimistic. Also note that, comparinglarger than r
line 7 of Tables 5 and 7, this choice of f does not give as good a bound as our choice
for f in Set 2, although the difference is minimal after scaling.

Set 4.
For these tests we used nonzero drop tolerances (drop tol 10 -5, drop tol 10 -3 ).

We changed ’i from its earlier value to z 1000n(e + drop tol) A,. + bi[
and used f -) A 2) e where e is the column vector of all ones. The entries of b
and x were chosen as in Set 3. Double precision was used. Tables A12-A15 are the
results of runs using this set of parameters, and the results are summarized in Table 8.
Note that, in this set, we nearly always have o 4) 0o This corresponds to putting all of
the error into b, that is,/iA 0 and b Ai b, obtaining the situation discussed at
the beginning of 2.2. In this case, f does not depend on b explicitly, but our bounds
are still good. Note again that our stopping criterion terminates after only a few iterations
if the iteration diverges. We checked this divergence by forcing more iterations and ob-
served either oscillation or divergence.

We observed, contrary to Zlatev, Wasniewski, and Schaumburg (1986), that little
gain in sparsity was obtained (see, for example, Table A15 ), while even moderate values
ofdrop tolerance caused divergence ofthe iterative refinement. A drop tolerance strategy
appears to work well only on very structured sparse matrices such as those resulting from
discretizations of partial differential equations. We confirmed this with a few test runs.
See, for example, the results in Table 9.

Finally, Duff, Erisman, and Reid (1986, p. 276) have described an example ofGear
(1975) where the error matrix for minimizing the Frobenius norm of the error becomes

TABLE 7
Summary ofresultsfor Set 3.

Num. iter.

Num. cases

Logo )

Logo(W3))
Log0(o
Log lo

l r(A)
Error

03) K’(3)o + 3))go Error

Log 1o

Before scaling

0 1 > 2

1 13 4

-23 -17 -16

-16 -16 -15

-30 -27 -17

0.65 4.5 19

0.58 2.2 7.9

-0.17 2.3 11

After scaling

min avr max

-17 -17 -16

-16 -16 -15

-31 -28 -19

0.97 2.2 4.0

0.50 1.6 2.7

-0.23 0.63 2.4

0 1 > 2

2 12 4
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TABLE 8
(4)Summary ofresultsfor Set 4. The- entries correspond to values of o O.

Num. iter.

Num. cases

Log o rl)

Log lo tO[4))
t,ogo(a4>

r/x’(A)Log lO Error

(,04) K’(m4 -I"
Log 1o Error

Log lo
r(A)

drop tol. 10-s

0 1 >. 2

2 6 10

-18 -16 -16

-17

-16 -16 -15

0.66 2.3 3.7

0.66 1.6 2.8

-0.14 0.64 2.5

drop tol. 10-3

0 1 > 2

2 1 15

min avr max

-18 -15 -4.6

-16 -15 -2.8

0.90 2.1 4.6

0.64 1.6 3.8

-0.95 0.45 2.9

arbitrarily large if the perturbations are constrained to the original pattern. On this ex-
ample, after one step of iterative refinement, using as a starting point the solution

(a-e)/a

1/i
tr 10 -15

(a-)la

we can guarantee that the error matrix E has the same pattern as the original matrix.
That is,

o II o oE_ o o lal o =olAI,

0 0

with o

_
10 -16, di 10 -s. It is interesting to note that r(A) + 1// and rlAI(A 4.

TABLE 9
Fill-in, numbers ofiterations and errorfor thefive point

operator on a 30 30 grid, using xi l, l, n and
different values ofdrop tol.

drop tol 0 10-2 10-1

Fill-in 23619 16085 4697

Num. iter. 2 14 16

Error 0.32D-14 0.25D-14 0.29D-01
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6. Conclusions. We have shown that, when the iterative refinement is converging,
it is possible and inexpensive to guarantee solutions of sparse linear systems that are
exact solutions of a nearby system whose matrix has the same sparsity structure. Thus
we have answered the open problem posed by Duff, Erisman, and Reid (1986, p. 276)
concerning obtaining bounded perturbations while maintaining sparsity. Ifthe equations
arise from the discretization ofa partial differential equation, then a componentwise tiny
error should indicate that the solution obtained is that ofa neighboudng partial differential
equation, a conclusion that would not be available if classical error bounds were
being used.

We have extended the work of Skeel (1980) and Demmel (1984) to include the
possibility of having sparse right-hand sides and solutions vectors and have shown that,
although we cannot always guarantee the solution to a nearby problem whose fight-hand
side sparsity is the same, we can develop suitable bounds for perturbations in the fight-
hand side.

We discuss methods ofinexpensively and accurately calculating a condition number
appropriate to this tighter backward error. This condition number is not bigger than that
of Wilkinson and can indeed be much smaller, particularly if the matrix is badly row-
scaled. For example, in Set 1, the average of the logarithms of the ratio of the classical
condition number before and after scaling is 4. l, while for the Skeel condition number
the corresponding value is 1.4.

We have incorporated our backward error estimator in the iterative refinement step
of a direct sparse matrix solver and have found that we often require zero or one step of
iterative refinement to guarantee that the computed solution is the solution of a nearby
system with the same sparsity structure as the original matrix. We also have observed
that we do not require any extra precision in calculating residuals, thus confirming remarks
made by Skeel (1980). Additionally, when combined with our condition number esti-
mator, a good estimate of the actual error is obtained. Furthermore, when iterative re-
finement diverges, our stopping criterion recognizes this early.

We observed, contrary to Zlatev, Wasniewski, and Schaumburg (1986), that little
gain in sparsity was obtained while even moderate values of drop tolerance caused di-
vergence ofthe iterative refinement. A drop tolerance strategy appears to work well only
on very structured sparse matrices such as those resulting from discretizations of partial
differential equations.

In this paper, we have been using iterative refinement to improve the solution ob-
tained using an LU factorization. We have also considered the case when our LU fac-
torization can be quite inaccurate (Set 4). In this case, we could use other techniques
including SOR and CG and it is a open question as to how far our analysis could be
continued to cover these cases.

Appendix. Tables of results of numerical experiments. In Tables A 1-A 15, the col-
umn corresponding to "Num.iter." gives the number of steps performed by the iterative
refinement algorithm. By "Error" we denote the max-norm of the difference between
the computed solution and the actual solution used to generate the fight-hand side,
divided by the max-norm of the actual solution.



TABLE A
Set 1. Condition numbers before and after scaling.

Before scaling After scaling

GRE115 0.93D+02 0.17D+03 0.69D+04 0.26D+03

GRE185 0.38D+06 0.30D+06 0.39D+06 0.29D+06

GRE216A 0.28D+03 0.44D+03 0.20D+03 0.35D+03

GRE216B 0.83D+15 0.58D+14 0.56D+08 0.17D+08

GRE343 0.47D+03 0.74D+03 0.30D+03 0.51D+03

GRE512 0.46D+03 0.73D+03 0.40D+03 0.72D+03

GREll07 0.18D+09 0.20D+09 0.77D+10 0.48D+09
WEST67 0.91D+03 0.15D+03 0.30D+03 0.16D+03

WEST132 0.11D+13 0.12D+08 0.94D+04 0.33D+04

WEST156 0.12D+32 0.38D+09 0.91D+12 0.30D+09
WEST167 0.69D+11 0.80D+06 0.46D+04 0.18D+04

WEST381 0.53D+07 0.75D+05 0.38D+06 0.85D+04

WEST479 0.49D+12 0.57D+07 0.27D+06 0.25D+05
WEST497 0.38D+12 0.20D+07 0.42D+07 0.12D+05

WEST655 0.49D+12 0.57D+07 0.42D+06 0.41D+05
WEST989 0.13D+13 0.16D+08 0.58D+06 0.70D+05
WEST1505 0.14D+13 0.16D+08 0.67D+08 0.35D+07

WEST2021 0.28D+13 0.32D+08 0.86D+06 0.12D+06

TABLE A2
Set 1. xi 1, 1, n, double precision before scaling.

Num. iter. r/ r/x’(A) o) E/Tot

GRE115

GRE185

GRE216A

GRE216B

GRE343

GRE512

GREll07

WEST67

WEST132

WEST156

WEST167

WEST381

WEST479

WEST497

WEST655

WEST989

WEST1505

WEST2021

1 0.52D-16 0.48D-14 0.59D-16 0.10D-13 0.79D-15

1 0.12D-15 0.47D-10 0.16D-15 0.48D-10 0.16D-12

1 0.67D-16 0.19D-13 0.67D-16 0.29D-13 0.26D-15

1 0.73D-16 0.61D-01 0.11D-15 0.64D-02 0.21D-02

1 0.10D-15 0.47D-13 0.10D-15 0.74D-13 0.50D-15

1 0.83D-16 0.38D-13 0.83D-16 0.61D-13 0.26D-15

1 0.93D-16 0.17D-07 0.11D-15 0.22D-07 0.74D-10

1 0.49D-16 0.45D-13 0.89D-16 0.13D-13 0.24D-14

1 0.93D-17 0.98D-05 0.15D-15 0.18D-08 0.18D-09

1 0.77D-18 0.90D+13 0.11D-15 0.42D-07 0.38D-09

1 0.80D-16 0.55D-05 0.12D-15 0.95D-10 0.48D-11

2 0.45D-16 0.24D-09 0.16D-15 0.12D-10 0.23D-11

1 0.19D-16 0.94D-05 0.17D-15 0.96D-09 0.42D-10

1 0.77D-16 0.29D-04 0.11D-15 0.22D-09 0.23D-10

1 0.19D-16 0.94D-05 0.21D-15 0.12D-08 0.54D-10

1 0.95D-16 0.13D-03 0.13D-15 0.21D-08 0.17D-09

0.93D-16 0.13D-03 0.16D-15 0.26D-08 0.17D-09
0.98D-16 0.27D-03 0.16D-15 0.52D-08 0.88D-10
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TABLE A3
Set 1. x 1, 1, n, double precision after scaling.

Num. iter. r/ rr(A) o E1Tor

GREll5

GRE185

GRE216A

GRE216B

GRE343

GRE512

GRE1107

WEST67

WEST132

WEST156

WEST167

WEST381

WEST479

WEST497

WEST655

WEST989

WEST1505

WEST2021

1 0.64E-16 0.44E-12 0.83E-16 0.22E-13 0.42E-14

1 0.62E-16 0.24E-10 0.64E-16 0.18E-10 0.54E-13

1 0.54E-16 0.11E-13 0.79E-16 0.28E-13 0.13E-14

1 0.89E-16 0.50E-08 0.93E-16 0.16E-08 0.17E-09

1 0.76E-16 0.23E-13 0.88E-16 0.45E-13 0.10E-14

1 0.76E-16 0.31E-13 0.93E-16 0.66E-13 0.27E-14

1 0.39E-16 0.30E-06 0.10E-15 0.48E-07 0.25E-10

1 0.35E-16 0.11E-13 0.14E-15 0.21E-13 0.89E-15

1 0.28E-16 0.26E-12 0.98E-16 0.33E-12 0.73E-14

0 0.57E-16 0.52E-04 0.16E-15 0.48E-07 0.98E-08

1 0.29E-16 0.13E-12 0.11E-15 0.20E-12 0.44E-14

0.15E-15 0.58E-10 0.17E-15 0.15E-11 0.56E-12

1 0.35E-16 0.94E-11 0.22E-15 0.56E-11 0.12E-12

1 0.17E-16 0.70E-10 0.11E-15 0.13E-11 0.26E-12

1 0.52E-16 0.22E-10 0.19E-15 0.80E-11 0.19E-12

0.25E-16 0.15E-10 0.12E-15 0.80E-11 0.33E-12

1 0.50E-16 0.34E-08 0.17E-15 0.60E-09 0.82E-10

1 0.50E-16 0.43E-10 0.18E-15 0.22E-10 0.19E-12

TABLE A4
Set 1. x 1, 1, n, single precision after scaling.

Num. iter. n ,7 r(A) o Errol"

GRE115

GRE185

GRE216A

GRE216B

GRE343

GRE512

GRE1107

WEST67

WEST132

WEST156

WEST167

WEST381

WEST479

WEST497

WEST655

WEST989

WEST1505

WEST2021

0.15E-06 0.10E-02 0.29E-06 0.77E-04 0.18E-IM

0.33E-06 0.13E+00 0.33E-06 0.95E-01 0.40E-02

0.36E-06 0.73E-04 0.39E-06 0.14E-03 0.43E-05

0.59E-06 0.33E+02 0.83E-06 0.11E+02 0.43E-01

0.39E-06 0.11E-03 0.42E-06 0.17E-03 0.29E-05

0.74E-06 0.30E-03 0.74E-06 0.42E-03 0.15E-04

0.18E-05 0.13E+04 0.11E-03 0.13E+03 0.86E+00

0.15E-06 0.45E-04 0.46E-06 0.19E-05 0.97E-05

0.18E-06 0.17E-02 0.47E-06 0.41E-04 0.82E-04

0.22E-07 0.20E+05 0.54E-06 0.42E+01 0.95E+00

0.84E-07 0.38E-03 0.41E-06 0.19E-04 0.40E-04

0.48E-07 0.19E-01 0.51E-06 0.11E-03 0.23E-02

0.22E-06 0.61E-01 0.95E-06 0.62E-03 0.83E-03

0.12E-06 0.49E+00 0.50E-06 0.15E-03 0.17E-02

0.74E-07 0.31E-01 0.73E-06 0.78E-03 0.77E-03

0.11E-06 0.63E-01 0.49E-06 0.89E-03 0.72E-03

0.11E-06 0.73E+01 0.70E-06 0.63E-01 0.10E+00

0.11E-06 0.93E-01 0.72E-06 0.22E-02 0.56E-03
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TABLE A5
Set 1. xi 1, 1, ..., n, mixed precision after scaling.

Num. iter. r/ r/K*(A) (/)I) E1TOl"

GREll5

GRE185

GRE216A

GRE216B

GRE343

GRE512

GREll07

WEST67

WEST132

WEST156

WEST167

WEST381

WEST479

WEST497
WEST655

WEST989
WEST1505

WEST2021

1 0.20E-06 0.14E-02 0.40E-06 0.10E-03 0.57E-05

2 0.26E-06 0.10E+00 0.58E-06 0.17E+00 0.16E-02

1 0.33E-06 0.66E-04 0.72E-06 0.25E-03 0.31E-05

4 0.16E-06 0.89E+01 0.11E-05 0.14E+02 0.62E-01

0.33E-06 0.97E-04 0.72E-06 0.27E-03 0.26E-05

2 0.25E-06 0.10E-03 0.60E-06 0.31E-03 0.72E-05

4 0.17E-05 0.12E+04 0.20E-03 0.24E+03 0.84E+00

1 0.20E-06 0.60E-04 0.51E-06 0.21E-05 0.86E-05

1 0.15E-06 0.14E-02 0.75E-06 0.66E-04 0.13E-03

1 0.11E-07 0.98E+04 0.59E-06 0.46E+01 0.1BE+01

1 0.12E-06 0.53E-03 0.58E-06 0.28E-04 0.16E-04

1 0.17E-06 0.67E-01 0.73E-06 0.16E-03 0.31E-03

0.77E-07 0.21E-01 0.63E-06 0.41E-03 0.24E-03

1 0.12E-06 0.51E+00 0.67E-06 0.20E-03 0.21E-03

1 0.74E-07 0.31E-01 0.82E-06 0.89E-03 0.69E-03

1 0.94E-07 0.55E-01 0.88E-06 0.16E-02 0.65E-03

1 0.12E-06 0.80E+01 0.79E-06 0.71E-01 0.12E+00

0.99E-07 0.86E-01 0.80E-06 0.25E-02 0.15E-03

TABLE A6
Set 2. Condition numbers before and after scaling.

Before scaling
.(2) .) r(A)

After scaling

GRE115 0.93D+02 0.33D+02 0.23D+02 0.69D+04 0.58D+02 0.56D+02

GRE185 0.38D+06 0.50D+05 0.54D+05 0.39D+06 0.46D+05 0.52D+05

GRE216A 0.28D+03 0.90D+02 0.82D+02 0.20D+03 0.11D+03 0.10D+03

GRE216B 0.83D+15 0.37D+14 0.48D+13 0.56D+08 0.35D+07 0.37D+07

GRE343 0.47D+03 0.16D+03 0.13D+03 0.30D+03 0.10D+03 0.11D+03

GRE512 0.46D+03 0.14D+03 0.14D+03 0.40D+03 0.14D+03 0.14D+03

GREll07 0.18D+09 0.40D+08 0.31D+08 0.77D+10 0.91D+08 0.83D+08

WEST67 0.91D+03 0.54D+02 0.78D+02 0.30D+03 0.51D+02 0.41D+02

WEST132 0.11D+13 0.26D+07 0.25D+07 0.94D+04 0.61D+03 0.83D+03

WEST156 0.12D+32 0.12D+09 0.13D+09 0.91D+12 0.28D+09 0.54D+07

WEST167 0.69D+11 0.45D+05 0.35D+06 0.46D+04 0.86D+03 0.40D+03

WEST381 0.53D+07 0.16D+05 0.63D+04 0.38D+06 0.23D+04 0.13D+04

WEST479 0.49D+12 0.12D+06 0.22D+07 0.27D+06 0.57D+04 0.34D+04

WEST497 0.38D+12 0.75D+06 0.33D+06 0.42D+07 0.73D+03 0.54D+04

WEST655 0.49D+12 0.66D+06 0.14D+07 0.42D+06 0.12D+05 0.32D+04

WEST989 0.13D+13 0.45D+07 0.47D+07 0.58D+06 0.21D+05 0.11D+05

WEST1505 0.14D+13 0.49D+07 0.53D+07 0.67D+08 0.27D+07 0.17D+05

WEST2021. 0.28D+13 0.50D+07 0.89D+07 0.86D+06 0.42D+05 0.11D+05
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TABLE A7
Set 2. xi 1, 1, 6, ..., else xi 0, before scaling.

iter.

r/ r/r(A) 02) c02(2) co2)/(2)+
602(2)

Error

GRE115

GRE185

GRE216A

GRE216B

GRE343

GRE512
GREll07

WEST67

WEST132

WEST156

WEST167

WEST381

WEST479

WEST497
WEST655

WEST989

WEST1505

WEST2021

1 0.35D-16 0.32D-14 0.84D-16 0.89D-28 0.27D-14 0.71D-15

1 0.94D-16 0.35D-10 0.19D-15 0.24D-25 0.94D-11 0.14D-12

1 0.12D-16 0.34D-14 0.56D-16 0.64D-27 0.50D-14 0.13D-15

4 0.51D-16 0.42D-01 0.41D-15 0.25D-26 0.15D-01 0.76D-06

1 0.14D-16 0.65D-14 0.56D-16 0.74D-26 0.90D-14 0.11D-15

1 0.25D-16 0.11D-13 0.83D-16 0.27D-25 0.12D-13 0.19D-15

2 0.42D-16 0.78D-08 0.20D-15 0.58D-24 0.82D-08 0.83D-10

1 0.42D-16 0.38D-13 0.16D-15 0.27D-30 0.88D-14 0.12D-14

1 0.24D-16 0.25D-04 0.13D-15 0.80D-28 0.34D-09 0.16D-10

1 0.12D-22 0.14D+09 0.86D-16 0.15D-31 0.10D-07 0.10D-10

0 0.28D-17 0.19D-06 0.20D-15 0.25D-18 0.92D-11 0.37D-12

1 0.78D-17 0.41D-10 0.15D-15 0.40D-29 0.24D-11 0.29D-12

3 0.33D-19 0.16D-07 0.33D-15 0.14D-28 0.39D-10 0.91D-12

1 0.12D-17 0.44D-06 0.16D-15 0.28D-28 0.12D-09 0.30D-11

3 0.88D-19 0.43D-07 0.26D-15 0.15D-25 0.17D-09 0.29D-11

1 0.14D-16 0.19D-IM 0.14D-15 0.29D-27 0.61D-09 0.26D-10

1 0.23D-16 0.31D-04 0.20D-15 0.67D-27 0.99D-09 0.46D-10

1 0.19D-16 0.52D-04 0.22D-15 0.32D-27 0.11D-08 0.24D-10

TABLE A8
Set 2. x 1, 1, 6, ..., else x 0, after scaling.

iter.

r/ r/’(A) o2) co(2) co2) -(2)+
6O2(2) .(2)

Error

GRE115

GRE185

GRE216A

GRE216B

GRE343

GRE512

GREll07

WEST67

WEST132

WEST156

WEST167

WEST381

WEST479

WEST497

WEST655

WEST989

WEST1505

WEST2021

1 0.32E-17 0.22E-13 0.96E-16 0.36E-27 0.56E-14 0.29E-15

1 0.64E-16 0.25E-10 0.11E-15 0.41E-24 0.52E-11 0.57E-13

2 0.60E-16 0.12E-13 0.15E-15 0.10E-28 0.16E-13 0.81E-15

0.12E-15 0.68E-08 0.14E-15 0.94E-25 0.50E-09 0.77E-10

1 0.60E-16 0.18E-13 0.22E-15 0.48E-26 0.23E-13 0.67E-15

1 0.86E-16 0.35E-13 0.22E-15 0.25E-25 0.31E-13 0.67E-15

3 0.77E-16 0.59E-06 0.20E-14 0.18E-22 0.18E-06 0.10E-08

1 0.40E-16 0.12E-13 0.16E-15 0.28E-30 0.79E-14 0.13E-14

0.17E-16 0.16E-12 0.17E-15 0.78E-31 0.11E-12 0.54E-14

0 0.61E-17 0.56E-05 0.10E-15 0.14E-29 0.30E-07 0.32E-08

0 0.21E-16 0.94E-13 0.18E-15 0.50E-19 0.16E-12 0.24E-14

0.35E-16 0.13E-10 0.12E-15 0.57E-29 0.27E-12 0.86E-13

2 0.37E-17 0.10E-11 0.16E-15 0.33E-30 0.90E-12 0.28E-13

1 0.52E-17 0.22E-10 0.11E-15 0.13E-30 0.81E-13 0.22E-14

2 0.13E-16 0.55E-11 0.19E-15 0.60E-29 0.22E-11 0.61E-14

1 0.32E-16 0.19E-10 0.20E-15 0.63E-29 0.43E-11 0.48E-13

0.32E-16 0.21E-08 0.20E- 15 0.36E-28 0.54E-09 0.97E-11

1 0.32E-16 0.27E-10 0.20E-15 0.95E-29 0.85E-11 0.18E-13
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TABLE A9
Set 3. Condition numbers before and after scaling.

(A)

Before scaling After scaling

GRE115 0.93D+02 0.33D+02 0.38D+02 0.69D+04 0.58D+02 0.29D+04

GRE185 0.38D+06 0.50D+05 0.93D+05 0.39D+06 0.46D+05 0.92D+05

GRE216A 0.28D+03 0.90D+02 0.84D+02 0.20D+03 0.11D+03 0.82D+02

GRE216B 0.83D+15 0.37D+14 0.18D+15 0.56D+08 0.35D+07 0.19D+08

GRE343 0.47D+03 0.16D+03 0.10D+03 0.30D+03 0.10D+03 0.85D+02

GRE512 0.46D+03 0.14D+03 0.14D+03 0.40D+03 0.14D+03 0.12D+03

GREll07 0.18D+09 0.40D+08 0.42D+08 0.77D+10 0.91D+08 0.21D+10

WEST67 0.91D+03 0.54D+02 0.45D+02 0.30D+03 0.51D+02 0.24D+02

WEST132 0.11D+13 0.26D+07 0.39D+11 0.94D+04 0.61D+03 0.27D+04

WEST156 0.12D+32 0.12D+09 0.44D+25 0.91D+12 0.28D+09 0.23D+11

WEST167 0.69D+11 0.45D+05 0.68D+09 0.46D+04 0.86D+03 0.15D+04

WEST381 0.53D+07 0.16D+05 0.29D+07 0.38D+06 0.23D+04 0.30D+05

WEST479 0.49D+12 0.12D+06 0.28D+12 0.27D+06 0.57D+04 0.28D+05

WEST497 0.38D+12 0.75D+06 0.10D+12 0.42D+07 0.73D+03 0.85D+06

WEST655 0.49D+12 0.66D+06 0.18D+12 0.42D+06 0.12D+05 0.20D+05

WEST989 0.13D+13 0.45D+07 0.73D+12 0.58D+06 0.21D+05 0.11D+06

WEST1505 0.14D+13 0.49D+07 0.11D+13 0.67D+08 0.27D+07 0.17D+06

WEST2021 0.28D+13 0.50D+07 0.14D+13 0.86D+06 0.42D+05 0.12D+06

TABLE A10
Set 3. xi 1, 1, 6, ..., else xi 0, before scaling.

iter.

r/ r/r(A) w3) w23)

072(3) r(3)
Error

GREll5

GRE185

GRE216A

GRE216B

GRE343

GRE512

GRE1107

WEST67

WEST132

WEST156

WEST167

WEST381

WEST479

WEST497

WEST655

WEST989
WEST1505

WEST2021

1 0.35D-16 0.32D-14 0.84D-16 0.89D-28 0.27D-14 0.71D-15

1 0.94D-16 0.35D-10 0.19D-15 0.24D-25 0.94D-11 0.14D-12

1 0.12D-16 0.34D-14 0.56D-16 0.64D-27 0.50D-14 0.i3D-15

4 0.51D-16 0.42D-01 0.41D-15 0.25D-26 0.15D-01 0.76D-06

1 0.14D-16 0.65D-14 0.56D-16 0.12D-25 0.90D-14 0.11D-15

1 0.25D-16 0.11D-13 0.83D-16 0.34D-25 0.12D-13 0.19D-15

2 0.42D-16 0.78D-08 0.20D-15 0.58D-24 0.82D-08 0.83D-10

1 0.42D-16 0.38D-13 0.16D-15 0.50D-30 0.88D-14 0.12D-14

1 0.24D-16 0.25D-04 0.13D-15 0.80D-28 0,34D-09 0.16D-10

1 0.12D-22 0.14D+09 0.86D-16 0.17D-27 0.75D-03 0.10D-10

0 0.28D-17 0.19D-06 0.20D-15 0.18D-16 0.12D-07 0.37D-12

1 0.78D-17 0.41D-10 0.15D-15 0.40D-29 0.24D-11 0.29D-12

3 0.33D-19 0.16D-07 0.33D-15 0.14D-28 0.39D-10 0.91D-12

1 0.12D-17 0.44D-06 0.16D-15 0.28D-28 0.12D-09 0.30D-11

3 0.88D-19 0.43D-07 0.26D-15 0.15D-25 0.17D-09 0.29D-11

1 0.14D-16 0.19D-04 0.14D-15 0.29D-27 0.61D-09 0.26D-10

1 0.23D-16 0.31D-04 0.20D-15 0.67D-27 0.99D-09 0.46D-10

1 0.19D-16 0.52D-04 0.22D-15 0.32D-27 0.11D-08 0.24D-10
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TABLE A11
Set 3. xi 1, 1, 6, ..., else xi 0, after scaling.

Error

GRE115

GRE185

GRE216A

GRE216B

GRE343

GRE512

GRE1107

WEST67

WEST132

WEST156

WEST167

WEST381

WEST479

WEST497

WEST655

WEST989

WEST1505

WEST2021

0.32E-17 0.22E-13 0.96E-16 0.36E-27 0.56E-14 0.29E-15

0.64E-16 0.25E-10 0.11E-15 0.41E-24 0.52E-11 0.57E-13

2 0.60E-16 0.12E-13 0.15E-15 0.12E-28 0.16E-13 0.81E-15

1 0.12E-15 0.68E-08 0.14E-15 0.94E-25 0.50E-09 0.77E-10

1 0.60E-16 0.18E-13 0.22E-15 0.71E-26 0.23E-13 0.67E-15

1 0.86E-16 0.35E-13 0.22E-15 0.31E-25 0.31E-13 0.67E-15

3 0.77E-16 0.59E-06 0.20E-14 0.18E-22 0.18E-06 0.10E-08

1 0.40E-16 0.12E-13 0.16E-15 0.57E-30 0.79E-14 0.13E-14

1 0.17E-16 0.16E-12 0.17E-15 0.78E-31 0.11E-12 0.54E-14

0 0.61E-17 0.56E-05 0.10E-15 0.14E-29 0.30E-07 0.32E-08

0 0.21E-16 0.94E-13 0.18E-15 0.50E-19 0.16E-12 0.24E-14

1 0.35E-16 0.13E-10 0.12E-15 0.57E-29 0.27E-12 0.86E-13

2 0.37E-17 0.10E-11 0.16E-15 0.33E-30 0.90E-12 0.28E-13

1 0.52E-17 0.22E-10 0.11E-15 0.13E-30 0.81E-13 0.22E-14

2 0.13E-16 0.55E-11 0.19E-15 0.60E-29 0.22E-11 0.61E-14

1 0.32E-16 0.19E-10 0.20E-15 0.63E-29 0.43E-11 0.48E-13

1 0.32E-16 0.21E-08 0.20E-15 0.36E-28 0.54E-09 0.97E-11

1 0.32E-16 0.27E-10 0.20E-15 0.95E-29 0.85E-11 0.18E-13

TABLE A 12
Set 4. Condition numbers after scalingfor drop tol. 10 -5 and drop tol. 10 -3.

drop tol 10-5 drop tol 10-3

GRE115 0.69E+04 0.00E+00 0.12E+03 0.00E+00 0.12E+03

GRE185 0.39E+06 0.00E+00 0.17E+06 0.00E+00 0.14E+06

GRE216A 0.20E+03 0.00E+00 0.21E+03 0.00E+00 0.21E+03

GRE216B 0.84E+08 0.00E+00 0.15E+08 0.00E+00 0.10E+07

GRE343 0.30E+03 0.00E+00 0.31E+03 0.00E+00 0.26E+03

GRE512 0.40E+03 0.00E+00 0.43E+03 0.00E+00 0.37E+03

GREll07 0.63E+10 0.00E+00 0.23E+09 0.00E+00 0.55E+07
WEST67 0.30E+03 0.29E+01 0.16E+03 0.00E+00 0.14E+03

WEST132 0.94E+04 0.00E+00 0.24E+04 0.00E+00 ,0.22E+04

WEST156 0.91E+12 0.00E+00 0.29E+09 0.00E+00 0.16E+06

WEST167 0.46E+04 0.00E+00 0.16E+04 0.00E+00 0.13E+04

WEST381 0.38E+06 0.00E+00 0.65E+04 0.00E+00 0.54E+04

WEST479 0.27E+06 0.00E+00 0.23E+05 0.00E+00 0.20E+05

WEST497 0.42E+07 0.00E+00 0.65E+04 0.00E+00 0.63E+04

WEST655 0.42E+06 0.00E+00 0.43E+05 0.00E+00 0.37E+05

WEST989 0.58E+06 0.00E+00 0.63E+05 0.00E+00 0.53E+05
WEST1505 0.67E+08 0.00E+00 0.35E+07 0.00E+00 0.21E+07

WEST2021 0.86E+06 0.00E+00 0.12E+06 0.00E+00 0.10E+06
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TABLE A13
Set 4. xi I, l, 6, ..., else xi 0, after scaling and drop tol. 10 -5.

lITor

GRE115

GRE185

GRE216A

GRE216B

GRE343

GRE512

GRE1107

WEST67

WEST132

WEST156

WEST167

WEST381

WEST479
WEST497

WEST655

WEST989
WEST1505

WEST2021

2 0.99E-18 0.68E-14 0.00E+00 0.69E-16 0.85E-14 0.15E-14

3 0.55E-16 0.22E-10 0.00E+00 0.50E-16 0.83E-11 0.80E-13

1 0.90E-16 0.18E-13 0.00E+00 0.83E-16 0.18E-13 0.88E-15

29 0.10E-15 0.84E-08 0.00E+00 0.50E-15 0.77E-08 0.63E-10

1 0.90E-16 0.27E-13 0.00E+00 0.83E-16 0.26E-13 0.81E-15

1 0.86E-16 0.35E-13 0.00E+O0 0.11E-15 0.48E-13 0.68E-15

15 0.62E-16 0.39E-06 0.00E+00 0.19E-15 0.44E-07 0.27E-09

1 0.50E-16 0.15E-13 0.13E-16 0.61E-16 0.10E-13 0.85E-15

2 0.36E-16 0.33E-12 0.00E+00 0.67E-16 0.16E-12 0.46E-14

0 0.61E-17 0.56E-05 0.00E+00 0.54E-16 0.16E-07 0.32E-08

0 0.21E-16 0.94E-13 0.00E+O0 0.67E-16 0.11E-12 0.24E-14

2 0.23E-16 0.89E-11 0.00E+00 0.54E-16 0.36E-12 0.78E-13

3 0.26E-16 0.71E-11 0.00E+O0 0.57E-16 0.13E-11 0.55E-13

1 0.58E-17 0.25E-10 0.00E+00 0.55E-16 0.36E-12 0.47E-14

2 0.55E-16 0.23E-10 0.00E+00 0.91E-16 0.39E-11 0.22E-13

1 0.13E-15 0.75E-10 0.00E+00 0.19E-15 0.12E-10 0.18E-13

2 0.64E-16 0.43E-08 0.00E+00 0.10E-15 0.35E-09 0.10E-10

2 0.95E-16 0.$2E-10 0.00E+00 0.13E-15 0.16E-10 0.59E-13

TABLE A14
Set 4. x 1, 1, 6, ..., else x 0, after scaling and drop tol. 10 -3.

Num.
iter.

E1Tor

GREll5

GRE185

GRE216A

GRE216B

GRE343

GRE512

GREll07

WEST67

WEST132

WEST156

WEST167

WEST381

WEST479

WEST497

WEST655

WEST989

WEST1505

WEST2021

4 0.35E-17 0.24E-13 O.OOE+O0 0.48E-16 0.59E-14 0.80E-15

15 0.46E-16 0.15E-10 0.00E+00 0.61E-16 0.87E-11 0.14E-12

1 0.65E-16 0.13E-13 0.00E+O0 0.74E-16 0.16E-13 0.11E-14

3 0.26E-04 0.15E+03 0.00E+00 0.11E-02 0.12E+04 0.22E+01

3 0.66E-16 0.20E-13 0.00E+00 0.87E-16 0.23E-13 0.72E-15

4 0.63E-16 0.26E-13 0.00E+O0 0.89E-16 0.32E-13 0.79E-15
3 0.64E-05 0.10E+04 0.00E+O0 0.16E-02 0.90E+04 0.13E+01

2 0.37E-16 0.11E-13 0.00E+00 0.45E-16 0.61E-14 0.14E-14

3 0.25E-16 0.23E-12 0.00E+00 0.52E-16 0.11E-12 0.21E-14

0 0.59E-18 0.73E-08 0.00E+O0 0.54E-16 0.87E-11 0.18E-12

0 0.21E-16 0.94E-13 0.00E+00 0.67E-16 0.84E-13 0.24E-14

4 0.17E-16 0.67E-11 0.00E+O0 0.53E-16 0.29E-12 0.33E-13

7 0.34E-17 0.91E-12 0.00E+O0 0.55E-16 0.11E-11 0.51E-13

4 0.30E-17 0.13E-10 0.00E+00 0.58E-16 0.36E-12 0.36E-14

5 0.28E-16 0.12E-10 0.00E+00 0.65E-16 0.24E-11 0.55E-13

5 0.32E-16 0.19E-10 0.00E+00 0.64E-16 0.34E-11 0.11E-12

10 0.32E-16 0.20E-08 0.00E+00 0.90E-16 0.19E-09 0.23E-10

5 0.32E-16 0.27E-10 0.00E+00 0.94E-16 0.98E-11 0.72E-13
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TABLE A 15
Set 4. Number ofnonzero entries in the original matrices andfill-in for drop tol. 0.0, drop tol.

l0 -5 and drop to/. l0 -3 after scaling.

NO11ZeI"O$ Fill-in

drop tol 0.0 drop tol 10-s drop tol 10-3

GRE115 421 647 651 605

GRE185 975 3173 3028 2929

GRE216A 812 254 2263 2262

GRE216B 812 2767 2580 2180

GRE343 13I0 5334 4891 4890

GRE512 1976 11535 11020 11007

GRE1107 5664 47603 45255 41181

WEST67 294 267 202 204

WEST132 413 89 87 83

WEST156 362 27 20 15

WEST167 506 96 96 92

WEST381 2134 2057 1867 1711

WEST479 1888 1121 982 790

WEST497 1721 279 263 252

WEST655 2808 2092 1791 1709

WEST989 3518 1156 1139 1135

WEST1505 5414 2032 1934 1821

WEST2021 7310 2539 2466 2410
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CONDITION ESTIMATES FOR MATRIX FUNCrlONS*

CHARLES KENNEY" AND ALAN J. LAUB

Abstract. A sensitivity theory based on Fr6chet derivatives is presented that has both theoretical and
computational advantages. Theoretical results such as a generalization of Van Loan’s work on the matrix
exponential are easily obtained: matrix functions are least sensitive at normal matrices. Computationally, the
central problem is to estimate the norm ofthe Fr6chet derivative, since this is equal to the function’s condition
number. Two norm-estimation procedures are given; the first is based on a finite-difference approximation of
the Fr6chet derivative and costs only two extra function evaluations. The second method was developed specifically
for the exponential and logarithmic functions; it is based on a trapezoidal approximation scheme suggested by
the chain rule for the identity ex (eX/2")2". This results in an infinite sequence ofcoupled Sylvester equations
that, when truncated, is uniquely suited to the "scaling and squaring" procedure for ex or the "inverse scaling
and squaring" procedure for log X.

Both the trapezoid approximation method and the more general finite-difference approach yield excellent
condition estimates for a large class of problems taken from the literature. The problems in this set illustrate
that condition estimates based on the Fr6chet derivative have the virtue of reliability and general applicability.

Key words, condition estimation, matrix-valued function, exponential, logarithm, Fr6chet derivative
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1. Introduction. In this paper, we are concerned with the effects of perturbations
on matrix functions

(1.1) F(X) , a,,X"
tt=O

where a, and X p P. We assume that the scalar power series

(1.2) V(x) Z a,,x"
n=O

is absolutely convergent for xl < r for some r > O. We are interested in estimating the
"worst ease" perturbations as defined by the condition numbers 28

IIF(X+6Z)-F(X)II
K K(F,X)= max

(1.3) IIZII- 6

K=K(F,X)=- lim K(F,X)
0+

where we assume that > 0 and IJX + 6 < r, so that F(X + Z) is well defined. We
shall use the Frobenius matrix norm

(1.4) MII = 2 M,
throughout the paper unless explicitly noted otherwise, since this norm has nice properties
vis-a-vis the Kronecker matrix product.
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192 C. KENNEY AND A. J. LAUB

The condition number K(F, X) of F at X is determined by the Fr6chet derivative
ofF at X: we say that a linear mapping L" PP --P is the Fr6chet derivative ofF
at X (see [2], [12]) if for all Z in

(1.5) lim F(X/Z)-F(X)_L(Z) =0.
--0

When it is convenient to explicitly indicate the dependence of L on X, we ll write
L(Z, X) instead of L(Z). For brevity, we ll refer to L as the derivative of F.

Example 1. The squaring function F(X)
XZ + ZX + Z2, so its derivative at X is ven by L(Z) XZ + ZX.

Example 2. The derivative at X of the exponential function F(X) ex is ven
by [31]

(1.6) L(Z eTM Zex" ds.

Other examples are Nven in Aendix B.
From the definition of the Frchet derivative (see 31, Thin. 5 ), we have

IIL(Z,X)II
(1.7) K(F,X)= L(’,X)ll-max

zo Ilgl[

Because of this, most of our effo is devoted to studying L and methods for estimating
its no.

In 2, the eigenvalues ofXare used to obtain a lower bound on K(F, X); this lower
bound is in fact equal to K(F, X) when X is no. Thus matrix functions exhibit
minimal sensitivity when they are evaluated atno matrices, an effect demonstrated
by Van Loan 31 for the exponenti function F(X) ex. Similar results are ven for
large scale peurbations.

In 2, we Mso lay the oundwork for estimating the no of L via the power
method: ven Zo of unit no, let

(.8) W-L(Zo,X),

(.9) ZL(W,X).
For suitably chosen Z0, IIzll ’/= ILL(., x)ll, and more accurate estimates can
obtained by repeating the cycle with Zo

The main problem with this approach is that evaluating L(Z) directly may rather
dieult. For example, in the ease of the matrix exponentiM, it is not at MI clear how we
should go about evaluating the inteM representation in (1.6). In 3, we consider the
problem of foxing L(Z) for both the exponenti and logarithmic matrix functions.
For the exponenti problem, L(Z) can accurately appromated by using a communal
trapezoid approximation in (1.7); this approach can be eeiently implemented during
theungphe ofthe "seng andung"meth ofevMuafing.Tsiation
th sealing and squaring is quite natural because the trapezoid approximation can
derived from the chain le for the identity ex (eXit")". For the logarithmic problem,
a similar approximation can be done during theue root phase ofthe "inve=e seMing
and squaring" method of evaluating log X.
Wethe nsifity estimation produres can eyineoted into smnd

packages, such as MATEXP by Ward 32 ], the numefieM effo involved in using them
can vaff considerably depending on the amount of sealing to be done. For example, one
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power method cycle of evaluating L and Lr for the matrix exponential can range in cost
from to as much as three times the effort needed to evaluate ex.

By contrast, there is another way of evaluating L such that, independent of the
function F, LII can be estimated at a cost of only two extra function evaluations. The
idea behind this method is to use the relation

(1.10)
F(X+Z) F(X)

L(Z,X) + 0(

as a means ofapproximating L(Z, X). Thus the power method steps (1.8) and (1.9) can
be approximated by

(1.11) W

(1.12) Zl

for i sufficiently small.

F(X+iZo)-F(X)

F(Xr+W)-F(Xr)

To provide a practical assessment of the trapezoid and finite-difference condition
estimators, a large set of problems from 3 ], 7 ], 16 ], 25 ], and 32 was tested nu-
merically; a selected subset of the results is given in 4. For almost all of the examples,
our condition estimates, based on one power method cycle, were within 90 percent of
the actual condition number and none of the estimates was less than 25 percent of the
actual condition number (see Tables and 2). Of particular interest is an example
considered by Ward [32, Example 3 that has shown that the sensitivity estimation
scheme employed in the subroutine MATEXP can give very conservative bounds. In
this case, Ward’s method predicts that not more than 12 digits ofaccuracy would be lost
in the computation of the matrix exponential, whereas one cycle of the power method
predicted that at most four digits would be lost; in fact, the numerically computed result
had lost exactly four digits of accuracy. This illustrates that condition estimates based
on the Fr6chet derivative appear to be extremely reliable.

2. General perturbation results. For IIz II-- and IIx / < r, we may write
by (1.2),

(2.1)

F(X+ Z)= F(X)+ i , a, , xkzx"- l-k_.
n=l k=O

n- m

..m Z a,, , XklZXk2Z"’xkmzxn-m-k’ km-I’-’"
n--m kl+’"+km--O

where the absolute convergence of the series justifies the rearrangement of the terms in
(2.1). From (2.1), and (1.5),

nl(2.2) L(Z,X) , a, xkzxn ko
n--I k=0

The discussion in the previous section has shown that the condition number (1.3) satisfies

IIz z,x)ll
K(F,X) L(,,X) max

z,o IIzll
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We use the Frobenius norm (1.4) because of its natural connection to the spectral or
two-norm of the Kronecker form ofthe Frrchet derivative. Let Vec A denote the vector
formed by stacking the columns ofa matrix A, and define the Kronecker product oftwo
matrices A and B by (see 15 ]) A (R) B --- aijB ]. Then the Frobenius norm of a matrix
Z is equal to the two-norm of Vec Z:

(2.3) Ilz IlVec z 112.
Also, Vec (AZB Br (R) A) Vec Z. Thus,

(2.4) Vec L(Z,X) D(X) Vec Z

where D(X) is the Kronecker form of the Frrchet derivative

nl(2.5) D(X)= , an (xT)n- l-k()Xk.
n=l k=0

By (2.3) and (2.4), we have

Z(Z,X) IlVec Z(Z,X) I1= D(X) Vec Z
max max max
z/ 0 z z / o Vec Z I1= z / o Vec z

so that the Frobenius norm of the Frrchet derivative is equal to the two-norm of its
Kronecker matrix form:

(2.6) Z(.,X)II O(X)I1=.

The importance of this identity lies in the fact that the two-norm of a real matrix
A is the square root of the largest eigenvalue ) ofA rA, and hence can be estimated by
using the power method. For a given vector Vo with Ilv0]]2 1, compute the vectors
uk Avk + - A TUk l)k+ " )k+ /II )k+ 1112 for k 0, 1, 2, If v0 is not orthogonal
to the eigenspace Ex of ArA corresponding to h where ),1/2= IIAII=, then I111
IIAII2; and unless v0 is poorly chosen, I111 ,/2 IIAII2. That is, one cycle of the power
method provides an approximation of A I1= that is usually sufficient for the purposes of
condition estimation 8 ].

Using (A (R) B)r A r (R) Br and (2.5), we have

(2.7)
(D(X))r= ’ an Xn--k(R)(xr)k

n=l k=0

D(Xr).

Define v by Uo D(X)vo, (D(X))rUo, v =- ,/I1,11=. From (2.4) and (2.7)
this is equivalent to forming Z by

(2,8) W=-L(Zo,X), ,--L(W,X),
where v0 Vec (Z0) and v Vec (Z). This is fortunate, because it means that we can
avoid dealing with the p2 p: Kronecker matrix D(X) when estimating the condi-
tion of F at X by the power method. Instead, we may use the more compact formula-
tion (2.8).

Now we establish a lower bound on K(F, X) and show that this lower bound is in
fact equal to K(F, X) when X is normal.
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LEMMA 2.1. Let v and w be nonzero vectors such that Xv Xv and Xrw tw.
Then w (R) v is an eigenvector ofD(X) with associated eigenvalue o where

v =F’(X) forX=l,

(2.9)
v

F( x F(u
for X 4: t.

Proof. Since (A (R) B)( C (R) D) (AC) (R) (BD) for any compatible matrices A, B,
C, D (see [15]), we have

D(X)(w(R)v)= , an ((xr)n-l-k(R)xk)(W(R)V)
n--I k=0

a. ((Xr)"--w)(R)(Xv)
n=l k=0

Z an Z Un-l-kxk w(R)v).
n=l k=0

Now, if t , then Y ,- t" kkk n" and

D(X)(w(R)v)= , na,’-l(w(R)v)=F’(X)(w(R)v).
n=l

Otherwise, if tz 4: X, then Y , t" kXk X. #.) / t) and

X-i F(X)-F(I),,(w(R)v)= (w(R)v).D(X)(w(R)v) , an X-I

COROLLARY 2.2. Let 0max be defined by

(2.1 O) 1)ma max
x,u A(X)

F(X)-F(#)

where A(X) denotes the set of eigenvalues ofX and the ratio in (2.10) is taken to be
F’(X)I when . Then the condition number off at X is bounded below by Vmx

I)ma K(F, X).
Proof. By (1.3), (1.7), and (2.6) we have thatK(F,X) ILL(., X)ll IID(X)ll2,

but the two-norm ofD(X) is bounded below by the absolute value of any eigenvalue of
D(X). Hence by Lemma 2.1 we must have l)ma lID(X)1[2.

LEMMA 2.3. IfX PP is normal, that is, XrX XXr, then D(X) is normal.
Proof. Use (A (R) B)(C(R) D) (AC)(R) (BD) together with (A (R) B) r= At(R) Br

and (2.5) to show that D(X) and Dr(X) commute.
COROLLARY 2.4. lfX is normal, then the condition number ofF at X is equal to

1)ma in (2.10)"

F(X)-F(t)
K(F,X)= max

Proof. By Lemma 2.3, D(X) is normal. Thus its two-norm is equal to its spectral
radius that, by Lemma 2.1, is just 1)max in (2.10).
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The fact that the lower bound in Corollary 2.2 is attained for normal matrices
indicates that the condition number ofF is as small as possible when X is normal. This
effect has been demonstrated for the exponential function F(X) ex in the sensitivity
study of Van Loan 31], by using the explicit representation (1.6) together with the
property that when X is normal, eXl[2 etx) where a(X) --- maxxAtx) Re (),).

The preceding dealt with linear perturbation theory ofthe matrix function F(X)
n%o a,X, by considering the limiting behavior of the finite-difference operator

DF(Z,X, =- F(X+6Z)-F(X)

as i --} 0 +. We conclude this section with similar results on the behavior ofFwith respect
to large (i.e., nondifferential)perturbations, and our goal will be to bound K(F,X)
in (1.3).

LEMMA 2.5. Let Ilxll + < r. Let v and w be normalized eigenvectors such that
Xv hv and wnX h2wn. Define Z vw. ThenZ (F(X + Z) F(X))/ where

F(X)- F(X2)
(2.11) / if), / ),2,

),- ),2

F( )k "" wHI) F(
(2.12) /z wnv8 if),- ),2.

The right-hand side of (2.12) is taken to be F’()) if why O. As a consequence, we
have the lower bound

(2.13) max I1 _K(F,X).

Proof. The proof is essentially the same as that used in Lemma 2.1. El
The next lemma gives a simple upper bound for K(F, X) in terms of the function

F+ defined by the associated "positive" series F+(x) _-o a Ix.
LEMMA 2.6. Let [Izll - and Ilxll / < r. Then

(2.14) K(F,X)_
F+(IIX + )-F+(llX II)

F(IIxll +).

Proof. From (2.1) and Z 1,

[IF(X+Z)-F(X)II -.__,, nla.I IIX -’ / ... m n:m la.I IlXl[ - m +

Thus

m

F_ x +.., +..F’( x ) +.,,

F/(llxll + )-F/(llx II).

F(X+ aZ F(X) F+( X + ) F+ ( x =F(IIX +o)F(IIX +)

for some 0

_
p

_
a by the mean value theorem and the fact that F is nondecreas-

ing.
For example, if F(x) ex, then Lemma 2.6 gives

ex+z_ eXll / a ellxl + ell"ql l a
_
ellxl + .
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This upper bound can be very conservative in some cases. However, the next lemma
shows that there are situations where the upper bound in Lemma 2.6 coincides with the
lower bound in Lemma 2.5 to give an exact value for K,(F, X).

LEMMA 2.7. Let X Xr >= 0 and let the series (1.2) have nonnegative coefficients,
a >- O, so that F F+. Then K(F, X) (F( X + 6) F( X )) /.

Proof. Since x is nonnegative definite symmetric there exists a real eigen-
vector v such that Xv=Xv with v rv= where ,= [[X[]. By Lemma 2.5, tZ=
(F(X + 6Z) F(X))/6 where Z vv r and t (F(X + 6) F(X))/6. Note that
# > 0, since F is nondecreasing. Thus, K(F, X)

_
[[#Z #, since [[Z Ilvvrl[

1. On the other hand, # (F( X + d) F( x II))!, since x . Thus, since
F F+, we have by Lemma 2.6 that K(F,X)_ #. This shows that we must have
K(F,X) =/ (F(llXl[ / )- F(llXll))/. rn

The next lemma shows that for F F+ and large i, Lemma 2.7 is approximately
true, not just for symmetric nonnegative definite matrices, but for any matrix X.

LEMMA 2.8. Let F F+ with radius ofconvergence r oo. Thenfor/ > 2[I X and
any real matrix X, we have

(2.15)
F(- IlXll)-F(llXll)

<K(F,X) <
F(i+ liXll)-F(llXll)

Proof. The fight-hand side inequality of (2.15 is simply a restatement of (2.14)
in Lemma 2.6. To prove the left-hand side inequality in (2.15), let Z -= eelr where
e (1, 0, 0) r and set Z (1 e)Z X/6 where e is chosen so that ][Z 1.
Then IIz - / x II/ so

_
x !. Now x / Z ( t)Zl, so

F(X + diZ) F(/i(l t))ZI, since F(aZI) F(a)Z for any scalar a. Moreover, since- IIx II, IIF(X / z)l[ F((1 ))

_
F( IIX II) because F= F+ is nondecreasing.

However, IIF(X / Z)ll liE(X) - IIF(X / Z)- F(X)ll. Thus,

F(- IIxI[)-F(IIxll) IIF(X+Z)ll F(X)II IIF(X+Z)-F(X)[I
because F(X)I1 - F( X ). Dividing by/i in the above completes the proof.

Example. Let F(X) ex with X 1; then by Lemma 2.8, we have that

e e e + e< K(F,X)<

which determines K, to within a factor of e2 for large 6.
3. Exponential and logarithmic linear perturbation theory. In this section, we treat

the problem ofapproximating the Frtchet derivatives ofthe exponential and logarithmic
matrix functions.

The earliest representation ofthe exponential derivative appears to be due to Haus-
dorff[17]

(3.1) L(Z,X)= ex Xn eX
n__0(n+ 1)! {Z, } { Z,(eX-I)X-l }

where the nested Lie product {., } is defined by {Z, X } - [... [Z, X], X], ..., X]
with n factors ofXappearing; [Z, X denotes the Lie bracket ZX XZ. In the dghtmost
side of (3.1), the expression (ex- I)X- should be interpreted as the series Z --o xm/
(m + 1)! when X is not invertible. This Lie product expansion for the exponential
derivative arose in connection with the Baker-Campbell-Hausdorff formula (see 23,
pp. 656-658 ], 4 ])

eXe’=exp X+ Y+[X, Y]+ [[X, YI, Y-XI+
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From (2.2), with F(X) ex, we obtain another series representation:

ln-I
g(z,x)- xkzxtl-l-k,

n=l k=0

but this series and (3.1) are too hard to work with numerically. A much more useful
representation is given by Van Loan in [31]" L(Z, X) f eTM -s)zeXs ds. This may be
approximated by using the trapezoid rule (see 10

(3.2) L(Z,X)L,,(Z,X)"
2

eXZ+ 2
kl

for n 0, 1, 2, ....
We have selected this method ofapproximation because it is uniquely suited to one

ofthe most successful methods ofcomputing ex, namely the scaling and squaring method
[24], [32 ]. In this method, X is scaled by a power of two, say 2", so that ex-E is easily
evaluated by using, for example, a Pad approximation. The result is then squared n
times: ex (eXit’). During the squaring phase, we have available to us sequentially
the computed values of the matrices exz’, ex’-’ ..., ex, and ex. This raises the
possibility of evaluating the trapezoid approximant, L,,(Z, X), for a given matrix Z,
during the computation of ex. This would not be practical if we implemented (3.2)
directly, but fortunately there is an equivalent formulation for L,,(Z, X) that is much
easier to evaluate and only requires the matrices exz"- as they become available. Let

(3.3) Wo_(eX/2Z+ ZeX/2.)/2n+
and forj n, n 1, 1, define

(3.4) IYn+ l- j’eX/2Iyn-j+ In-jex/2.

Then from 3.2)-(3.4), L,,(Z, X)
We will show that if n is large, then L,,(Z, X) is near L(Z, X) and

provides a good estimate of IlL( ", X)]]. For example, if n is large enough so that
eX/2n Ill < 4L, then our results give

0.95011L(",X) II- IlL(",X) - 1.05511 g(",X) II.
Somewhat surprisingly, it seems to be the case that the easiest way to determine how
well Ln( ", X) approximates L(., X) is to study the approximation of L-(., X) by
L( X). Both L-(., X) and L(., X) arise naturally in the study of the inverse
exponential or logarithmic problem ex -- X. Such problems occur, for example, in a
control theory setting wherein discrete samples from a continuous system are used to
identify system parameters. See 20 ], 27 ], and 29 ]. Since the logarithm is a multivalued
function, we need some restriction on Xto ensure the existence ofa unique real solution
Xto the problem ex A (cf. 9 ], 13 ], 18 ], 33 ). To do so, we shall assume throughout
this section that A P p has no eigenvalues on the negative real axis including zero.
This is sucient to ensure that there exists a unique real matrix X such that
ex= A with the eigenvalues of X confined to the strip -r < Im (2)< r. (See
Appendix A.)

Under the above assumptions,

(3.5) log A 2 n log A /2n

where A /2 denotes the unique real nth square root ofA (see 11 ]) whose eigenvalues,, ,(A /2) lie in the sector -r/2 < arg () < r/2. (See Appendix A.) This forms
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the basis of the "inverse scaling and squaring" method for approximating log A. Take
n square roots ofA, so that A /2 is near the identity. Then log A /2 can be computed
by using, for example, a Pad6 approximation in the variable Y =- I- A /2. Multiplying
the result by 2, we obtain log A as in (3.5). (See 4 for more details.)

By Lemma A l, in Appendix A, the derivative of the logarithmic function ex -- Xis the inverse of L(., X) in (1.6) provided L(., X) is invertible. However, L(., X) is
invertible if and only if the associated Kronecker matrix D(X) given by (2.5) is nonsin-
gular. By Lemma 2.1, D(X) is singular for the exponential function if and only if ex

0 or (ex e)/( , -/z) 0 for ,, t A(X), t :/: ,. However, ex is never zero and ex

e with t means that , =/z + 2rik for some nonzero integer k, which would violate
the condition that -r < Im (,), Im (tt) < r. Thus D(X) is nonsingular and L(-, X) is
invertible whenever A(X) is confined to the strip -r < Im (z) < r. This strip condition
also implies that L(., X) is invertible. To see this, note that L(W, X), for a given
matrix W, can be found by inverting the procedure in (3.3)-(3.4). That is, for A ex,
set W Wand solve sequentially for W_ , ..., Wo and Z in

(3.6) W,+ j=A I/2JWn_j-F Wn_jA 1/2,
(3.7) 2 "+ Wo =A l/2nZ-F ZA l/2n.

Then L(W,X) Z because L(Z,X) Why (3.2)-(3.4).
From this we see that L (., X) is invertible whenever the Sylvester equations (3.6)

and (3.7) are uniquely solvable. However, the strip condition onXforces the eigenvalues
of A /2, for j

_
1, to lie in the open right-half complex plane. Consequently # + X : 0

for #, )k 6 A(A 1/2) and (3.6), (3.7) have unique solutions [21].
The sequence W0, "., W has a nice representation that forms the basis of our

analysis of the relationship between L and L and which originally inspired our work in
this area.

LEMMA 3.1. Let W be defined by (3.6), (3.7) with W= W-L(,X), i.e.,
W, f ex( -)ex’’ ds Then

l/2j

(3.8) W,_j= eX(/2-)2eXs ds

forj= 1, n.
Proof. We show that (3.8) is valid for j 1; for j > use similar arguments.

By (3.6),

Wn =A I/2Wn "- Wn 1A 1/2

ex/2 Under the as-which we may rewrite, using A ex, as W eX/2Wn + W_
sumption that A(X) lies in the strip -r < Im (z) < r, this equation has a unique

eX/2where I, --solution. Thus it is sufficient to show that W eX/EIn- + I’n-
f/2 eX(l/2_S)2eX,, ds. But

r1/2 fo1/2ex/2= eXt-S)exs ds+ eX(l/2-S)eX(s+ 1/2) dseX/2In l+Irn
dO

/2eX(-:)ex: ds+ eTM-:)ex: ds
d0 /2

ex( -)ex ds W.
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We need two technical lemmas to prove our main result (Theorem 3.4).
LEMMA 3.2. Let C, B] denote the Lie product C, B] CB- BC. Then we

may write

e -s)Cem ds=-(eZC+ Cen)-- [e -s),[em, C]] ds.

(3.9)

Proof. Expand the nested Lie product on the right-hand side and use the identity

eB(l )Ce" ds enCe ) ds.

LEMMA 3.3. Let I(B =-- 1/2 max B + Br Then we have

e(’ s)CeBs ds--(eBC+ Ce) -gllCII Ilnll=et.

Proof. Use the methods of Lemma 3 of [24, Appendix 2 ].
Using the preceding three lemmas we can now prove our main result on the ap-

proximation ofL- (., X) by L (., X).
THEOREM 3.4. Let n be large enough so that o =- I- ex/2" < 1. Then for any

We Rpp we have

IIZ-’(W,X)ll.(3.10) IIL-(W’X) Z(W’X)ll - -o

Proof. Let Ln(Z, X) W and L(, X) W so that Z L (W, X) and
L- (W, X). Now define W0, W, ..., Wn_ by (3.6), (3.7), so that by the definition
ofL in (3.6), (3.7)

ex/2"Z+ Zex/2)
(3.11) W0 2n+l

However, by Lemma 3.1,

l/2n
(3.12) Wo eX(/2-S)eX ds.

By the change of variables, s --} 2

(3.13) eX(l/2"-S)exs ds= e(Xl2")(-S)e(xl2")s ds.
dO

Now by Lemma 3.2 with B X2 and C ,
(3.14) " etX/2")tl s),,etX/2")s ds 2,,1+, ex/2"2+ 2eX/2"

2 "+1 fO [e<x/2") -) [e(X/z")s,2]] ds

Combining (3.11)-(3.14), we obtain

eX/Z+ ZeX’- eX/":2+ :2exn"- [e(XZ"(-’,[e(Xn"’,:211ds.
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This may be written as fl(- Z) f [etx/2-)t-), [etx/2-)‘, 11 ds where fl(V) -eX/2"V + Vex/2". Thus Z fl-l(f [etX/2.)t-), [etX/2.), ;]] ds), so

(3.15) - zll -111 [ex/") -), e<X/Z"),2]] ds

2 X 2

as in the proof of Lemma 3.3. We now show that for w III ex/2" < 1,

(3.16) I1-’11 -21-w’

(3.17) _log
1-to

(3.18) euX/2.)
lto

When combined with 3.15 and L- (W, X), Z L (W, X), we shall have (3.10),
thus completing the proof.

To show (3.16), let Q fl(v) so that V fl-l(Q). Now, 2V Q + YV + vY
where Y-I- eX/2"and [[YI[ w < 1. Thus, 2llvll -IIQII + 2wllvll, so Ilvll- IIQII/
2 w). Inequality 3.16 follows immediately since V[I fl-1 (Q) [].

To get (3.17), use X/2" log ex/2" log (I- Y), and
m

(1 /Illog (I- ’11 - 2; I1, II,, log (1 " I11 log i tom--I m

This also gives (3.18) because e"tx/2")
_

eIIx/2"ll <= exp (log (1/(1 to)))
/( ).

From Theorem 3.4, we can easily obtain a bound on the logarithmic condition
number, L-( ", X)II in terms of the norm, L( ", X)II of the inverse trapezoid ap-
proximant.

COROLLARY 3.5. Let w- III- eX/Zll < and define
0 (1/(1 -) og (/( ))).

lfn is large enough so that to1 < 1, then

[IZ’(.,X) II/( /,)- IIL-’(’,X)II

Proof. Use (3.10) for the proof.
As an example, if I ex/== -1.05211Z( ", X)II. To obtain bounds on the exponential condition number L(., X)II,

we now return to the problem of how well Ln( ", X) approximates L(., X).
THEOREM 3.6. Let to2 to1/( to1) for to and to1 as in Corollary 3.5. Assume that

n is large enough so that to, to1, and to2 are less than one. Then for any Z’xp,
we have

Z(Z,X)- L(Z,X)II - 0=11Z(.,S)I1 IIZ II.
Proof. Let Z be given and let W

L-I(W, X) so that L(, X) W Ln(Z, X). Then by Theorem 3.4, I1 zll --<
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2 II. But by Corollary 3.5, Ell/(1 w,) so Ell , Ell/( ,)
=llz It. Thus,

Z(Z,X)- t(Z,S)II t(Z,X)- Z(,S)II

L(Z- 2,X)II
L(.,X) IIz- 211

IIL(.,x) IIo=ll z II. t

COROLLARY 3.7. Under the assumptions of Theorem 3.6,

L(.,x) II/(1 + o2) _-< L(.,x) Ln(.,X) II/( 6o2).
Proof. Use standard norm arguments and Theorem 3.6 for the proof, r-i

As an example, if I- ex/2 --< $, then 0.95011Z(-, X)II -< Z(., X)II --<
1.05511Z( ",

To illustrate the trapezoid approximation method and Theorem 3.6, let X
[ ]. Then

eX= [ 11] and eX/2"= [ 101/2"].1
If we impose a scaling condition of I- ex/2’’ < 4!, then we may take n 3, in which
case I ex/8 , Let Z eXexr + eXrex 23 ]. (For reasons explained in the next
section, this choice ofZ can be expected to have a large component in the matrix direction
which maximally perturbs eX.) Using 3.3 and (3.4), we find (to four significant figures),
L3(Z, X) [ 5"3428]. To compare this with L(Z, X), note that X is nilpotent with X2

0. Thus from (2.2),

L(Z,X) ,,’=1 -" k=OZ xkzxn- k Z q-XZ +2 ZX t-=XZX 425.3334
This gives, as in Theorem 3.6, 0.005 IlL(Z, x) Z3(Z, x)ll - IlL(., x)IIo=llz
0.064, where L(., X)II 1.609 was determined by finding the largest singular value
of the associated Kronecker matrix D in (2.5). It is interesting to note that one power
method cycle, using L3 and this Z, gives an estimate of 1.592 for the norm of L(., X).

4. Numerical results. In this section, we discuss some of the details of testing the
trapezoid approximation and finite-difference condition estimation procedures for the
exponential and logarithmic matrix functions.

From 3, we have implemented the trapezoid approximation method (3.3), (3.4)
for the matrix exponential in conjunction with the subroutine MATEXP ofWard 32 ].
To avoid analytical complications in the sensitivity estimate resulting from the use of
the balancing transformation BALANX (which is a modified version of the EISPACK
subroutine BALANC [30]), we have implemented (3.3), (3.4) after the back substitution
BALINV in MATEXP. For one cycle of the power method, this results in a condition
estimate, which costs 4n + 4 matrix multiplications, where the scaling parameter n is
chosen so that IIX/2nll

_
log (5/4) 0.223. This ensures that 1]I- eX/2"l[ <- 14, as seen

by the following lemma. (By Corollary 3.7, this scaling condition forces the norm ofthe
trapezoid approximation, L(., X)II to be within six percent ofthe exponential condition
number, L(., X)113

LEMMA 4.1. If zll
Proof. III- eZil
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The subroutine MATEXP needs about 8 + n matrix multiplications to evaluate ex

(to a relative precision of about 10-16), so the sensitivity estimate via (3.3), (3.4) is
about 1.9 times as expensive as evaluating ex when n 6, which was the average value
of n for the examples we considered.

We also implemented the inverse trapezoid approximation (3.6), (3.7) to estimate
the condition of the logarithm, subject to the scaling condition [11- A l/2n " The
square root ofa matrix can be obtained in a stable manner by using the Schur algorithm
described in 5 ]. This involves finding the real Schur form ofA: A QTQr where Q is
orthogonal and T is quasi-upper-triangular. Once this is done, A /2 QT/2Qr, where
T/2 is found by a simple linear recursion involving the entries of Tand the square roots
of the main diagonal entries of T (including the 2 2 blocks corresponding to the
complex conjugate eigenvalues of T; see [22 ]). Moreover, the jth square root satis-
fies A /2J QT,/2JQr, which means that the Schur decomposition need only be done
once in the process of generating A /2n. This is important because the Schur decompo-
sition of a matrix of order p requires about 8ff 3 floating-point operations (flops),
whereas the square root ofa quasi-upper-triangular matrix oforderp requires only about
p3/6 flops. The logarithm of A /2 can be approximated by truncating the slowly con-
vergent Taylor series, log (I Y) , ym/m, but rational Pad6 approximants are
generally superior. For example, it is shown in 20 that if Y I A 1/2 =< , then
the eighth-order main diagonal Pad6 approximant R88(Y) P88(Y)Q (Y) differs from
log (I- Y) by less than 10-8, whereas the sixteenth-order Taylor approximant, which
requires about the same amount of work, can be in error by as much as 5 10 -12. In
the above,

7 y2 73 y3 41 y4_ 743 y5 10 y6_ 111 y7 761 y8+’i + 5775 + 180180
98 y2

_
y3ass(Y) 4Y+]-

35 y4 28 13 y6_ 4 y7 y8+ +,2870
Moreover, when III- A ’/2[1 4

, the Pad6 denominator matrix Qs8(Y) is very well-
conditioned with K(Qss(Y)) =- 1108811 IIa- - 7.59 (see [20]).

The inverse scaling and squaring procedure for evaluating the logarithm ofa matrix
takes about 11 + n/6 matrix multiplications, whereas the first cycle ofthe power method
of estimating the condition number L-’ (., X)II takes about 2 + 13 /6n matrix multi-
plications. Thus the condition estimate takes about 1.2 times the effort needed to evaluate
the logarithm when n 6.

We have also implemented the "finite-difference" power method for the expo-
nential and logarithmic functions. Given Zo define I’o --- (F(X + Zo) F(X))/6,
W0 if’0/II 1011, and Z, - (F(Xr + iWo) F(Xr))/i. Then IIz, provides a condition
estimate ofF at X, at a cost oftwo function evaluations beyond F(X), when we use the
fact that F(Xr) (F(X)) r.

A common problem, for both the trapezoid and finite-difference approximation
methods, is the choice of the initial matrix Z0. The complex nature of both methods
makes it difficult to use "look-ahead" procedures such as those described in 8 and 6 ].
Instead, we have tried two different methods of choosing Zo. The first consists of letting
Zo have random entries in the interval [-1, 1]. This practically guarantees that Zo has
a nontrivial component in the matrix direction that maximizes L(Z, X)II. Consequently,
one power method cycle usually provides an estimate of L(., X)II that is sufficient for
the purposes ofcondition estimation 8 ]. We found that this was the case for the problems
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that we tested and that for most ofthe examples, one cycle ofthe finite-difference power
method with a random Z0 produced a condition estimate that was within 90 percent of
the true condition number while none ofthe one cycle estimates was less than 25 percent
of the true value.

The second method ofchoosing Z0, for the exponential function, consists of setting
Zo =- (exrex + eXexr)/2. The rationale behind this choice is that since

L(Z,X) ext s)Zex" ds,

if we set Z I, then L(I, X) ex. The adjoint step in the power method then gives

exex+ eXexL(eX,Xr) exTt -S)eXexr ds
2 Zo.

Thus one cycle of the power method with Z0 as above has approximately the effect of
two cycles and the resulting condition estimate should be much nearer the true condition
number. We found that this was indeed the ease and the resulting condition estimates
were always better than those obtained with random matrices. A similar procedure was
used for the logarithmic problem.

To determine the true condition numbers for our problem set, the trapezoid power
method was iterated until the estimates from one iteration to the next had a relative
difference of less than 10 -8. (The resulting values were cross-checked by iterating the
finite-difference method.)

In Tables and 2, we give the following relative condition numbers:

(4.1) KrAV--= IIF(X)I-- L(,,X)I1,

IIxll IIL(,,x)llD,(4,2) KD--IIFgX)II
X

L( ,,X) II,(4.3) r.c-IIF(X)II
for the exponential and logarithmic functions where L(., X)I[vAP and L(., X)IID
refer to the one-cycle power method estimates of L(., X)II obtained by using the trap-
ezoid and finite-difference approximation methods, respectively.

The problems tested included eight examples from the standard collection ofmatrices
[16 ], four examples of Ward [32]; 10 examples arising from state space models [1] in
control theory 3 ], 7 ], 25 ], 26 ]; and 1,000 randomly generated matrices of orders
between two and 16. For brevity, we discuss only a representative subsample consisting
of six problems.

TABLE
Condition estimatesfor F(X) ex.

Problem number KTRAP (from 4.1) Kvo (from 4.2) KExAcr (from 4.3)

7.49 7.50 7.50
2 53.9 53.9 53.9
3 2X 104 2X 104 2X104
4 1.59 1.59 1.68
5 210 210 210
6 3 x 10 3 x 10 3 )< 10
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TABLE 2
Condition estimatesfor F(X) log X.

Problem number KTgAP (from 4.1) KFD (from 4.2) KEXACT (from 4.3)

5.15 5.17 5.25
2 9 X 10 9 X 10 9 X 10
3 6 X 10 6 X 10 6 109
4 3.76 3.76 4.03
5 3 10I’ 3 10I’ 3 10II

6 6X 106 6X 106 6X 106

The first four problems ofTables and 2 were taken from 32 ]. Ofthese, Examples
3 and 4 are interesting because they show, as noted by Ward 32 ], that the condition
estimation scheme used in the subroutine MATEXP can give very conservative bounds.
For problem 3, MATEXP predicted that not more than 12 digits of accuracy would be
lost in the computation of ex, whereas one cycle of the power method for the Fr6chet
derivative (see KTRAP and KFD, Table 1, problem 3) predicted four digits would be lost.
In fact, the computed result had lost exactly four digits ofaccuracy. Similarly, for problem
4, MATEXP predicted a loss of at most nine digits, the power method predicted a loss
of one digit, and the computed result had lost one digit of accuracy. This illustrates that
condition estimates based on the norm of the Fr6chet derivative have the virtue of reli-
ability. For the fifth problem, X 0 with l0 6. This value of was chosen because
the exponential condition number is then very large. The excellent agreement between
KTRAP KFD and KEXACT in Tables and 2 is reminiscent of the fact that inverse power
method estimates of A-I become more accurate as A becomes more singular.

An interesting feature of this problem is the strong dependence of KFD on /i, as
illustrated in Table 3. For example, KFD 7 X l0 36 when a/[] X 5 10 -9. This
seems rather conservative since KEXACT K(F, X) 2 l0 . However, the given
values of KFD are correct and appropriate, as the following two points will make clear.
First, for a given value of/i, KFD is a lower bound on K in 1.3 )"

KFD (ll ex+z_ eXll/a)(ll X II/II eXll)--< K.
Thus KFD estimates K rather than K(F,X)=-lim_.oK. Normally, when di
5 10-9 X II, the difference between K and K(F, X) is small. However, and this is the
second point, for this example, K grows dramatically with//. To see this, let Z [ 0],
then (after some algebra),

ex+ z_ eXll IlXl___[_l Ce<KIleXl[= 2:

TABLE 3
Perturbation estimates for

Problem 5 with IIx lO6.

alllxll K,

5 10-9 7 1036
10-9 9 X 1020

5 10-1 3 1017
10-1 X 1013

5 10-11 2 1012
110-I’ 3101’
510-12 2 101’
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For example, if 106 and 6 5 10-9 5 X 10-3, then 1/e/262
7.24 10 36. In fact, for this problem, KFD provides a reasonably good estimate of non-
linear, "large-scale" perturbation effects.

This points the way to choosing the fight value of/ to use with KFD: 6/[[ X should
be on the order ofthe uncertainty in the data, X, or ifis known exactly, fi / X should
be near the machine epsilon, since this is the size of the error induced by machine
representation. After extensive numerical testing, we found that good results were con-
sistently obtained by taking 6 e 10 3 X where e is the machine epsilon (2.8 10 17

for double precision on a VAX 11/780). This value of 6 is small enough so that
(F(X + 6Z) F(X))/6 provides a good approximation to L(Z, X), but not so small
as to generate the truncation effects which occur when 6/[[X is at or below the
machine epsilon. For extremely ill-conditioned problems (for example, problem 5 with
_

108) even 6 103llx is too large to give a good estimate for IlL(., X)[[. In cases
of this type, the trapezoid method provides a reliable means of estimating L(., X)II
(see Corollary 3.5) since it does not depend on/.

The last problem (#6) in Tables and 2 is taken from [26 and illustrates the fact
that condition estimates based on upper triangular canonical forms can be extremely
conservative. For this problem,

48 -49 50 49
0 -2 100 0
0 -1 -2

-50 50 50 -52

Let X SJS- where J is the Jordan form of X. Petkov, Christov, and Konstantinov
[26 show that the Jordan decomposition bound,

ex+ z_ eX[12 x 112
_

16di all 11 s-ll e411sII211s-11 IIxIl=
6 IleXll2 IleXll

gives

K(F,X) <=4 10 TM

for 4 10 -3. However, Lyapunov arguments can be given to show that
K(F, X)

_
2 10 6; a lower bound for K(F, X) is given by KFD 3.4 10 3 for

=4X 10 -3.

5. Conclusion. The natural connection between the Fr6chet derivatives of matrix
functions and sensitivity allows us to develop a very general condition estimation pro-
cedure based on finite-difference approximations. This procedure is computationally
reasonable since it only requires two extra function evaluations. As seen in the section
on numerical tests, the ability to manipulate the "stepsize" in the finite-difference
method can lead to sensitivity estimates even when the size ofthe perturbation is relatively
large (see Table 3, 4). This area needs further research, as does the related problem of
condition estimation for perturbations that are restricted in some way, as in the theory
of structured singular values.

We have also presented an alternative sensitivity estimation procedure for the matrix
exponential and logarithmic functions. This method is based on a trapezoid approximation
of the integral representation of the Fr6chet derivative of the exponential function.

Because of its form, this method dovetails nicely with the "scaling and squaring"
method of evaluating the matrix exponential and the "inverse scaling and squaring"
method of evaluating the logarithm of a matrix. Both the finite-difference and trapezoid
approaches require almost the same effort computationally. However, the trapezoid
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method has an advantage in that it does not depend on the stepsize , and consequently
is a more reliable method for estimating the norm of the Frrchet derivative when the
matrix function is very ill-conditioned, as in Example 5.

Appendix A. The square root and logarithm ofa matrix. In this Appendix, we show
that any real matrix A P P, with no eigenvalues on the negative real axis including
zero, has a unique real square root and a unique real logarithm. We also justify the
inverse scaling and squaring formula log A 2 n log A 1/2n.

LEMMA A1. Let A xp with no eigenvalues on the negative real axis, including
zero. Then there exists a unique real matrix X, such that we have thefollowing:

(A) () X=a,
(A2) (2) The eigenvalues ofXare restricted to the sector r/2 < arg (z) < r/ 2.

Proof. The existence of such a matrix X follows from the Cauchy integral formula
for operators. This method was used by DePrima and Johnson in 11 ], in which this
lemma was proved under the added condition that X satisfies: (3) XS SX when-
ever AS SA. However, this condition can be shown to be a consequence of (A1)
and (A2). E]

LEMMA A2. Let A v v with no eigenvalues on the negative real axis, including
zero. Then there exists a unique real matrix X, such that we have thefollowing:

(A3) (1) eX=A,
(A4) (2) The eigenvalues ofXlie in the strip-r <Im (z)< r.

Proof. The proof is similar to that of Lemma 6.1.
LEMMA A3. Let A qp p with no eigenvalues on the negative real axis. Let A 1/2

and log A denote the unique real square root and logarithm ofA as in Lemmas A1 and
A2, respectively. Then

A 1/2 el/21ogA(A5)
and

(A6) log A 2 log A /2.

Proof. Let X log A satisfy (6.3) and (6.4). Then ex/2 satisfies ex/2 ex/2 ex A
and the eigenvalues of ex/2 lie in the sector -r/2 < arg (z) < r/2. This means that the
real matrix ex/2 satisfies (A1) and (A2) and so by Lemma A1, A 1/2 ex/2 e 1/21gA,
which proves (A5).

Now suppose that A 1/2 satisfies (A1) and (A2). Using the Cauchy integral
operator representation of the logarithm ofA 1/2, we see that the eigenvalue condition
(A2) implies that the eigenvalues oflog A 1/2 lie in the strip -r/2 < Im (z) < r/2. Thus
the matrix X 2 log A 1/2 satisfies (A3) and (A4) and must be equal to log A by Lemma
A2. This proves (A6).

COROLLARY A4. ForA as in Lemma A3, the "inverse scaling andsquaring"formula
log A 2 n log A 1/2 is valid.

Proof. By Lemma A3, log A 2 log A 1/2 4 log A 1/4 2 n log A

Appendix B. Examples of Frchet derivatives. The following lemma enables us to
find the derivatives of the square root and logarithmic functions.

LEMMA B 1. Let F be diffeomorphic at X, that is, let F be invertible in a neighborhood
ofY F(X and let the derivative, LF( X), offatXbe nonsingular. Then the derivative,
LF-( ., Y) off-1 at Y exists and is given by the inverse ofthe derivative off at X:

LF-,(’,F(X))=L.I(’,X).



208 C. KENNEY AND A. J. LAUB

Proof. Although the proof of this lemma is not hard, we omit it for the sake of
brevity.

Using this lernma, we may find the derivatives of the inverse of the functions con-
sidered in Examples and 2 of the introductory section.

Example 3. Let A with no eigenvalues on the negative real axis including
zero, and let A / denote the square root ofA as in Lemma A1. Condition (A2) on the
eigenvalues ofA 1/2 ensures that the Sylvester operator L(Z) A l/2Z + ZA/ is invertible
21 ]. Hence, the derivative, Ll/ of the square root function A -- A t/2 is the inverse of
L in Example of the Introduction: L

_
(W, A) Z, where L(Z, A l/2) W.

Example 4. Let A with no eigenvalues on the negative real axis including
zero, and let log A denote the logarithm of A as in Lemma A2. Condition (A4)
ensures that the exponential derivative operator, L, defined by (1.6) is invertible.
Hence, the derivative, Lo, of the logarithmic function A -- log A is the inverse of L:
Lo(W, A) Z where L(Z, log A) W. (See 3 for more details.)

Example 5. Let X be invertible. Then

(X.. Z)-1 .--X-I-x-Izx-1 - O(2),
so the derivative ofthe inverse function is given by L(Z, X) -X-ZX- It is interesting
to note that the inverse function is invariant under the inversion operation and

L-’(.,X)=L(.,X-).
Since the squaring and exponential functions are related via the identity ex=

(eX/2) 2, it is not surprising that there exists a chain rule relationship between their de-
rivatives:

Lexp(Z,X) 1/2 Ls(Lexp(Z,X/2 ), ex/2)
where Ls and Lexp denote the derivatives of the squaring and exponential functions,
respectively. This relationship is a consequence of the following lemma.

LEMMA B2. Let F(X) g(f(X)) where we assume that the derivatives offand g
exist at X and Y =f(X), respectively. Then the derivative of F at X exists and is
given by

LF(Z,X) Lg(Lf(Z,X), Y)

where Lf, Lg, and LF denote the derivatives off, g, and F, respectively.
Proof. The proof follows rather easily from (1.5).
Example 6. Let A Pxp with no eigenvalues on the negative real axis including

zero. Then we may define a real qth power of A, say X A
We may write A q h(g(f(A))) where f(A) log A, g(B) qB and h(C) ec.
Then the derivative, L, of the map A -- A q is given by L(Z, A) Lexp (qLog (Z, A),
q log A) qLxp (Log (Z, A), q log A).

Note added in proof. We wish to thank N. J. Higham for pointing out to us that
our method for computing a matrix square root based on [5], while arrived at indepen-
dently, is essentially identical to that given in 19]. The latter’s much more thorough
analysis should be consulted for details.
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Abstract. O’Leary and White have suggested a parallel multisplitting iteration scheme for solving a non-
singular linear system Ax b. Among other things they have shown that when A has a nonnegative inverse
and the multisplitting is weak regular, then the iteration converges to the solution from any initial vector. The
extension ofthis result to the case where A is a singular M-matrix is discussed. Problems ofsolvability, consistency,
and convergence arise and their resolution is considered.
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1. Introduction. Consider the linear system of equations

(1.1) Ax=b,

where A is an n n matrix and b is an n-vector. For the case when A is nonsingular,
O’Leary and White [1985 have introduced the parallel multisplitting iteration method
for obtaining the solution to (1.1), which they formulated as follows. Split A into

(1.2) A M-Nt with det (M) 4 0, 1 1, ..., k,

and, beginning with the initial vector x0, perform the iteration
k k

(1.3) x+ ] EM-fNtx+ , EtM-lb, i=0, 1, ....
/=1 /=1

Here Et, l 1, ..., k, are nonnegative diagonal matrices such that
k

(1.4) ., Et= I.
1=1

O’Leary and White’s idea was to implement each step of the iteration (1.3) using a
parallel machine with perhaps k processors in the following manner. The lth processor
receives the approximation xi from the central processor or a shared memory and com-
putes the vector

(1.5) EM7 Ntxi + EM71b.

An essential observation is that the lth processor needs only to compute those entries of
(1.5) that correspond to the nonzero diagonal entries of Et.

O’Leary and White have investigated the convergence ofthe multisplitting iteration
method for systems (1.1) where the coefficient matrix A is an inverse positive (e.g., a
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nonsingular M-matrix) or a positive definite matrix. In particular, they have shown that
if each of the splittings (1.2) is weak regular, that is,

(1.6) M[1_0 and M[INI_O,

then the iteration (1.3) converges to the solution to (1.1) for all Xo, i.e.,

(k )(1.7) p , EtMi-Nt <
l=l

if and only if

(.8)

Here 0(" denote the spectral radius.
Put

k

(1.9) H:= EtM-iNt
1--1

observe that with

and

k

1.1 O) P’= , EtM-i"
/=1

we have that

(1.11)

and consider the system

I-H= EtM-i- A PA

k

c , EtM-t-lb,
1=1

(1.12) (I-H)x=c.

Under the conditions 1.6 and (1.8) on A and the splittings in 1.2), respectively, both
system (1.1) and (1.12) have a unique solution. Moreover, since any solution to (1.1) is,
by (1.11), necessarily, a solution to (1.12 ), it follows that the unique limit point of the
multisplitting iteration scheme must also be the solution to (1.1). In this case, in the
language of Young 1971 ], the iteration 1.3 is consistent with the system (1.1).

Singular systems of equations (1.1) in which the coefficient matrix is an M-matrix
arise, for example, in the computation of steady state solutions for Markov processes
and in the discrete solution to elliptic partial differential equations subject to the Neumann
boundary value condition (see, e.g., Berman and Plemmons 1979, Chap. 8 ], Plemmons
[1976 ]). The question naturally arises about the applicability of the multisplitting tech-
nique to the solution of such systems. As we shall see the extension of this technique to
the singular case raises not only problems with convergence, as indeed is the case for
conventional splittings (i.e., when k 1), but also questions concerning the consistency
of the iteration 1.3 with the system (1.1).

The following example illustrates the nature of the problem of consistency in the
case that A is singular.

Example 1.1. Let

-1 0 0 -1 0 0

MI NI M2 N2
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and let

(1 0)El=
0 0

=I-E2.

Then H E1M]-1 N1 + EEM1N2 I, P and (1.3) becomes

(1.13) xi+ =xi+Pb.
If b R(A), the range ofA, then Pb 0 and we see that (1.12) converges trivially (to
x0) from each initial vector x0. But of course, not every vector x0 is a solution to (1.1).
We further note that if b R(A), then Pb 0 and (1.13) diverges for each choice of
initial vector x0.

In this paper, for systems (1.1), where A is an M-matrix with property-c and each
of the splittings in (1.2) is graph compatible weak regular (see 2 for definition), we
show (Theorem 3.2) that the system (1. l) is solvable if and only if the system (1.12) is
solvable. We further show (Theorem 3.3 that in this case every solution to 1.12 is also
a solution to (1.1) or, equivalently, the iteration scheme (1.3) is consistent with the system
(1.1) if and only if the matrix P is nonsingular. We subsequently provide a graph-
theoretic criterion for P to be nonsingular.
The outline ofour paper is as follows. In 2 we define the notion ofa graph compatible

multisplitting as well as describe other graph-theoretic properties that we then use in 3
to prove our main results. In 3 we also provide examples to show. that our results do
not necessarily hold when the M-matrix A does not have property-c. A byproduct ofour
proofto Theorem 3.3 is that the matrix I- H is an M-matrix with property- c. However,
the iteration scheme (1.3), which is now consistent with the system (1.1), does not nec-
essarily converge from every initial vector Xo since H may have eigenvalues other than
one on the unit circle. We can remedy the situation as follows. If each of the splittings
(1.2) is graph compatible weak regular, then for any e (0, l) the splittings

A=(I+e)M-[eMt+N], /=1, "-,k,

are again graph compatible weak regular. These splittings induce the (extrapolated) mul-
tisplitting iteration scheme

: e -I , EtM_[1bZ + Z E -eI+ M N! z "JI- "-/=1

e
I+ H _,EtM_[lb.

l+e zi+--et=l
This scheme converges from every initial point z0 as all the eigenvalues of e/(1 + e)I +
/ + e)H other than one lie in the interior of the unit circle.

2. Preliminaries. Many of the following notation and definitions are standard.
We frequently borrow from the language of Schneider as used in his papers [1984]
and 1986 ].

A matrix B is called nonnegative, B >= O, if each of its entries is nonnegative. We
call B semipositive, B > 0, ifB

_
0 and B 4: 0. We call B strictly positive, B )) O, if each

of its entries is positive. A square matrix A is a Z-matrix if it has the form A sI B,
where B

_
0. If in addition s

_
0(B), we call A an M-matrix.

Let A be an n n matrix. The directed graph ofA, I’(A), is the graph with vertices
(n) := {1, 2, ..., n} and edges {(i, j)lao 0}. We identify V(A) with its edge set.
Denote by I’(A the reflexive transitive closure of I’(A). For S, T

_
(n) we say that S

has access to T if there is a path in r(A) from a member ofS to a member of T. A class
ofA is the vertex set of a strongly connected component of r(A). We denote the classes
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ofA by al, ae. Ifp 1, then A is called irreducible. For T
___
(n) we denote by

A[ T] the principal submatrix ofA whose rows and column are indexed by T. Similarly,
if x is an n-dimensional column vector, we denote by x[ T] the subvector of x whose
entries are indexed by T. If A is reducible, then A is permutation similar to the block
upper triangular Frobenius normalform whose diagonal blocks are the irreducible matrices
A ai], 1, p. We call a class a ofA (non) singular ifA a] is (non) singular. A
class a ofA is calledfinal if it has access to no other class. The reduced graph ofA is the
set { al, ap } together with the partial order of access that is induced from I’(A). A
chain ofclasses is a sequence (ai, ai,) such that aij has access to Otij , j 1,
t-1.

Given an n n matrix A in Frobenius normal form and an n-dimensional vector
b, we partition b conformably with the block structure ofA, and define the support of b
to be the set of classes a ofA for which b a] 4: 0. We next state a result ofCarlson which
is needed in 3.

THEOREM 2.1 (Carlson [1963, Thm. 1]). Let A be an M-Matrix and let b be a
nonnegative vector. Then there exists a nonnegative vector x such that Ax b ifand only
ifno singular class ofA has access to the support ofb.

Given an n n matrix A, we denote by multo (A) the algebraic multiplicity of zero
as an eigenvalue of A. We further denote by indexo (A) the size of the largest Jordan
block ofA corresponding to zero. The following result of Rothblum relates the index of
an M-matrix with its reduced graph.

THEOREM 2.2 (Rothblum 1975, Thm. 3.1 (ii) ]). Let A be an M-Matrix. Then
index0 (A is the largest number ofsingular classes in any chain in the reduced graph
ofA.

An M-matrix A is said to have property-c ifindexo (A) =< 1. It follows from Theorem
2.2 that an M-matrix A has property-c if and only if no singular class ofA has access to
any other singular class of A, a result first observed in Schneider 1956, Thm. 3 ]. The
next result is essentially due to Schneider [1956, Thm. 3 ].

THEOREM 2.3. Let A be a Z-matrix. Ifthere exists a vector x )) 0 such that Ax
O, then A is an M-matrix with property-c and the set ofsingular classes ofA coincides
with the set offinal classes.

We next come to splittings.
DEFINITION 2.4. Let A be a real square matrix. A splitting ofA is a pair of matrices

M, N such that M is nonsingular and A M N. The splitting is called:
(i) Weak regular (Ortega and Rheinboldt 1967 ifM-1 >= 0 and M-IN >= 0;
(ii) Regular (Varga [1962]) ifM-1 - 0 and N >= 0;
(iii) Graph compatible (Schneider [1984]) if I(M)

___
I(A).

We remark that for a graph compatible splitting any access in the graphs ofMand
N and hence of M-1N also occurs in the graph ofA. In particular, if A is in Frobenius
normal form, then each ofthese matrices is also block upper triangular when partitioned
conformably with A.

DEFINITION 2.5. Let A be a real square matrix. A (k-foM) multisplitting ofA is a
set of matrices { Mi, Nt, Et } = such that

A Mr- Nt is a splitting

(2.1)

Z Et=I.
l=1

l=l,...,k,

This result is restated in Schneider’s survey paper [1986, Thm. 4.3(i)].



214 J. P. KAVANAGH AND M. NEUMANN

The multisplitting is called (weak) regular, respectively graph compatible, if each of the
splittings (1.2) is (weak) regular or graph compatible.

Finally, we denote the column space of a matrix A by R(A) and we denote by Eo
the square matrix whose (i, j)-entry is one and whose remaining entries are zero.

3. Consistency and convergence. Let (2.1) be a graph compatible weak regular mul-
tisplitting of an M-matrix A in Frobenius normal form. In the following all matrices and
all vectors are assumed to be partitioned conformably with the block structure ofA. Let
T { a, c+ } be any set of contiguous classes ofA. Then for each 1 1, k,
Mr[ T] is a nonsingular block upper triangular matrix, whose block structure conforms
with that ofA T]. Thus, by (1.9)-(1.12),

k

H[ T] Et[ T](Mt[ T])-Nt[ T] =I-P[ T]A[ T].
l=1

In particular, if T consists of a single class ofA, then H[ T] is the iteration matrix of the
corresponding multisplitting of the irreducible M-matrix A T]. In view of this we first
investigate the properties of multisplittings of irreducible singular M-matrices.

LEMMA 3.1. Let A be an n n irreducible singular M-matrix, let (2.1) be a weak
regular multisplitting, and let P be defined as in (1.10). Then we have thefollowing:

PA is an M-matrix with property-c and the set ofsingular classes ofPA coincides
with the set offinal classes ofPA.

(ii) Ifb R A then the systems (1.1) and .12 have the same solution set ifand
only ifP is a nonsingular matrix.

Proof (i) Evidently PA I- H is a Z-matrix and the strictly positive null vector
ofA is also a null vector of PA. The result now follows from the results of Schneider,
Theorem 2.3.

(ii) The proof of the "sufficiency" part is trivial.
Suppose that the solution sets coincide. Then the nullspaces ofA and PA are identical.

Since index0 (PA) index0 (A) we now must have that multo (PA) mult0 (A)
1. Suppose y is a vector such that yrP 0. Then as yr(PA) 0 and multo (PA) 1,
y ax, where x > 0 is a left nullvector of PA. Since P is a nonnegative matrix with all
rows nonzero, it is not possible forxrp 0, unless c 0. Hence P is nonsingular, r-1

It is immediate from (1.2)-(1.4) that if the system (1.1) is solvable, then so is the
system (1.12). Interestingly, for M-matrices with property-c we have the following partial
converse which does not require the nonsingularity of P.

THEOREM 3.2. Let A be an n n M-matrix with property-c and let (2.1) be a graph
compatible weak regular multisplitting. Then the system (1.1) is solvable ifand only if
the system (1.12) is solvable.

Proof We need only show sufficiency. Suppose for the sake of contradiction that
the vector x satisfies the system 1.12 ), so that PAx Pb, but b * R(A), where P is given
in (1.10). Since index0 (A) 1, b admits the decomposition into

b=u+v, O=/=uN(A), v=AwR(A).

Thus

PA(x-w)=Pu and u*R(A).

Let u[a;] be the bottom nonzero component of u. Since A is block triangular we
have that

t[ a]u[ all (lu)[ al 0.
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Hence u[a] is a nonzero null vector of the irreducible M-matrix A a] and we may
assume u[ a;] )) 0 (otherwise we can replace the vectors x and b by their negatives). Let
T U;_- %.. Since PA is block upper triangular we have

(PA[ T])(x- w)[ T] (PA(x- w))[ T]

(Pu)[ T]

P[ T] u[ T] > O.

Since PA[T] is an M-matrix with property-c, by Berman and Plemmons 1979, Thm.
6.14.12, condition El2 ], there exists a vector y > 0 such that

PA T]y P[ T] u[ T] > O.

Note that the leading block of PA[ T], namely PA[a], is singular, while the first
component of P[ T] u[ T], namely P[ai] u[ai], is strictly positive. Thus a singular
class of PA[T] has access to the support of (Pu)[ T]. This contradicts Carson’s result,
Theorem 2.1.

Note that in the proof ofTheorem 3.2 the hypothesis ofgraph compatibility allows
us to restrict the multisplitting to certain principle submatrices. In the proofofour second
main result we again exploit this technique to extend Lemma 3.1 (ii).

THEOREM 3.3. Let A be an M-matrix with property-c and let (2.1) be a graph
compatible weak regular multisplitting. Ifb R(A), then the systems (1.1) and (1.12)
have the same solution set ifand only ifthe matrix P defined in (1.10) is nonsingular.

Proof The "sufficiency" part ofthe statement is trivial. Suppose then that the systems
(1.1) and (1.. 12 have the same (nonempty) solution set.

We first claim that PA is an M-matrix. To see this consider a single block A[a] in
the Frobenius normal form of A. Since the multisplitting is graph compatible, the cor-
responding diagonal block ofPA arises from a multisplitting ofA[a]. IrA a] is nonsin-
gular, then it follows from (1.6)-(1.11) that PA[ a] P[ a]A[ a] is a nonsingular M-
matrix. Alternatively, ifA a] is singular, then, by Lemma 3.1 (i), PA a] is an M-matrix
with property-c. Thus the matrix PA is a block triangular Z-matrix whose diagonal
blocks are M-matrices, and hence is itself an M-matrix.

Next, we show that PA has property-c by showing that no singular class of PA has
access to any other singular class of PA. Let 3 and/32 be singular classes of PA. Then
there exist singular classes al and Ct2 of A with 31 al and 32 a2. If al # a2, then
since I’(PA)

_
F(A) and A has property-c it follows that 31 has no access to/32. On the

other hand, if a a2, then as PA[a] has property-c, and we again conclude that
has no access to/32.

Finally, as (1.1) and (1.2) have the same (nonempty) solution set, A and PA have
the same nullspace. Now, since index (A) index (PA) _-< 1, we see that

multo (PA) multo (A).

Hence each class a ofA contains at most one singular class of PA and so P[ a] is non-
singular as in the proof of Lemma 3.1 (ii).

While the M-matrices that arise in the applications mentioned in have property-
c, much of the proof of Theorem 3.3 applies to general M-matrices. In particular we
have the following results.

COROLLARY 3.4. Let A be an M-matrix and let (2.1) be a graph compatible weak
regular multisplitting. Then we have thefollowing:

PA is an M-matrix.
(ii) index0 (PA)

_
index0 (A).
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(iii) mult0 (PA)

_
multo (A) and equality holds ifand only ifP is nonsingular.

Proof. Statements (i) and (iii) follow from the proof of Theorem 3.3.
By Rothblum’s result, Theorem 2.2, it suffices to show that corresponding to any

chain of classes of PA, A has a chain with the same number of singular classes. Let/3
and 2 be singular classes of PA. Then there exist singular classes a and a2 ofA such
that

_
al and 2 ----- O2. If a a2, then likewise to the proof of the theorem,/3 has

no access to 2 in the reduced graph of PA. Thus if/3 has access to 2, a, and t2 must
be distinct and, since F(PA)

_
F(A), a must have access to a2 in the reduced graph of

A. The result now follows. V1

In the case when index0 (A) > 1, Corollary 3.4 does not allow us to draw the same
conclusion as in Theorem 3.3. This is because the inequality multo (PA) > multo (A)
does not necessarily imply that nullity (PA) > nullity (A). We illustrate this with the
following example, which also serves to show that Theorem 3.2 does not extend to general
M-matrices.

and let

Example 3.5. Let

0 0 -1 0
0 0 0 -1
0 0 -1
0 0 -1

0 0 0 0 0 0
0 0 0 0 0 0M= 0 0 -1 M2= 0 0 0
0 0 0 0 0 -1

Let N; Mi A, 1, 2, so that A Mi Ni, 1, 2, are both graph compatible
weak regular splittings. Let

0 0 0
0 0 0
0 0 0
0 0 0 0

E =I-E2

Then

0 0 0 0 0 -1 0
0 0 0

and PA= 0 0 0 -1P= 0 0 0 0 0 0
0 0 0 0 0 0

Observe that P is singular, but nullity (A) nullity (PA) 2. Thus for any vector b
R(A), the systems (1.1) and (1.12) have the same solution set. On the other hand, if
0 4 b N(P), e.g., b (0 0 -1) r, then b t R(A), but Pb R(PA).

We conclude the paper with a series of remarks.
Remark 3.6. The hypothesis ofgraph compatibility may not be dropped in Theorems

3.2 and 3.3. Indeed, even the case of a single splitting, i.e., k 1, PA need not be an
M-matrix (see, e.g., Neumann and Plemmons [1978, Remark ]).

Remark 3.7. For a weak regular multisplitting of a singular irreducible M-matrix
A, Lemma 3.1 gives us a graph-theoretic criterion for the nonsingularity of P, namely,
P is nonsingular ifand only ifthe graph ofPA has precisely one final class. More generally,
for a graph compatible weak regular multisplitting of an M-matrix with property-c, P is
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nonsingular if and only if for each singular class a of A, PA a] has exactly one final
class. This observation together with Theorem 3.3 yield graph-theoretic means ofdeciding
when the systems (1.1) and (1.12) have the same solution set.

Remark 3.8. Given an M-matrix with property-c and a set of k graph compatible
weak regular splittings, the problem arises of how to choose the weighting matrices
Et, 1 1, ..., k, so that matrix P is nonsingular and Theorem 3.3 applies. Recall that
P is nonsingular if and only if P[ a] is nonsingular for each class a ofA. Further, if a is
a nonsingular class ofA, then P[ a] is nonsingular by the results of O’Leary and White
described in the Introduction. Suppose then that a is a singular class ofA. If, for instance,
there is some weighting matrix Eto,

_
1o - k, such that Eto[ a] is nonsingular, then the

graph ofPA[a] contains that of M[oA[a], which has a unique final class. Hence PA[a]
itselfhas a unique final class and so P[ a] is nonsingular by the previous remark. It follows
that a sufficient condition for the nonsingularity of P is that for each singular class ct of
A, there exists 1,,

_
1,

_
k, such that Eta[a] is nonsingular. The above condition,

however, may not be particularly useful in practice since it may not be desirable to have
a large number of nonzero entries in any of the weighting matrices. This, in turn, is
because, as pointed out in 1, the number of nonzero entries of Et affects the amount
of computation per iteration of the lth processor.

The above sufficient condition for the nonsingularity ofP restricts only the choice
of the weighting matrices and does not depend on the set of the k (graph compatible
weak regular) splittings. An alternative approach to the problem is to impose conditions
on the set of splittings chosen that ensure that P is nonsingular for any choice of the
weighting matrices. An example of such a condition is the following. Assume A is irre-
ducible and the multisplitting is regular. Suppose there exist indices -< i, j

_
n such

that the (i, j)-entry of Nt is nonzero for each 1 1, ..., k. Then for sufficiently small
e > 0, the splittings

A + eEij Mt-(Nt- eEl), 1= 1, ,k

are regular splittings of a nonsingular M-matrix. Thus P Y _- EtM-i- is nonsingular
regardless of the choice of the weighting matrices. It now follows that for a graph com-
patible regular multisplitting of an M-matrix A, the matrix P is nonsingular provided
that for each singular class a ofA,

k

(3.1) r(N[a]) /.
/=1

An example ofa situation where condition (3.1) is satisfied is the following Gauss-Seidel
type of multisplitting. Let

A=D-L-U

be an M-matrix, where D, L, and U are, respectively, nonsingular diagonal, strictly lower
triangular, and strictly upper triangular matrices. For I 1, ..., k let

0

_
L!
_
L and Mt D L!

so that

Nt U+L-Lt_ U_O.

Since A has only positive diagonal entries, any singular block ofA has size at least 2
2, and hence shares a nonzero entry with U.

Remark 3.9. Let A be an M-matrix with property-c and let (2.1) be a graph com-
patible weak regular multisplitting. If b R(A), then by Theorem 3.3 every limit point
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ofthe multisplitting iteration scheme (1.3) is a solution to (1.1) if and only if the matrix
P is nonsingular. We observe that in this case the multisplitting iteration matrix Hgiven
in (1.9) can be obtained from the (single) graph compatible weak regular splitting

(3.2) A =P--P-H.
For a weak regular multisplitting of a nonsingular M-matrix A, the matrix P must

be nonsingular, and hence (3.2) is a weak regular splitting ofA, a fact observed by Elsner
[1988 ]. It is worthwhile noting that every weak regular splitting of a nonsingular M-
matrix is graph compatible (see Kavanagh 1988 ).

REFERENCES

A. BERMAN AND R. J. PLEMMONS 1979 ], Nonnegative Matrices in the Mathematical Science, Academic Press,
New York.

D. H. CARLSON [1963], A note on M-matrix equations, J. Soc. Industrial Appl. Math., l, pp. 1027-1033.
L. ELSNER [1988 ], private communication.
J. P. KAVANAGH 1988 ], Splittings ofM-matrices, Ph.D. thesis, University of Wisconsin, Madison, WI.
M. NEUMANN AND R. J. PLEMMONS 1978 ], Convergent nonnegative matrices and iterative methodsfor consistent

linear systems, Numer. Math., 3 l, pp. 265-279.
O. P. O’LEARY AND R. E. WHITE [1985], Multi-splittings ofmatrices and parallel solution oflinear systems,

SIAM J. Algebraic Discrete Meth., 6, pp. 630-640.
J. M. ORTEGA AND W. C. RHEINBOLDT 1967 ], Monotone iterationsfor nonlinear equations with applications

to Gauss-Seide! methods, SIAM J. Numer. Anal., 4, pp. 17 l-190.
R. J. PLEMMONS [1976], Regular splittings and the discrete Neumann problem, Numer. Math., 25, pp. 153-

161.
U. G. ROTHaLUM 1975 ], Algebraic eigenspaces ofnonnegative matrices, Linear Algebra Appl., 12, pp. 281-

292.
H. SCHNEIDER [1956 ], The elementary divisors, associated with 0, ofa singular M-matrix, Proc. Edinburgh

Math. Soc., 10, pp. 108-122.
[1984 ], Theorems on M-splittings of a singular M-matrix which depend on graph structure, Linear

Algebra Appl., 58, pp. 407-424.
, [1986], The influence ofthe marked reduced graph ofa nonnegative matrix on the Jordan form and

on related properties: a survey, Linear Algebra Appl., 84, pp. 16 l-189.
R. S. VARGA 1962 ], Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ.
D. M. YOUNG 197 l, lterative Solutions ofLarge Linear Systems, Academic Press, New York.



SIAM J. MATRIX ANAL. APPL.
Vol. 10, No. 2, pp. 219-228, April 1989

(C) 1989 Society for Industrial and Applied Mathematics
007

ALGORITHMS FOR THE RECONSTRUCTION OF SPECIAL
JACOBI MATRICES FROM THEIR EIGENVALUES*

M. HEGLAND AND J. T. MARTH"

Dedicated to the memory of Peter Henrici

Abstract. Two algorithms for the reconstruction of symmetric tridiagonal (not necessarily persymmetric)
matrices J with subdiagonal entries equal to one from their eigenvalues are established. The first algorithm is
an iteration method using orthogonal similarity transformations in the sense of an inverted Jacobi algorithm
and is shown to be locally convergent. Since reconstruction problems are often rather ill-conditioned, the
algorithm may be slow, but it gives good approximations J’ to J. J’ may be used as a starting value for the
second algorithm, a Newton method iterating the characteristic polynomial ofJ’. Numerical examples demonstrate
the convergence behavior, also for nonpersymmetric matrices J.

Key words, reconstruction algorithms, Jacobi matrices, Jacobi algorithm, inverse matrix eigenvalue problem
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1. Introduction. Special Jacobi matrices are tridiagonal matrices of the follow-
ing form:

(1.1) J=

q 0 0
q2 0

0 0
0 q,,_

0 0 q,,

Such matrices occur in the discretized version

(1.2) Jqx= l,tx

of the Sturm-Liouville problem

(1.3) -u"+au=u, u(0) u(1) 0,

where Jq has diagonal elements

(1.4) qi: =-hEa(xi), xi:=ih, _i_n, h:=(n+ 1) -,
the symbol a denotes the potential function in (1.3), q is a vector in R’, and the first
eigenvalues ti of Jq approximate 2 h2,i, where , _-< )k2 are the eigenvalues , of
(1.3) and t

_
2 ----- n.The inverse Sturm-Liouville problem related to (1.3) is the problem of the recon-

struction of potentials a from the set of eigenvalues of (1.3). Strongly related to this
problem is the problem of reconstructing q R’, and hence the special Jacobi matrix J
from the spectrum a(J) { t, ", t. } of J.
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It is well known 5 that Jq has n different eigenvalues and that the inverse matrix
eigenvalue problem of reconstructing Jq from .(J,) may have more than one solution.
IfP is the reversion matrix given by

0 0 0
0 0 0

P= 0 0 0 0
0 0 0

0 0 0

then a symmetric matrix A is called persymmetric if A PAP or, equivalently, if
PA AP. In 5 it is also shown that the above problem for persymmetdc matrices J,
has a unique solution. Algorithms for the solution of such inverse eigenvalue problems
have been given by de Boor and Golub 2], Biegler-Kinig [1 ], and Gragg and Harrod
[4 ]. In the above situation, the first algorithm applies to persymmetdc matrices Jq only,
whereas the second algorithm, as a Newton method, converges rapidly, also for nonper-
symmetric matrices, but depends on starting matrices close enough to J,. The Lanczos
and Rutishauser algorithms treated in the last paper are extremely fast and stable and
reconstruct Jacobi matrices with arbitrary (positive) subdiagonal dements.

In this paper we describe an algorithm working with orthogonal similarity trans-
formations using plane rotations R(j, k, t) that rotate the (j, k) plane in Rn through an
angle 0 arctan t,

R(j,k,t)’= tR, <-j<k<n
s...c.., k’

)
where c cos 0 and s sin 0, starting with the diagonal matrix Ao := diag (#n, -..,
to obtain the iteration sequence {Am } given by

(1.5) Am: Q(am- l)Tam lQ(am- ), meN.

The matrices Q(Am- ) are defined by
n-I n

(1.6) Q(Am-1):-" H H R(j,k, sjk),
j--lk--j+l

where the matrices S of tangents Sjk of rotation angles depend on Am- and are chosen
such that after each similarity transformation with a plane rotation the iterated (sym-
metric) matrix Am has off-diagonal elements that are closer to one for subdiagonal and
to zero for other off-diagonal elements. The details are given in 2. The algorithm for
the reconstruction of special Jacobi matrices J,, q R is stated explicitly in 3. In 4
we present sufficient conditions on the potential vector q for the local convergence of
the algorithm. Since the inverse eigenvalue problem of reconstructing Jq from tr(Jq) is
often rather ill-conditioned it is not surprising that numerical evidence shows a rather
slow convergence of the algorithm. However, locally fast converging Newton methods
require initial potential vectors that are relatively close to q. These starting vectors are
now available as elements of the iteration sequence {Am } given by (1.5). A Newton
algorithm iterating the characteristic polynomial of special Jacobi matrices Jp such that
p converges to q is given in 5. This method is much simpler and faster but probably
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less stable than the Newton iteration proposed in ]. Numerical examples for persym-
metric, nonpersymmetdc and for strongly varying potential vectors q in J are given
in6.

2. The choice of the rotation angles. The tangents of the rotation angles, i.e., the
superdiagonal entries Sjk(1

_
j < k

_
n) of the "sweep matrix" S are chosen such that

off(B- J0) - off(A J0), where

(2.1) off c).= cll- c.
i=1

and C[I is the Frobenius norm ofC R" and where B is the iterated matrix obtained
by an orthogonal similarity transform ofA,

B R(j k, S;k rAR(j, k, Sk).

To be more specific, we have by an elementary computation

off (B Jo) 2 zsc + c2 s2)ajk] 2 "- 4x(1 c) + 4ys
(2.2)

41j + ,k[ zsc+ ajk(C2 S2) + Off(A Jo) 2a]k--4+ ,kak,

where c := (1 + Syk) -/2, S := SkC, k is the Kronecker symbol,

X: aj_ l,j+ ak,k + +(1 j+ l,k)[aj,j+ + ak- l,k],

y := aj_ l,k--aj,k+ldr(1 --j+ l,k)[aj+ l,k--aj,k-1],

(2.3)

(2.4)

and

(2.5) Z: ajj- akk.

A choice of sjk such that off (B Jo) is minimal would be optimal, but one step of a
Newton iteration for a zero of the first derivative of off(B Jo) with respect to Sk turns
out to be a workable practical compromise and asymptotically sufficient. Again by an
elementary computation, this leads to the formula

(2.6)
z(a- +

Sjk 4a]k Z2 4@+ ,kajk X"
3. An algorithm for the reconstruction of special Jacobi matrices from the eigen-

values. The following algorithm starts with a diagonal matrix Ao with the eigenvalues
tn < #n- < < t of Jq as diagonal elements. The elements ofAm- are overwritten
by the elements of

ALGORITHM 3.1 (one sweep for iteration (1.5)).
Forj= 1,...,n-

For k =j+l, ,n
computation of s, c, and z by (2.3)-(2.6)

Forl= 1, ,n l # j,k)
a := ajt
ajt := at/:= ca-sakt
akl ark sa-l-cakt

a := ai, b := a, d := a
a := c2a- 2scd+s2b
akk := s2a+2scd+c2b
a, := a.i:= scz + (2-$2)d
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4. Convergence proof. For q R the manifold

Iq:= {AR"’:Ar=A, a(A)= ff(Jq) }
ofR x is called the isospectral set of Ja. Since the algorithm (1.5) works with orthogonal
similarity transforms, we introduce the mapping Sq" SO (n) -- Iq given by

S(U): UTjqU, USO (n),

where SO (n) is the group of orthogonal matrices in R" with determinant one. The
following proposition shows the connection ofthe two manifolds Iq and Sq(SO (n)), i.e.,
that the isospectral set Iq of Jq is the orbit Sq(SO (n)) of Jq under the group of special
orthogonal similarity transformations.

PROPOSITION 1. For every q R", Iq Sq(SO (n)).
Proof. It is clear that 1 Sq(SO (n)). It is well known (see, e.g., [3, Thm. 8.1.1]

or [6, Thm. 1.4]) that for A Iq there is an orthogonal matrix U [Ul" .u,] such that

A UAqUr,
where Aq := diag (#, ..., #,) and #1, "’", #, are the eigenvalues of Jq. Next, let
U_ := [u...u,_ -u,]. Since we also have

A U_AqUT_

and U_ is orthogonal with determinant -1 we may, without loss of generality, assume
that U SO (n). Therefore, we also have J VAqVr and thus A UVTJVUr for
some V SO (n), which finally implies that A e Sq(SO (n)). vq

Next, let {j } be the family of real functions on SO (n) given by

fA(U):=off(UTAU-Jo), USO(n), A-R"’.
It follows that

fj( U) off &( u) o), uso(n).

Moreover, let Q: R"" --, SO (n) be a continuous mapping, here called an iteration
mapping, such that Q(Jq) I, q R’. Then given q R" and Ao Iq, Q defines an
iteration sequence {Am } Iq by

This implies that

Am’.=Q(Am_I)TAm_IQ(Am_I),

fa,,(I) fa,,, _, ( Q(Am -, )), m-N.

m.N.

DEFINITION 1. Let YQ be the set of all q R" such that there is a compact neigh-
bourhood W of I in SO (n) satisfying

(i) Q(A)TAQ(A) Sq(W),A Sq(W);
(ii) fa(Q(A)) < j(I) if Jq A Sq(W).
THEOREM 1. For every q YQ there is a neighbourhood WofI in SO n such that

for Ao Sq( W) the iteration sequence {Am } defined by Q converges to Jq in I.
Proof. If q is in Yo there is a neighbourhood W obeying properties (i) and (ii) of

Definition 1. Since Sq is continuous on the compact set Win SO (n) there is at least one
limit point A of {Am } in Sq(W). IfA :/: Jq the continuous dependence of (U) on A
and U, the continuity of Q and (ii) then imply the existence of an m in N such that

fAr,,(Q(Am))< f(I).
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This contradiction to the fact that {Jm(I)} is a monotone sequence finally yields
limm Am Jq. V]

TO prove the following lemma we now introduce a mapping g of R, where g :=
n(n 1)/2, into SO (n) such that g is a homeomorphism of a zero neighbourhood in
R into a neighbourhood ofthe identity I ofSO (n). For this purpose, let g: R - SO (n)
be the Cayley transform

g(x)’=(I-Sx)(I+Sx)-l, x.R,
where S is the one-to-one linear transformation of R into the subspace S of all skew
symmetric matrices in Rn x n, given by

0 x
-x 0

Xn--
Xn X2n- 3

Xp

XER.
Let dxg denote the first derivative ofg at x and d2g the corresponding second derivative
(i.e., the Hessian bilinear form). An elementary calculation then shows that

dog(x) -2Sx and dg(x,x) 4Sx2, x-R.
Similarly, let d:Jj (p 1, 2) be the corresponding derivatives of Jj at U SO (n).

LEMMA. lfq Rn is such that the bilinearform d21fjq is positive definite on S x S
there is a compact neighbourhood V ofI in SO n such that

(*) I is the only critical point off, in V;
(* *) For every compact neighbourhood V’ of1 in Vthere is a compact neighbourhood

W ofI in V’ such that

W= { U V:Jj,( U)_ inf {jj( U’): U’eOV’} }.
Proof. We use the facts that j, is smooth on SO (n), that Jj,(1) 0, and that

Jj,

_
0. Thus, I is an absolute minimum of j), and a critical point, i.e., dz, 0. Let X

be the closed unit ball of R". Then for s e (0, 1) and any x OX by Taylor’s Theorem
and the chain rule we obtain

dsx(f,o g)(x) d2tx(f,o g)(sx, x) dt

dEgtstx)fq(dstxg(Sx),dstxg(X))+ dgtstx)f,(dEstxg(Sx, x))] dt.

Since OX is compact we get

a inf { dEf,(Sx, Sx)"x-OX } > 0,

and thus

-1lim s dsx(fj, g)(x) lim 4
s--O s--O

d2f,(Sx, Sx) + dg(tx)fs(Sx2) dt

4d2f,(Sx, Sx)_
4a, xOX.
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This implies the existence of an > 0 such that

(4.1) s-dx(fs.g)(x)_2a, s(0,e], x.OX.

Hence dvJ, / 0 for U / I on the compact neighbourhood V’= g(eX) of I in SO (n).
This shows * ).

Moreover, by Taylor’s Theorem,

fs, g(sx) dtx(f,o g)(sx) dt

foSdtx(fs, og)(x) dt_
2sta dt sa s (0, e ], x OX.

Therefore, 3(U) > 0, I / U V. Next, let V’ be any compact neighbourhood of I in
V. Since jS, attains its absolute minimum on OV’, we then have

b’= inf {j,( U)" UOV’} >0.

By the continuity of j,,
W:= { U V:jS(U)

_
b }

is a compact neighbourhood of I in V. Finally, we can show that W V’. For this
purpose, let x R" be such that g(x) W\ V’ and let

r:= sup { t.(O, 1)" g(tx). V’}.
Obviously, r (0, 1). Again by Taylor’s Theorem, the substitution s rt and (4.1), we
then obtain

f g(xI ax(f,oe, I(xI s

dtx(fs,, g)(rx) dt + dx(fj, g)(x) ds- fso* g( rx) + 2as ds

_b+a-arZ>b.

This proves (* *).
THEOREM 2. IfQ is an iteration mapping, then thefollowing conditions are sufficient

for q R to be an element of Yo"
(1) dfs is positive definite on S
(2) There is a neighbourhood V ofI in SO ( n) such that

(a) fs,v)(Q. So(U))

_
fs,(U), U V,

(b) fs< v)(Q. Sq(U)) < fsq(U), if 1 4 U v and U is not a critical point
offs,.

Proof. Let dj be positive definite for some q R". By the above lemma we may
assume that V coincides with the neighbourhood V of the lemma. Since Q and So are
continuous there is a compact neighbourhood V’ of I in V such that

(4.2) UQo S( U) V, U V’.
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Again by the above lemma there is a compact neighbourhood WofI in V’ such that

(4.3) W-- { U V:fi,( U)_ inf {fiq( U’)" U’.OV’} }.
In view of (4.2) we have

QoSg(U)rSg(U)QoSg(U)Sg(V), UW.

Thus for eve U Wthere is an U’ V such that

(4.4) Q. Sq(U) rSq( U)Q Sq( u) Sq( U’),

and thus

Q-

By Theorem 2 2 )(a) this yields

which by (4.3) implies that U’ W. Hence A S( U)( U W) by (4.4) tisfics

Q(a)raQ(a) s (w),
which is (i) of Definition 1.

To show (ii) we use the fact that I is the only critical point of in W. Then the
relation A S(U) implies that the condition (ii) is an immediate conquence of con-
dition (2) (b).

Let us now compute the bilinear fo d] on S X S. Ifk S is ven by

(Ek)tm’=5tj6mk--5kSmj, j<kn, l<mn,

it is clear that the set { Eg" j < k n } is a basis for S, that S S(R0, and that
the elements S-Ej are the column vectors of the unit matrix of order . Using the
definition of d, U 6 SO (n) (p 1, 2), we obtn by an clemen compution

2 V Y V- o)rr,(EjJqV+
r<r’n

and
2 Edzfq( jk. Eim)= 2 , (EJ#+ J#Ejk).,(ELJ#+ JqElm)rr,.

r<rn

Since for

_
j < k

_
n and qjk qj qk

E .J. + J.E 

-1
qjk
1

-1 qjk--

j k

the mapping (x, y) --. dEfj(Sx, Sy), x, y e R" defines a bilinear form. The (Hessian)
matrix of this form is 1/2 times a similarity transform with a permutation matrix of a
symmetric pentadiagonal block matrix Hq with diagonal blocks Bk(1

_
k < n) and
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subdiagonal blocks C(1 < k < n) and Dk(2 < k < n). The block B Rt- )xt-) is
tridiagonal with diagonal entries

+ q22, 2 + q223,2 / q324, 2 + q2 2.-, + q2_ .
and subdiagonal entries 1. The matrices Bg Rt- k) t- k)(1 < k < n 1) are
given by

B diag (3 + q2, +, 4 + q, +2,4q], +3,""", 4q2 k- l, -, 3 + q2 k,)

and B,_ [2 + q2,]. The blocks C e Rt-)t-+ l) for < k < n are matrices with
vanishing elements, except the diagonal elements

2qi- qi + i- qi + k

_ -- n k)

and the superdiagonal elements

--qi-- qi+ + 2qi+k(1 -- _n-- k).

Finally, Dk Rtn k) n k+ 2) are matrices with vanishing elements except the diagonal
and the first two superdiagonal elements which have constant values 1, -2, and 1, re-
spectively.

The following example shows the existence of potential vectors q e Rn such that Hq
is singular and hence not positive definite. For n 3 we obtain

+ q22
det Hq det

q21 + q31

=q3

-1 q23 -F q31 "]
+ q223 q13 -F q23

q13 + q23 2 + q213

and the last quantity obviously vanishes if and only if J is persymmetric.
THEOREM 3. IfQ is defined by (1.6) and Algorithm 3.1 then the set Yo is dense

in R and for every q YQ there is a neighbourhood W of I in SO (n) such that
limm Am Jqfor any starting matrix Ao S(W).

Proof. For every q e Rn the matrix H is positive semidefinite. The determinants
ofthe leading principal submatrices ofH are polynomials in q, and hence do not vanish
on a dense set of points in Rn. Thus it is clear that the set of q’s where Hq is positive
definite is again dense in Rn. Since Q given by (1.6) and Algorithm 3.1 satisfies Theorem
2(2) it follows that Yo is dense in R. The rest ofthe prooffollows as a direct consequence
of Theorems 2 and 1. [3

5. A Newton method for the reconstruction of special Jacobi matrices. A well-
known recursion relation (see, e.g., 2 ]) for the characteristic polynomial () of
Jp(p Rn) is

(5.1) ,P(,)=(X-P),P- (,)--2(?,), _k_n,

where _(X) := 0 and 0(h) := 1, X C. We write ,p,,(,) arz + ," and

,pk(h)=a[z, -1 _k<n,

where a and z := (1, X, h 2, Xn- ) r C. Equation (5.1) is then equivalent to

a (E-pI)a_ ak_ 2, _-< k_-< n,

where { el, "", e } is the standard basis of Rn, E is the shift matrix [e2e3’’ .e0],
a-i := 0, and a0 := el. Now let B [bl" "bn] := [Oa,/Opi...Oa,/Op,] be the Jacobian
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matrix of the vector an (both depending on p) with respect to the potential vector p of
Jp and let c R" be a vector such that the characteristic polynomial p of Jq is given by

o(X) fi (X-)=crz+ X, XC.
i=l

One step of Newton’s method for the computation of the zero q of an c iterating an
approximation p for (the potential vector) q then is

p’=p x, x solution of Bx a,, c.

The following algorithm computes the Jacobian matrix B of an and the fight-hand side
ofthe linear system Bx c a,,, where for the sake ofcompactness we use the notation
b0 for

ALGORITHM 5.1 (computes the Jacobian matrix B and the vectors a,, (=bo) and
c for the proposed Newton method).
bo := c := el
For k=O, n
S:=0

Forj=k+l, ..., n
If k=0 then bj b0, c Ec- tjc]
t:=s s’=bk bk:=Es-ps-t

6. Numerical examples. The following numerical examples are concerned with the
reconstruction ofspecial Jacobi matrices Jq R for n 15 with q R given by 1.4),
where a" (0, 1) -- R is given by

sin (rx),

h-a(x).= sqrt(x), x(0,1).

sign (x 1/2),
The data for the reconstruction are the spectra a(J) of J that are computed here

by the well-known QR algorithm for tridiagonal matrices. The numerical results have
been obtained by using 512 iterations of the type (1.5) based on Algorithm 3.1. Let
ptm) 6 Rn be the resulting vectors of diagonal elements ofAm. ptSl-) then has been used
as a starting vector for k 2, 4, 8, ..., 64 steps of the Newton algorithm, Algorithm
5.1, producing approximations qtk) in Rn for the potential vector q of J. Since the

TABLE 6.1

Example 2 3

m 8 1.0-0 1.0-0 1.0-0
32 5.7-I 5.7-1 5.7-1
128 3.7-1 3.7-1 3.7-1
512 1.8-1 1.8-1 1.8-1

2 6.0-2 5.7-2 5.5-2
4 1.5-2 1.4-2 1.2-2
8 2.3-3 1.5-3 7.7-4
16 9.7-4 3.7-4 6.0-5
32 4.7-4 5.8-5 6.6-7
64 2.4-4 2.2-6 1.7-8
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condition numbers ofthe Jacobian matrices B are strongly increasing with k, the parallel-
chord Newton method has been applied for k > 6, where the matrix B of the case k 6
has been kept for the corresponding B’s for k > 6. Slightly better results could be achieved
using the more elaborate singular value decomposition instead of the Gauss algorithm
with partial pivoting for solving the system Bx c an.

Table 6.1 states the error in the mean forpm) and q(k) given by the Euclidean norm
of the error vectors ptm) q and qtk) q, respectively, divided by n 1/2
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GEOMETRIC PROPERTIES OF HIDDEN MINKOWSKI MATRICES*
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Abstract. It is known that a vector satisfying a certain exponentially large set of inequalities related to a
matrix M will allow the solution of linear complementarity problems with matrix M in n steps. It is shown that
the set of such vectors, if nonempty, is the interior of a simplicial cone. The defining inequalities for this cone
show that Mr is hidden Minkowski if such a vector exists.
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1. Introduction. Let ml, "", rnn be a set of n points in n, and let e e be
the standard basis for . A subset of S { el, e, ml, "", rn } is called comple-
mentary if it contains no two points with the same subscript. IfM n x and q ,
the linear complementarity problem (M, q) is to find a complementary subset ofS, with
mi -Mi, the th column of-M, for 1, ..., n, so that the cone generated by the
subset contains q. It is known (see [PC]) that Lemke’s algorithm for the linear comple-
mentarity problem will find a solution quickly if we can produce a positive vector p
satisfying, for any index set I contained in { 1, n },
(.) M[llpi> O.

A set ofconditions similar to (.), with nonstrict inequalities replacing strict inequalities,
was obtained by Cottle [C] to characterize matrices for which a certain monotonicity
property ofthe parametric linear complementarity problem holds. These considerations
have led to the study of properties of matrices for which such a p can be found.

It has been conjectured see KMW that the set ofp > 0 satisfying ), ifnonempty,
is the interior of an n-dimensional simplicial cone in when M is symmetric and
positive definite. One purpose of this note is to prove that this is true when M is a P-
matrix. The defining inequalities for this simplicial cone will show that ifap > 0 satisfying
(.) exists, then Mr must be a hidden Minkowski matrix. It is already known that a
p > 0 satisfying ) exists whenMr is hidden Minkowski (see PC ), so this result shows
that the two matrix classes are the same. This characterization is very useful, because
[P] has given a polynomial time algorithm to check ifMr is hidden Minkowski and
[PC] finds a p > 0 satisfying (.) in polynomial time ifMr is indeed hidden Minkowski.

DEFINITIONS. Let S { el, "", e, m, ..., mn }, with m, -.., m arbitrary and
e, ..., e the standard basis for . S is called nondegenerate if the points in any
complementary subset ofS are linearly independent. A complementary subset ofS with
rn elements is called an m-complementary (m-c.) subset of S. A matrix Men
is called a P-matrix if one of the following equivalent (see [Mu ], STW]) conditions
is satisfied:

(P 1) The principal minors ofM are all positive.

(P2) For every 0 q: x , there is an index so that xi(Mx)i > O.
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(P3) When we let m, ..., mn be given by the columns ofM, S is nondegenerate
and for every index the points ei and mi are on the same side ofany hyperplane
containing an (n 1)-c. subset of S\ { ei, m }.

(P4) There is a unique solution to the linear complementary problem (M, q) for
any q n.

2. A geometric property.
LEMMA 1. Let S be nondegenerate and let the columns ofM be given by m, ...,

m.M is a P-matrix and there is a p > 0 satisfying (.) ifand only ifthe 2 cones generated
by n-c. subsets ofS have nonempty intersection ofdimension n.

Proof. Suppose that p > 0 satisfies (.) and that M is a P-matrix. Then we would
like to show that for any n-c. set { ej, j e J} t.J { m, e I } there exist Xi > 0, 1, ...,
n, so that

p= , Xje+ , ,imi.
jJ il

Consider an n-c. subset { e, j J} { mi, I}. t

(1) p= hjej +
jj il

be the expression ofp in tes of { ej, j J} U { m, 1}. The assumption implies
that X > 0 for 1. In paicular, this implies thatp is in the interior ofthe cone generated
by{m,i= 1,...,n}.IfJ,letkJandlet
(2) p #jey + #km, + imi

jJk il

be the unique representation ofp in tes of { e,j Jk} U { m, I U k }. Subtracting
line (2) from line (1), we obtain

(3) m+ (-X)m Xe+ (X- u)e.
il jk

Define x by Xk k, X i , I, X 0 othese. Then (Mx) ,
j jk, (gX)k hk, (gx)i O, I. Thus by (P2), x(MX)k X#k > 0, implying
that > 0. Thus > 0, j J, and p is in the interior of the cone generated by
{e,jeJ} {mi, iI}.

Conversely, if the 2 cones have nonempty intersection of dimension n, let p be a
point in this intersection. Then clearly (.) holds, and (P3) must also hold.

By Lemma 1, the set of p > 0 satisfying (.) is the interior of an n-dimensional
polyhedral cone. The facets of this cone are contained in cones generated by (n 1)-c.
subsets of S, because the cones generated by the (n 1)-c. subsets ofS are the facets of
the cones generated by the n-c. subsets of S.

LEMMA 2. With the assumptions of Lemma 1, suppose M is a P-matrix and
that the set ofp > 0 satisfying (.) is nonempty. Let C be the closure of this set. Then
C is a closed polyhedral cone. Let F be a facet of C. Without loss of generality, as-
sume F is contained in the cone generated by { e e_ }. Then the points e and
m are in one ofthe open hapaces created by the hyperplane H containing the points
{ e, e_ } and the points { e, e_ , m, ..., m_ } are in the complementa
closed hapace.

Proof. By (P3), e and m are on the same side ofH. Suppose m_ is in the open
halfspace containing e and m,. Let q be a point in the relative interior of F. Then q +
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ee is in the interior of C, for e > 0 sufficiently small. Thus, for sufficiently small e > 0,
there exist Xi > 0, 1, ..., n and ; > 0, l, ..., n, so that

(4) q + ee ,e + + he,

(5) q+ ee, =/ze + + n-2en-2 -b n- mn- + Ine,.

Furthermore, ,, e. Subtracting (4) from (5), we obtain

(6) t,tn_lmn_l q-(lZn--e)en=(kl--ldl)el q- d-(kn_E--#n_2)en_2q’kn_len_l

Now if #, e > 0, then e. and m._ are on opposite sides of H. To show this, let
q "re + + "/n-2e.-2 + "n_m,_ + ".e. be the representation ofq in terms of
{ e, e._ 2, m._ , e. }. Then 3’. > 0 because mn_ is not on H. For e small enough,
then, t will be close to , and thus/z e > 0. [2]

THEOREM 1. Ifthe set ofp > 0 satisfying (.) is nonempty, then the cone C defined
in Lemma 2 is simplicial.

Proof. From Lemma 2, it is dear that the intersection of any (n 1)-e. cone gen-
erated by points with subscripts less than n with the cone generated by { e, ..-, e, } (and
thus with C) must be contained in the hyperplane H. Thus F is the only facet of C
contained in a cone generated by points with subscripts less than n. Since n was arbitrarily
chosen as the missing subscript for F, there must be at most n facets, one for each
subscript. However, an n-dimensional cone must have at least n facets, so Cis a simplieial
cone.

Remark. The existence of a p > 0 satisfying (.) is related (see [KMW]) to the
existence of a "CP-point." Let D be a nonsingular matrix in "". A vector b e is a
CP-point for the cone generated by the columns ofD if it is in the interior of this cone
and the projection of b onto the linear span of any face of the cone is in the relative
interior of that face. LetM DrD. It is proved in KMW that p Db is positive and
satisfies (.) if and only if b is a CP-point. The set ofp > 0 satisfying (.), if nonempty,
is the interior of an n-dimensional simplicial cone. Thus the set of CP-points, which is
the set of (D- rp for such p, must be the interior of an n-dimensional simplicial cone
if nonempty because (D- r is nonsingular.

3. Relationship to hidden Minkowski matrices. There are many examples known
ofP-matrices (even positive-definite matrices) for which there is no p > 0 satisfying ( ).
The next result shows that even if there is no such p, we can find hyperplanes H as in
Lemma 2.

Define the matrix M by

M, if j k,

Mjk --Mkj if =j

Mkj otherwise.

(M is obtained from Mrby first negating column and then negating row i. This leaves
Mii unchanged.)

LEMMA 3. M is a P-matrix ifand only ifM is.
Proof. The proof is immediate from (P1).
LEMMA 4. Let M be a P-matrix. The vector w, z) such that w Mz + M solves

the linear complementarity problem (Mi, M) ifand only ifz*i z ei satisfies
(7) z’=-l, (z*i)rMi<O, (g*i)rMjO, gio, ((z*i)TMj)zi=o, jvi.
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Proof. IfM is a P-matrix, by nondegeneracy ofM any solution ( w, z) to the linear
complementarity problem (Mi, M) must satisfy zi 0 and wi > 0. Now (w, z) solves
the linear complementarity problem (Mi, M) if and only if for $ z + ei we have w
Miand

(8) z-i=l, (Mi)i>O, (Mi)i__.O, j__.O, (MizT)i=O, jq:i.

From the definition ofM
THEOREM 2. IfM is a P-matrix, then for each 1,..., n there is a unique

hyperplane H containing an (n 1)-c. set ofS\ { e, rn ) and such that e and rn are in
one of the open halfspaces defined by H, and all of the other points of S are in the
complementary closed halfspace.

Proof. Such an H is defined by a z*i satisfying (7). z*i is unique because the
solution to the linear complementarity problem (Mi, M) is unique, by (P4).

Theorem 2 implies that ifwe know thatMis a P-matrix, and we know the solutions
to the n linear complementarity problems (Mi, M), then we can find a p satisfying ),
if it exists, by solving a linear program.

A square matrix is called a Z-matrix if all ofits off-diagonal elements are nonpositive.
A P-matrix that is also a Z-matrix is called a Minkowski matrix. A P-matrix M is called
a hidden Minkowski (see CP], Ma], P matrix if there exist Z-matrices X and Y so
that Y MX and there exist r, s qn, (r, s)

_
O, rrX + sty > O.

THEOREM 3. Let M be a P-matrix and let p > 0 satisfy (.). Then Mr is a hidden
Minkowski matrix.

Proof. We are not aware of any previous proofs of Theorem 3, even though its
converse is well known (see [PC]). Define the matrix X by letting the ith column ofX
be -z*
int (C). Then we have pr(-z*i) > O, 1, n, since ef(-z*) > O, 1, n
and p must be on the same side ofH as ei, for 1, ..., n. Thus, prX > 0 and Mr is
hidden Minkowski.

Pang [PC] gives an algorithm to find a p satisfying (.) in polynomial time ifMr is
a hidden Minkowski matrix.
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A CANONICAL FORM FOR HERMITIAN MATRICES UNDER COMPLEX
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Abstract. It is shown that a Hermitian matrix can be reduced to a Hermitian canonical form by a complex
orthogonal congruence. As a consequence, a short proof is given showing that a nonsingular symmetric matrix
and a Hermitian matrix can be simultaneously reduced to the identity matrix and a Hermitian canonical form
by complex orthogonal T- and ,-congruences, respectively.
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1. Notation and introduction. We denote the set of all m-by-n complex matrices by
Mm,n’, gn Mn,n. ForA M,, we denote the transpose ofA byA T, the complex conjugate
by, and the Hermitian adjoint by A * r. We say that two matrices A, B M, are
consimilar, T-congruent, or .-congruent, respectively, if there is a nonsingular P M
such that P-A B, PrAP B, or P*AP B, respectively.

If A M is symmetric, then any B M that is T-congruent to A must also be
symmetric. Similarly, ifA M is Hermitian, then any B M, that is .-congruent to A
must also be Hermitian. Therefore, symmetry and Hermiticy are invariant under
T-congruence and .-congruence, respectively. A nonsingular Q Mn is called orthog-
onal if QQr I, i.e., Q- Qr. Two matrices A, B Mn are orthogonally T-con-
gruent if there is an orthogonal Q Mn such that QrAQ B. Similarly, two matrices
A, B Mn are orthogonally.-congruent if there is an orthogonal Q M such that
Q*AQ B. Note that an orthogonal T-congruence is an orthogonal similarity and an
orthogonal .-congruence is an orthogonal consimilarity.

We denote the spectrum (set of eigenvalues, counting multiplicities) of a given
A M by a(A). We denote a k-by-k identity matrix by Ik. For a Hermitian A M, we
denote the inertia ofA by (A) ( i+(A), i_ (A), io(A)), where i+ (A), i_ (A), and io(A)
indicate the number of positive, negative, and zero eigenvalues ofA (all counting mul-
tiplicities), respectively. The inertia matrix of a given Hermitian A M is a diagonal
matrix I(A) Ir (R) -Is (R) 00, where 0o is a square zero matrix of dimension io(A), r
i+ (A), and s i_ (A). Sylvester’s inertia theorem guarantees that every Hermitian A is
-congruent to I(A).

We say that A M is condiagonalizable ira is diagonalizable by consimilarity, i.e.,
there exists a nonsingular P such that P-tA A, where A diag (,, ..., ,). There
is no loss ofgenerality when we assume that A diag (I , I, ,n l); the nonnegative
diagonal entries of A are called coneigenvalues ofA 4 ]. A Jordan block Jk() Mk has
the form Jk(h) klk + Nk, where Nk Mk is a nilpotent matrix with all entries zero
except for ones on the first superdiagonal.

The following facts are well known.
LEMMA 1.1. Each A Mn is similar to a symmetric Jordan canonical form

Js(A) Sn(h) (R) (R) Sp(Xp), where each Sk(X) Mk is symmetric and similar to
a Jordan block Jk() ofA.
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Proof. See 4.4 of[7] for a proof and a standard form for Sk(X).
LEMMA 1.2. Two symmetric matrices are similar ifand only ifthey are orthogonally

similar.
Proof. See Chapter of 2 for the proof.
By Lemmata 1.1 and 1.2, a symmetric matrix is orthogonally similar to a symmetric

Jordan canonical form. Thus, the following lemma is immediate.
LEMMA 1.3. Let A Mn be a given symmetric matrix with k negative eigenvalues,

0

_
k

_
n. Then A is orthogonally similar to a direct sum B (R) C where B M,_ k is

symmetric and has no negative eigenvalues, and all the eigenvalues of the symmetric
C Mk are negative.

LEMMA 1.4. Let A Mn, B Mm be given and suppose tr(A) tq tr(B) . Then
AC CB 0for some C Mn.m ifand only ifC O.

Proof. See Chapter 1.4 of[2] for the proof. In particular, if tr(A) fq a(B) then
AC- CB 0 implies C 0.

DePrima and Johnson have shown that if TeM is nonsingular with no negative
eigenvalues, then there is a unique T, e M such that (a) T T, (b) a(T,) lies in the
open right half plane, and (c) T,C CT, for every C M such that TC CT. We
adopt their method and extend the result.

Let T M be a given nonsingular matrix with no negative eigenvalues. Let F be
the oriented Jordan curve consisting ofcircular arcs and line segments ofthe sort illustrated
in Fig. 1, whose interior A contains tr(T). Since F is symmetric with respect to the real
axis, tr(T) A as well.

Set T - 1/2ri fr z/2(zl T)-1 dz. It is a simple matter to verify the following.
LEMMA 1.5. Let T M be a given nonsingular matrix with no negative eigenvalues.

There is a unique T M such that (a) T T, (b) a(T) lies in the open right half
plane, and c TA AT for all A Mn such that TA AT. Moreover, for this matrix
T we have: (d) T is symmetric whenever T is symmetric, and (e) TA AT for all
A M, such that TA AT.

Proof. The existence of a unique T that satisfies (a), (b), and (c) is shown in [1].
If T is symmetric then Tt is clearly symmetric by its construction. If TA AT for some
A M, then (z!- T)-A A(z!- )- for all z F. Therefore,

fr ,/2( fr I/2A dg=A’l. I-ITA i z zI- T)- dzA - z zI- ’)-

The following is a fundamental theorem about consimilarity [4 ].

FIG. 1.
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THEOREM 1.6. Let A, B M,. Then A is consimilar to B if and only if
is similar to BB and the following alternating product rank condition is satisfied:
rank [(A)kA] rank [(B/I)kB], k 0, In/2]. In particular, A is condiagonaliz-
able ifand only ifAA is diagonalizable and has nonnegative eigenvalues and rank (A)
rank (AA).

There is an analogue of Lemma 1. for consimilarity: every A e M, is consimilar
to a canonical form that is Hermitian [3 ]. We now describe the structure of this form.

Let A M, be given. The Hermitian canonical form of A under consimilarity,
denoted by JH(A), is a direct sum of three Hermitian matrices:

(1.7) ..(A )=- H,,(A (R) Ku(A (R) Kc(A ).

Hp(A) =nm, (kl) () () Hmp(Xp), where all hi - 0 and ,/2 are the nonnega-
tive eigenvalues ofAA,

(1.9)

and

Kv(A) K2n (tz) (R) (R) K2,r(r), where all tzi > 0 and -/z/2 are the negative
eigenvalues ofAA,

(1.10) gc(a) Z2k,(l) ( () L2ks(s), where all i e C are nonreal and j,2. are
the nonreal eigenvalues ofAA,

L2k,(/ji) |

L H,()*
where

0 2X 0 0
." .. +i

-1 "..
Hm()k) 1/2 .." "" .’" Mm, ,eC.

2X 0 0 -1 0

Note that Hm()k) is Hermitian if ), is real. The Hermitian blocks Hmi()ti),
K2,,(i), and L2k(i) are derived in an explicit way from the Jordan blocks and the
quasi-Jordan blocks of the concanonical form ofA.

The formal result about consimilarity and Hermitian canonical forms is the fol-
lowing 3 ].

THEOREM 1.11. For each A M, there is a nonsingular P M, such that P-AP
JH(A ). Moreover, Jn(A is unique up to a permutation ofits diagonal blocks.

Note that if p-1Afi JH(A) then

e-i/2p)-A(e-i/2p) eiajn(A

and (e-ia/2P)-(e-iaA)(e-ia/2P) Ju(A) for all /9 q. Thus, Ju(A) JH(e-iA)
for all [3]. In particular, ifO r/2 then (e-i’/ap)-lA(e-’/4P) iJn(A)and that
iJu(A) is a skew Hermitian matrix. Thus, iJn(A) is a skew Hermitian canonical form.
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COROLLARY 1.12. Let A Mn. Thenfor all O , Jn(A) Jn(e-OA) and there is
a nonsingular P Mn such that P-A eiJn(A). In particular, Jn(A) Jn(-iA) and
there is a nonsingularP M, such thatP-A iJn(A ), where iJn(A ) is a skew Hermitian
canonicalform. Moreover, iJn(A is unique up to a permutation ofits diagonal blocks.

2. Main results. Iftwo symmetric matrices are similar, then they are orthogonally
similar. An analogous theorem holds for two Hermitian matrices.

PROPOSITION 2.1. Let A, B M. There is an orthogonal Q M such that
Q*AQ B ifand only ifthere is a nonsingular P M such that ppr has no negative
eigenvalues, -IAp B, and -lA *P B*.

Proof. Suppose Q*AQ B, Qr Q-l, Q Mn. Then QQr I has no negative
eigenvalues, Q*AQ O.-IAQ B, and B* (Q*AQ)* Q*A*Q.

Conversely, suppose there is a nonsingular PMn such that -AP= B,
-A*P B*, and ppr has no negative eigenvalues. Then B -AP and B
(B*)* (/5-1A’p)* P*APr-l. Thus, P*APr- -IAp, or A(PPr) (PPr)A.
Set ppr= S. Then Sr= S and AS qA. Since S has no negative eigenvalues, by
Lemma 1.5 there is a unique (necessarily nonsingular) Sl Mwith spectrum in the open
fight half plane such that $2 S and AS qlA, or q-iIASI A. If we set Q
Si-lpthen QQr S-il pprSTl S-iI (S2 )S-i I, i.e., Qisan orthogonal matrix. Then
P SQ and B .O-AP Q*-fASIQ Q*AQ, as desired.

COROLLARY 2.2. Let A, B M. There is an orthogonal QM such that
Q*AQ -B ifand only ifthere is a nonsingular P M such that all the eigenvalues ofppr are negative, P-lAP B, and ff-lA *P B*.

Proof. Suppose there is an orthogonal Q Mn such that Q*AQ =-B. Then,
iQ*AiQ B and iQ*A*iQ B*. Set P iQ. Then ppr -I and p-l _iQr and
hence/- iQ*. Thus, there is a nonsingular P M such that/5-lAp B, P-IA *P
B*, and all the eigenvalues ofppr are negative.

Conversely, suppose there is a nonsingular PM such that ,O-lAp B,
/5-1A *P B* and all the eigenvalues of ppr are negative. Set E iI. If we set R
PE then tr(RR r)= a(_ppr), and hence all the eigenvalues of RR r are positive,
-AR EBE -B, and/-A *R B) *. Therefore, by Proposition 2.1 there is an
orthogonal Q M such that Q*AQ -B.

Suppose A, B M, is a pair of Hermitian, skew Hermitian, or orthogonal matrices.
If there is a nonsingular P Mn such that P-lAP B, then it follows that/5-1A *P
B*. Thus, following result is immediate.

COROLLARY 2.3. Let A, B M, be a pair ofHermitian, skew Hermitian, or or-
thogonal matrices. Then there is an orthogonal Q M, such that Q*AQ B ifand only
ifthere is a nonsingular P M, such that ppr has no negative eigenvalues and P-lAP
B. There is an orthogonal Q M, such that Q*AQ -B ifandonly ifthere is a nonsingular
P M, such that all the eigenvalues ofPPr are negative and p-lAp B.

We have a more general result than the preceding corollary. Suppose there exists a
complex polynomial F in Tx, i.e., F(x) ao + a(x) + a2()x)2 + + am(.X)m,
such that A* AF(A) and B* BF(B). Then -IAp B implies -A*P B*.
Indeed, if-AP B for some nonsingular P, then

B* BF(B)= ff-’APF( ff-’AP)
ff-AP[ao + a (P-I2,Off-IAp) + a2(p-lAff,O-IAp)2 +...

--aoAP+ ff-iaA(.4)P+ --a2A(.A)2p+ ff- (AF(A))P
p-lA*p.
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COROLLARY 2.4. Let A, B M.. Suppose A * AF(A and B* BF(B)for some
complex polynomial F in Yx. Then, there is an orthogonal Q M. such that Q*AQ B
ifand only ifthere is a nonsingular P M. such that I-IAp B andppr has no negative
eigenvalues

LEMMA 2.5. Let A Mn be Hermitian. Suppose there is a nonsingular P M. such
that p-lAp is Hermitian, and suppose ppr has r negative eigenvalues (counting multi-
plicities). Then there is an orthogonal Q M. such that Q*AQ A (R) AE, where A
M._ and A2 Mr are Hermitian.

Proof Since A and P-lAP are Hermitian, P-lAP= P*A(Pr)-l. Thus, A
(’PPr)A(ppr)-I. If we set S ppr, then AS-l A. Since S is a symmetric matrix
with r negative eigenvalues, by Lemma 1.3 there is an orthogonal Q e M, such that

QrSQ
o T

where Tl M,_ has no negative eigenvalues and T2 Mr has only negative eigenvalues.
Since qAS-l A,

Q*AQ a*S-AS-Ia Q*qO_Q*AQQrS-IQ (QrSQ)(Q*AQ)(QrSQ)-I.

Thus, if we set Q*AQ A and QrSQ S then lA Si-l A l, or A A S.
Now write A in block fo as

AI AlMn-r, A22Mr,
A2 2

and note that SA AISI implies that TA2 -AI2T2 0 and T2A2t -A2tT 0. Thus,
AI2 A2I 0 by Lemma 1.4 since a(T) (T2) .

Now, let Jn(A) be a Heitian canonical fo of A M., Jn(A) He(A)
Ks(A Kc(A) where He(A), Kn(A), and Kc(A) are defined in (1.8), (1.9), and (1.10),
respectively.

LEMMA 2.6. Kn(A andKc(A are always orthogonally .-congruent to -Kn(A ) and
-Kc(A ), respectively.

Proof Since K(A K2.t() @ @ K2,(u) and Kc(A L2k ()
L2ks(S), it is sucient to show that K2.s(j) and L2k(j) are ohogonally .-conent
to -K2.s(s) and --L2k(j), respectively. Since

g’(")=
i(.)* o ()* o

the result follows from the consimilarities

0 -I iH(lz)*

Ik 0 0
0 --Ik][Hk()*

0 0 -I,, -iH,,(t,)* 0

o o -I -H()* 0

Let Jn(A) M, be a given Hermitian canonical form of A M,, Jn(A) =-
He(A 6) KN(A (R) Kc(A ), and let e [,l ,p r be a given p-vector with each ej + 1.
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Define J*n(A) He(A) 6) KN(A) (R) Kc(A), where H*e(A) =- el H,()) 6) 6)

We can now ive the main result of the section.
THEOREM 2.7. Let A M, be gie. The A A * ifad oMy ifthere is a ector
[el e] ith each e +_ ad a orthooal Q M, such that Q*AQ

J(A ), where Jn(A is a Hermitian canonicalform ofA.
Proof Suppose A Mn is Hermitian. There is a nonsingular P M, such that

-AP JH(A), a Hermitian canonical form ofA. Let rbe the number ofnegative eigen-
values of ppr. If r is zero, then by Corollary 2.3 we are done since there is an orthog-
onal Q Mn such that Q*AQ JH(A) J(A) where all ei 1. Similarly, if r n
then by Corollary 2.3 there is an orthogonal Q M, such that Q*AQ -Jn(A). By
Lemma 2.6 there is an orthogonal Ql Mn such that Q{ Q*AQQ Q{(-JH(A))Q
J*n(A) where all ei -1.

Finally, suppose 0 < r < n and let n r. By Lemma 2.5 there is an orthogonal
Q2 M such that

QAQ2
0 .42

where A A ’ M, and A2 A ’ M,2, n + n2 n. Now, let Pi be nonsingular and
such that .i-AiPi Jt-t(Ai) . M,, for 1, 2, where JH(A) is a Hermitian canonical
form ofA. Note that JI(A) (R) JH(A2) is a Hermitian canonical form of A. Now, for
each 1, 2, if the number of negative eigenvalues of ppr is either zero or ni then A
is orthogonally ,-congruent to either JH(A) or -JI(A), respectively, and hence we are
done as before. Otherwise, reduce A to a direct sum of Hermitian matrices of lesser
dimension under orthogonal ,-congruence by using Lemma 2.5 again. Since this reduction
process must end after at most n steps, we obtain an orthogonal ,-congruence that reduces
A to a direct sum of k Hermitian matrices, < k =< n,

Q*AQ

B 0
92

0 B

Bi B? M,,, n + n2 + + nk n. Moreover, for each 1, .-., k there is a
nonsingular Pi - M, such that/-l BiPi Jn(Bi) and the number ofnegative eigenvalues
ofPPf is either zero or n. Therefore, by Corollary 2.3 eachB is orthogonally ,-congruent
to either Jn(Bi) or -Jn(Bi). By the uniqueness of JH(A) and Lemma 2.6 are done.

The converse is immediate: since J*n(A) is Hermitian, A O_.J*n(A)Qr is Hermi-
tian.

COROLLARY 2.8. Let A M,. Then A -A * ifand only ifthere is a vector e
[el e,] with each ei +_1 and an orthogonal Q M, such that Q*AQ iJn(A)
where iJn(A is a skew Hermitian canonicalform ofA.

Proof IrA is skew Hermitian, then -iA is Hermitian. Thus, by Theorem 2.7 there
is an orthogonal Q M, such that Q* (-iA)Q J(-iA ) where Jn(-iA ) Jn(A )
is a Hermitian canonical form of A by Corollary 1.12. Therefore, iQ*(-iA)Q=
Q*AQ iJ(-iA) iJn(A) where iJn(A) is a skew Hermitian canonical form ofA.

The converse is immediate since iJ(A) is a skew Hermitian matrix and skew
Hermiticy is invariant under ,-congruence.
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By assuming more than Hermiticy ofA M,, we can obtain a special Hermitian
canonical form by an orthogonal ,-congruence. In the context of orthogonal ,-congru-
ence, the following result gives a natural analogue of the canonical form of a conjugate
normal matrix (AA * A *A) [9] under unitary congruence.

COROLLARY 2.9. Let A M, be Hermitian andassume that a AA is diagonalizable
and (b) rank (A) rank (A). Then there is a vector e let ev] r with each ei +1
and an orthogonal Q M such that

(2.10) Q*AQ J(A)
0 ,

where , MEk, M M,_ 2k, and 0

_
k

_
n/2 ]. The matrix M =- Mg, where

I 0

(2.11) M t2 Mn 2k Ii -- O,0 /.tn- 2k

are the nonnegative eigenvalues ofA, and

e 0

(2.12) d’= t:2 -Mn-2k, ei=+_l for _i<-n-2k.

0 ’n 2k

The block diagonal Hermitian matrix , has theform
, 0

(2.13) ; 2 -M2k, ,i-M2.

0 k

The two-by-two Hermitian matrices ,j have two possibleforms:

2j=
-itr 0

r>O

correspond to the set ofpairs ofequal negative eigenvalues {- tr 2, -a2 } ofA;

o’
correspond to the set ofconjugate pairs ofnonreal eigenvalues {, } ofA.

Proof Let B t z0 ], whereM Mn 2k is as in (2.11), and note that B is a Hermi-
tian canonical form. Note also that BB is a diagonal matrix with the eigenvalues ofAA
as its diagonal entries. SinceAA is a diagonalizable matrix that has exactly the same eigen-
values as BB, the matrices AA and BB are similar. Since rank (A) rank (AA)
rank (BB) rank (B), it is easy to cheek that the alternating product rank condition
holds for A and B. Thus, by Theorem 1.6 A is eonsimilar to B. By the uniqueness of a
Hermitian canonical form, B must be a Hermitian canonical form of A; B Ju(A).
Thus, A is orthogonally ,-congruent to J*n(A) by Theorem 2.7. l-q

Since a permutation similarity is a real orthogonal congruence, we can rearrange
the diagonal entries of the matrix M (2.11)-(2.12) by a permutation similarity so that
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the diagonal entries with the same signs are grouped together, i.e., there is a permutation
matrix P Mn() such that PrM’P (PrMP)(Pr@P) M’’ where

(2.14) M’=

’. 0

0

-Mn-2k, #>0,

is a nonnegative diagonal matrix that corresponds to the positive or zero eigenvalues
/,t2 ofA and

(2.15)

el 0
2

0 0

0
-Mn- 2k,

el= {+1 ifl_i_r,

-1 ifr+l_i_r+s.

If we further assume that a given Hermitian matrix is actually condiagonalizable,
then all the eigenvalues ofAA are nonnegative and the block Z is absent from (2.10).
Since an orthogonal .-congruence ofa Hermitian matrix preserves its inertia, the matrix
d" in (2.15 must be an inertia matrix ofA. We summarize these observations as follows:

COROLLARY 2.16. Let A Mn be Hermitian and have inertia i+(A) r, i_(A)
s. Then A is condiagonalizable ifand only ifthere is an orthogonal Q Mn and positive
real numbers #, Ir+s such that Q*AQ diag (#l, #r, --#r+ l, --#r+s,

0,’", O) MI(A).
IfA e M. is a positive definite Hermitian matrix, thenAA has full rank and is similar

to a positive diagonal matrix [7, Thm. (7.6.3)], and hence A is eondiagonalizable by
Theorem 1.6. But since A is positive definite, i+ (A) n, or ’ I e M. (2.15 ). Thus a
positive-definite Hermitian matrix is orthogonally .-congruent to a positive-diagonal
matrix.

Unfortunately, not every positive-semidefinite matrix is eondiagonalizable, as
the example

shows: A is positive semidefinite and rank (A) rank (A) 0. However, this is
the only way a positive-semidefinite matrix can fail to be condiagonalizable. The following
has been shown 31.
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LEMMA 2.17. Let A M, be positive semidefinite and suppose that rank (A)
rank (A) r. Then, 0

_
r

_
[n/2] and the Hermitian canonical form Jn(A) is an

almost diagonal matrix oftheform A (R) I’,

(2.18) A 2 (F-Mn-2r

0 n 2r

where each X
_

0 and X is a nonnegative eigenvalue ofA, and

H(O) 0

1" H2(0) M2,,

0 H:(0)

where H2(0) 1/2 - 1.
Proof See Corollary (2.7) of[3] for the proof.
Note that the Hermitian canonical form Jtt(A) of a positive-semidefinite A M. is

positive semidefinite. Thus, by Theorem 2.7 a positive-semidefinite A M, is actually
orthogonally ,-congruent to a Hermitian canonical form in (2.18) since the inertia of a
Hermitian matrix is preserved under orthogonal ,-congruence.

COROLLARY 2.19. Let A gn be positive semidefinite and suppose rank (A)
rank (AA r. Then, 0

_
r

_
n/2 andA is orthogonally ,-congruent to a Hermitian

canonicalform Jn(A ) in ( 2.18 ).
The following is an immediate consequence of Corollary 2.19.
COROLLARY 2.20. Let A M, be positive semidefinite. Then A is diagonalizable

by an orthogonal ,-congruence ifand only/frank (A) rank (AA).
Another interesting special class of Hermitian matrices is the Hermitian coninvo-

lutory matrices: E M, is coninvolutory ifEE I. It follows easily from Theorem 1.6
that E M, is coninvolutory ifand only irE =/5-p for some nonsingular P M,. Thus,
a coninvolutory matrix is condiagonalizable and all its coneigenvalues are equal to one.
If a coninvolutory E M, is Hermitian, then it follows from Corollary 2.16 that it must
be orthogonally ,-congruent to the inertia matrix of E.

COROLLARY 2.21. Let E M, be given. Then E is coninvolutory and Hermitian if
and only if there is an orthogonal Q M, such that Q*EQ is a diagonal matrix with
entries +_ 1.

COROLLARY 2.22. Let E M,. Then E is coninvolutory andpositive definite ifand
only irE Q*Q O.-Qfor some orthogonal Q M,.

Proof If E is coninvolutory and positive definite there is an orthogonal Q M,
such that Q{EQ I(E) I, or E Q*Q for Qr Q.

The converse is immediate.

3. A pair of Hermitian and symmetric matrices. Simultaneous reduction of a pair
ofHermitian or symmetric matrices to standard form by ,- or T-congruence, respectively,
is a classical problem 6 ], 8 ]. Using Theorem 2.7, we give a simple proof for the mixed
case when a symmetric matrix is nonsingular.

THEOREM 3.1. Let A, B M with B nonsingular and symmetric and A either
Hermitian or skew Hermitian. Then there is a vector e e ep] r with each ei +-1
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and a nonsingular P M, such that PTBP I andP*AP J(AB-l) ifA is Hermitian,
or P*AP iJ(AB-) ifA is skew Hermitian, where JH(AB-l is a Hermitian canonical
form ofAB-Proof First suppose A is Hermitian. Since B BT is nonsingular, there is a non-
singular R Mn such that R rBR I [7, Cor. (4.4.6)]; then A R*AR is Hermi-
tian and B- RRr. Thus, Al R*AR R*ARRr(Rr)-l R*(ARRr)(Rr)-l

R * (AB- (R R *(AB- (K* 1. Therefore, the Hermitian matrix A is consirnilar
to AB-l and hence they have the same Hermitian canonical form. There is an orthogonal
Q M, such that Q*A Q J(A1 J(AB-I), and Q*A *iQ Q (R*AR)Q
(RQ)*A(RQ). Also, (RQ)rB(RQ) QTRrBRQ QTIQ I, so P RQ accom-
plishes the desired simultaneous reduction ofA to Hermitian canonical form and B to
identity matrix. IfA is skew Hermitian, the result follows in the same way from Corollary
2.8.

If at least one is nonsingular, necessary and sufficient conditions for a pair ofrnatriees
A and B (where A and B are both symmetric, or both Hermitian, or one of each) to be
simultaneously diagonalized by congruence are known [6 ]. As a consequence ofTheorem
3.1, we can give a necessary and sufficient condition for simultaneous reduction of a
symmetric and Hermitian pair by respective congruences to their inertia matrices.

COROLLARY 3.2. Let A, B M, with A Hermitian andB nonsingular and symmet-
ric. There is a nonsingular P M, such that P*AP MI(A) and PTBP I, whereM
diag (X, X,) and hi - 0 are coneigenvalues ofAB-l ifand only ifAB-l is condi-
agonalizable.

Proof IfA (P*)-IMI(A)P-I and B (Pr)-llP-I then

AB-I p. )-1MI(A )p-lppr p. )-I MI(A )pr,

so AB- is condiagonalizable.
Conversely, suppose AB-l is condiagonalizable. Since B Br is nonsingular, there

is a nonsingular R M, such that R rBR I. Let A =--R*AR, which is Hermitian.
Since A is .-congruent to Al, they have the same inertia, i.e., I(Al) I(A). Now, Al
R*AR R*ARRr(Rr)-l R*(ARRr)(K*)-l R*(AB-1)(K*) -1. Thus, Al is con-
similarto the condiagonalizable matrixAB- and, therefore,A is acondiagonalizable Her-
mitian matrix. By Corollary 2.16 there is an orthogonal Q Mn such that Q*R *ARQ
Q*AIQ MI(A MI(A and QrRrBRQ I. Then P=- RQ accomplishes the desired
reduction.

IfA M. is positive definite and B M. is nonsingular and symmetric, let B PrP
for some nonsingular P M.. Then AB APrP, and hence ABP- PAPr, so AB is
consimilar to the positive-definite matrix PAPr, which is always condiagonalizable [5 ].
The corollary follows easily.

COROLLARY 3.3. Let A, B M. with A positive definite and B nonsingular and
symmetric. Then there is a nonsingular P Mn such that P*AP MI(A) and PrBP
I, where M diag (,l, .), and i - 0 are coneigenvalues ofAB-l

REFERENCES

C. R. DEPRIMA AND C. R. JOHNSON, The range ofA-tA in GI (n, C), Linear Algebra Appl., 9 (1974),
pp. 209-222.

[2 F. R. GANTMACHER, Applications ofthe Theory ofMatrices, Interscience, New York, 1959.
3 Y. P. HONG, A Hermitian canonicalformfor complex matrices, Linear Algebra Appl., to appear.



CANONICAL FORM UNDER ORTHOGONAL CONGRUENCE 243

[4] Y. P. HONG AND R. A. HORN, A canonicalform for matrices under consimilarity, Linear Algebra Appl.,
102 (1988), pp. 143-168.

[5 , On the reduction of a matrix to triangular or diagonal form by consimilarity, SIAM J. Algebraic
Discrete Methods, 7 (1986), pp. 80-88.

[6 Y. P. HONG, R. A. HORN, AND C. R. JOHNSON, On the reduction ofpairs of Hermitian or symmetric
matrices to diagonalform by congruence, Linear Algebra Appl., 72 (1986), pp. 213-226.

[7] R. A. HORN AND C. R. JOHNSON, Matrix Analysis, Cambridge University Press, New York, 1985.
[8 L.-K. HUA, Orthogonal classification ofHermitian matrices, Trans. Amer. Math. Soc., 59 (1946), pp. 508-

523.
[9 M. VuJIo, F. HERaUT, AND G. VUJICIC, Canonicalform for matrices under unitary congruence trans-

formations I: conjugate-normal matrices, SIAM J. Appl. Math., 23 (1972), pp. 225-238.



SIAM J. MATRIX ANAL. APPL.
Vol. 10, No. 2, pp. 244-258, April 1989

(C) 1989 Society for Industrial and Applied Mathematics

010

SELF-EQUIVALENT FLOWS ASSOCIATED WITH THE SINGULAR
VALUE DECOMPOSITION

D. S. WATKINS AND L. ELSNER

Abstract. A family of flows which are continuous analogues of the constant and variable shift
QR algorithms for the singular value decomposition problem is presented, and it is shown that certain
of these flows interpolate the QR algorithm exactly. Here attention is not restricted to bidiagonal
matrices; arbitrary rectangular matrices are considered.

Key words, singular value decomposition, QR algorithm, unitary equivalence, flow
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1. Introduction. In recent years there has been considerable interest in contin-
uous analogues of the QR algorithm and other algorithms for calculating eigenvalues
of matrices. See, for example, the works of Symes [14]; Deift, Nanda, and Tomei [4];
Nanda [7], [8]; Chu [1]; Watkins [16]; and Watkins and Elsner [17], all of which have
appeared since 1982. See also the work of Rutishauser [12],[13] from the 1950’s, which
has been overlooked until recently. Given a matrix . whose eigenvalues are desired,
the QR algorithm produces a sequence A0,A1, A2,... such that each member of the
sequence is similar to ., and the matrices tend to upper triangular form. A continu-
ous analogue of the QR algorithm produces a smooth, matrix-valued function or flow
B(t), such that, for all t, B(t) is similar to , and B(m) Am for m 0, 1, 2,....
That is, the flow interpolates the QR algorithm. More generally we may have B(t)
similar to/} g() and B(m) g(Am) for some specified function g. Such a flow
must satisfy

(1) B(t) r(t)-ljF(t)

for some nonsingular matrix function F(t). In [17] we studied functions of the type
(1), which we called self-similar flows.

When studying eigenvalues it is natural to employ similarity transformations,
since they preserve eigenvalues. For certain other problems, such as the generalized
eigenvalue problem and the singular value lroblem, it is more natural to consider
equivalences. Recall that two matrices A, A E C’xm are eq_uivalent if there exist
nonsingular matrices F E Cnxn and Z Cmxm such that A FAZ. If F and Z
are unitary, A and fi are unitarily equivalent. A matrix-valued function B(t) defined
on some interval is called a self-equivalent flow if there exist smooth, nonsingular,
matrix-valued functions F(t) Cnxn and Z(t) Cmxm, and/} Cnxm, such that
S(t) F(t)JZ(t). If r(t) and Z(t) are unitary for all t, the flow is unitarily self-
equivalent. In this paper we will develop unitarily self-equivalent flows associated with
the singular value decomposition (SVD). We presented self-equivalent flows associated
with the generalized eigenvalue problem in [18].

In [2] Chu presented a flow which is a continuous analogue of the QR algorithm
for the SVD. The present paper constructs a large family of flows of which the flow
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of [2] is a single example. Where Chu restricted his attention to bidiagonal matrices,
we consider arbitrary (full or banded) rectangular matrices.

Our presentation begins with the introduction of an explicit version of the QR
algorithm which can be used to find the SVD of an (almost) arbitrary rectangular
matrix. By contrast, the implicit version of the QR algorithm which is usually used
can be applied only to unreduced bidiagonal matrices. Our explicit version is not
recommended for practical use. It is important because it adds to our understanding
of the QR algorithm and its relationship to self-equivalent flows. For simplicity we
consider the QR algorithm with a constant shift at first. We show that the algorithm
converges to the SVD for almost all starting matrices.

In 3 we show that every self-equivalent flow must satisfy a differential equation of
the general form/ CB/BD. Conversely, every solution of a differential equation of
this form must be a self-equivalent flow. This is a slight generalization of observations
made in [2], [3].

In 4 we introduce a family of unitarily self-equivalent flows associated with the
QR algorithm and present theorems which show that under mild assumptions the flows
converge to the SVD of the initial matrix/}. One member of the family interpolates
the constant shift QR algorithm.

We then consider shifted and generalized QR algorithms and a family of analogous
flows. These flows differ from those considered earlier only in that the differential
equations they satisfy are nonautonomous. Given any shift strategy for the QR
algorithm for which none of the shifts is an eigenvalue of ,i, or .*, we show
how to construct numerous flows which interpolate the shifted algorithm. Of course,
almost all shift strategies satisfy this condition.

In the final section of the paper we show that all of the flows which we have
discussed preserve banded forms. That is, if the initial matrix/} is banded, then B(t)
has the same band structure for all t > 0.

2. The QR algorithm for the SVD. Let J Cnxm. The most common
way of calculating the singular value decomposition of i, is to apply a variant of
the implicit QR algorithm due to Golub and Kahan (see [6]). This requires that
be reduced to bidiagonal form before the QR iterations are begun. We will discuss
an explicit variant which does not require the preliminary reduction to bidiagonal
form. While this variant is not recommended for practical use, it is useful for our
development. To keep matters simple we restrict our attention to the constant shift
case at first. Let # be a fixed positive number. Setting Ao , we create a sequence
of unitarily equivalent matrices Ao, A,Au,... as follows: Given Ai-1, perform QR
decompositions of both A_1Ai- -" IIm and Ai_1A*_ " #In:

(2) A*. Ai_ + #Ira (ii, Ai-IA*"z--1 z--I T #In PiSi,

where (0i ! Cmm and Pi Cnn are unitary, and Cmm and i Cnn are
upper triangular with real, positive main diagonal entries. Now define Ai by

(3)

The reason for using the positive shift # is that it guarantees that A_
and Ai-A_ +#In are nonsingular. Therefore the factors in the QR decompositions
in (2) are uniquely determined, and so is Ai via (3). If ft. is square and nonsingular,
we can take # 0 and get uniquely determined Ai. (If ft. is singular or nonsquare,
one can still carry out the steps (2) and (3) with # 0, but not in a unique manner.)
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(4)
and

Since obviously

*A*A Ai . -1Ai_ 1Oi RiQi #I,

AiA. Ai_1Ai*_ [:)i SiPi #In,

we see that the transformations A*_ 1Ai- "-- AAi and Ai_1A._ - AiA amount
to QR steps. Therefore by standard results (see, e.g., [19]), the sequences (AAi) and
(AiA) converge to diagonal form.

For i 0, 1,2,... let

Qi-- 0102 .0i,

Then

(6)

Ri RiRi_ R1, Si SiSi-1. S1.

Ai PAQ,

(7) AiAi ^*Qi A

(8)
and by induction

(9) (A*A +
These are QR decompositions.

(10)

AiA P’AA*

QiRi,

In addition, it is not hard to show that

(AA* +

(11)
and

(12) SAR-1

(13) ,
Ai RiAi_ RiA S; 1.

Only in (12) and (13) do we use the fact that in (2) the same # is used in both
decompositions.

In order to get some idea of how this algorithm relates to the usual implicit
QR algorithm for the SVD, suppose ft. is square, upper triangular, and nonsingular,
with real, positive main diagonal entries. There is no loss of generality in making
these assumptions, for there exist procedures [5] for reducing an arbitrary problem
to problems for which the matrix has this form. Then by (12) all Ai will be upper
triangular with positive main diagonal entries. By (3) we have

PiAi Ai-IQi,

which shows that we can get Ai by computing the QR decomposition of Ai-lQi.
Thus it is enough to find (i. If ft. is bidiagonal and unreduced, one can determine
implicitly, without forming Ai*_l Ai-1. This is documented in [6], for example.
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2.1. Convergence of the QR algorithm for the SVD. We have already
noted that AAi and AiA converge to diagonal form. If all A are upper triangular
with positive main diagonal entries, convergence of the Ai to diagonal form can be
inferred from convergence of the AAi. For in this case Ai is the upper Cholesky
factor of AAi. By continuity of the Cholesky decomposition, convergence of AAi
to diagonal form implies the same for Ai. The main diagonal entries of Ai converge
to the singular values of . The columns of Pi and Qi converge to the left and right
singular vectors, respectively.

While the upper triangular case is the most important, it is nevertheless inter-
esting to study the convergence of (Ai) in general. The following examples show
that convergence of AAi and AiA does not, in general, imply convergence of Ai to
diagonal form.

Ezample 1. Let

01]
which has singular values al 1 and a2 0. Then

A’A=
0 1 0 0

so 01 I2 and/1 I2 in (2) and, from (3), A1 A. Thus A A for all i.

Example 2. Let . E Cnn be any unitary matrix. Then fi*. In and ft* In.
Again A for all i.

These examples notwithstanding, the sequence (Ai) usually does converge to di-
agonal form, as we shall now show. Our approach can also be used to prove the
convergence of the flows. We have the choice of a geometric proof in the spirit of [11]
and [15] or a proof along classical lines [19, p. 517]. In this case we opt for the latter
because it is shorter.

In the statements and proofs of the convergence theorems we suppose E Cnxm

with rank() r. Let UEV* be the SVD of A. Then V [Ul,..., un] Cnn

Y [Vl,’.., Vm] Cmxm, and E diag{al,... ,ar} e Cnxm, where ’ttl, un (the
left singular vectors of ) are orthonormal eigenvectors of fi.*, Vl,..., Vm (the left
singular vectors of ft.) are orthonormal eigenvectors of *fi., and al > > ar > 0
are the nonzero singular values of ft.. The common eigenvalues of* +#lm and

2 2 r. Any additionalfi* + #In which are greater than # are i ai + #, i 1, ,..,
eigenvalues are equal to #.

Let el,...,e denote the canonical basis vectors for C, where the value of j
depends on the context. Given vectors wl,..., Wk Cj, let (Wl,..., wk) denote the
subspace of C spanned by wl,..., wk.

THEOREM 2.1. Suppose ak > ak+l for some k, and

(14) (vl,..., vk) fq (ek+l, ", era) {0} (in cm),

(15) (Zl,... Zk) (e_,k+l,’’’ e_,n) {0} (i cn).

Let {Ai} be the sequence defined by (3). Partition each Ai as
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with Ai ECa Then Ai) 0 and A12 0 as i . The singular values of
A(i) andA converge to {al, a} and {a+l, .} respectively. The convergence11
is linear with contraction number Ak+l/Ak.

Remarks. (1) The subspace conditions (14) and (15) are satisfied for almost all
choices of A [15, pp. 429-430]. However, (14) is violated by the matrix in Example 1,
since in that case vl e2.

(2) The matrix of Example 2 does not satisfy ak > ak+l for any k because
rl a2 an 1. The only matrices for which all singular values are equal are
multiples of unitary matrices.

(3) The assumption that the shift # is positive simplifies the statement and proof
of the theorem but is not crucial to our arguments. All that is really needed is that
-# is not an eigenvalue of i.*ei. and A*, and A*i+ #Ira and Ai* + I.tin do not have
any eigenvalues of equal magnitude and opposite sign.

Proof. Define h E Cmm by h diag{A1,... ,r}. Then i.*i. + #Ira VAV*.
By the first equation of (9) we have

(A*A + VA V*.

The subspace condition (14) guarantees that V* has a block LU decomposition

L2x Im- 0 X22
Clearly

QiRi V(MLA-i)MX.

Define h Ckk and A2 C(m-k)(m-k) by h diag{,...,k} and A2
diag{k+l,...}. Then h diag{h,h2}, and

Since Ak > Ak+, MLA-i Im linearly with contraction number k+l/k. Let
i/’ be the QR decomposition of MX. Then since MX is block upper triangular,
)i must have the block diagonal form Oi diag{)i), )(i)}, where )i) e Cx and
(2i) C(m-k)(m-k) are unitary. Now QiRi can be written as

QiRi VO, -*(Qi It LIt-iQi)Ri.

Let QiRi be the QR decomposition of O,MLA-iO, Since -*Qih Lh-i,i -- Im lin-

early with contraction number ,+/,, the same is true of (i. Since

QiRi (VQiQi)(RiRi),

and QR decompositions are unique, we have

vO, Q .
Repeating this argument starting from the second equation of (9), we find that

Z

P UPP
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where/5i and/i are unitary,/5i diag(/51(’),/5(’), with/5’) E Ckxk, and/i --. In
linearly with contraction number k+l/k.

By (6) Ai P]tQi, so

,U

*A
Z ~, ~, Z

Ai P[’(U V)QiQi Pi (Pi Qi)Qi

Define 1 diag(al,...,ak} Ckxk and E2 diag(ak+l,
and let Bi (li)*,,i) and Ci [:,(i).,,i). Then

..} E C(’’-)x(’’-)

Ai "11 i.(i) (i) Pi 0 C21 22

Since P/* In and ,i --* Im we see that -2i --* 0 and A12 0 at the claimed rate.
Since Bi and Ci have singular values {al,"’,ak} and {ak+l,’"}, respectively, the

singular values ofA and A must converge to these sets at the stated rate. []

THEOREM 2.2. Let rl > > Vj be the distinct nonzero singular values of
and let vk r + #, k 1,...,j, be the corresponding eigenvalue8 of ]t* + #Ira
and ,t*+ #In. Let mk denote the multiplicity of rk and vk, k 1,...,j. (Thus
ml +." + mj r.) Suppose the subspace conditions (14) and (15) hold for every k
for which ak > ak+l. Then (Ai) converges to the block diagonal form

(16)

TIW1 0 0 0
0 T2W2 0 0

o o o
0 0 0 0

where Wk E Cm’xm’ is unitary, k 1,... ,j. Convergence of the kth main diagonal
block is linear with contraction number Pk max (Vk+l/Vk, vk/vk-1}, where Vo oo
and +l #. (+1 0/f rn n r.)

Remarks. (1) If is upper triangular, the blocks in (16) must be upper triangular.
Since a matrix which is both upper triangular and unitary must be diagonal, we get
convergence to diagonal form in this case, provided the subspace conditions (14) and
(15) are satisfied.

(2) The nonzero singular values of most matrices are distinct. In this case, as-
suming that the subspace conditions are satisfied, Ai --. diag{51,..’,Sr} E Cnxm,
where 1Ski ak, k 1,..., r. The columns of the cumulative transformation matrices
Qi and Pi converge to (multiples of unit modulus of) right and left singular vectors,
respectively.

(3) Every problem can be reduced to one or more subproblems for which is
square and bidiagonal, with real, strictly positive entries on both the main diagonal
and the superdiagonal. If . is of this form, then both .* + #I and fi.J* + #I
are unreduced tridiagonal matrices. It follows that the singular values are distinct
[10], and the subspace conditions (14) and (15) are satisfied for all k [9], [15]. Thus
convergence to diagonal form is guaranteed in this case.

Proof. It follows from Theorem 2.1 that the off-diagonal blocks tend to zero.
Furthermore, the singular values of the kth main diagonal block tend to the multiple
singular value rk at the stated rate. It remains only to show that the convergence of
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the singular values implies the convergence of the main diagonal blocks of (Ai). While
this is not hard to do, we have found that it is just as easy to prove the theorem from
scratch, using a variant of the argument which was used in theproof of Theorem 2.1.
We will show that Pi U#i and Qi y(i, where/5i and Qi converge to specific
block diagonal unitary matrices. It follows that (Ai) converges to the form (16).

Let A diag{A1,A2,...}, as in the proof of Theorem 2.1. Under the present
hypotheses A has the form A diag(vlIml, V2Im2,"’, VjImj, 0}. As in the proof of
Theorem 2.1 we have, from the first equation of (9), QiRi VAiV*. The subspace
conditions (14) guarantee that V* has a block LU decomposition

Lll 0 0 I X12 Xl,a+l
L21 L22 0 0 I X2,a’+

V* LX

La+l,1 La+l,2 La+l,a+l 0 0 I

where Lkk E Cm: m:, k 1, j. Noting that

QiRi V(AiLA-i)AiX,
we examine the product AiLA-i. Clearly

Mll 0 0
M21 M22 0

AiLA-i M31 M32 M33

where Mjk (Vj/Vk)iLjk. Therefore

AiLA-i -. diag{Lll, L22,..-, L+I,j+I}.

Consider the QR factorization diag{/il,/22,..’,La+l,a+l} (/. Obviously ( is
block diagonal:

diag{l, 2, , j+l}.
Let ii be the QR decomposition of AiLA-i. Then i as i . Also

Qi (Vi)(AiX).
Since VOi is unita and AiX is upper trianlar with positive main diagonal
entries,

Repeating this argument starting from the second equation of (9), we find that

Pi :UL,
where i diag(l, 2, ,+}.

It now follows easily that (Ai) converges to block diagonal form. For

By hypothesis, E has the form E diag{,Im,..., ,Im,O}, so

A diag{,#, *..TPI QI 0} diag{vlW1 "’’, TjWj, 0},

where Wk [:’k, k 1,...,j. D
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3. The differential equation of a self-equivalent flow. Let/} E Cnxm, and
consider the self-equivalent flow

(17) B(t) F(t)hZ(t).
Then B(t) satisfies a differential equation, which can be found by differentiating (17).

h [Z+F[2
(18) kF-iB + BZ-12

CB + BD,

where C -/F-1 and D Z-i 2. Conversely, suppose B(t) is the unique solution of
an initial value problem

(19)

Let F and G be the solutions of the initial value problems

[7 CF, F(O) I,

2 ZD, Z(O) I.

Then B(t) F(t)[Z(t). That is, B(t is a self-equivalent flow. To prove this result,
let /}(t) F(t)BZ(t). Differentiate B as in (18) to find that / satisfies the initial
value problem (19). Since the solution of (19) is unique,/ B. This result is a slight
generalization of theorems appearing in Chu [2],[3].

In (19) we have purposely left the form of C and D vague to show that the form
is unimportant. C and D could be constant matrices or prespecified functions of t,
but the most interesting instances of (19) are those for which C and D also depend
on B, since (19) is then nonlinear.

It will sometimes be useful to write the self-equivalence relation in slightly different
ways, such as B(t) S(t)JR(t) -1. Using the equation t(R-1) -R-IR-1, we

find that B(t) S(t)R(t) -1 if and only if

(20) CB BD, B(O) ,
where S and R satisfy

cs, s(o)- DR, R(O) I.

Similarly, the relationship B(t) P(t)-lQ(t) holds if and only if- BD- CB, B(O) [,(21)

where P and Q satisfy

P- PC, P(O) I,

( QD, Q(O) I.

Finally we note that P (respectively, Q) is unitary for all t if and only if C(t) (respec-
tively, D(t)) is skew-Hermitian for all t.
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4. QR flows for the SVD. Every matrix C E Ckk (k n or m) can be
expressed uniquely as a sum

(22) c p(C) + o(c),

where p(C) is skew-Hermitian, and a(C) is upper triangular with real entries on the
main diagonal: Let / E Cnxm. Given any real-valued function f defined on the
spectra of B*B and/}/*, consider the flow

(23) /} Bp(f(B*B)) p(f(nB*))B, B(O) .
This has the form (21), so B(t)= P(t)-lQ(t), where

(24) /5 Pp(f(BB*)), P(0) I,

(25) Qp(f(B’B)), Q(O) I.

Since p(f(BS*)) and p(f(S*S)) are skew-Hermitian, P(t) and Q(t) are unitary, and
we have

(26) B(t) P(t)* gQ(t).

We get as a special case the flow of Chu [2] by taking /} to be real, square, and
bidiagonal, and taking f(x) x.

Using (22) and the equation f(BB*)B Bf(B*B), we see that (23) can also be
written as

(27) /} a(f(BB*))B Ba(f(S*B)),

This has the form (20), so

(28) B(t) S(t)R(t)-where

B(0)

=a(f(BB*))S,
I} a(f(B*B))R,

s(o)
R(O)

Since a(f(BB*)) and a(f(B’B)) are upper triangular with real main diagonal entries,
S(t) and R(t) must be upper triangular with positive main diagonal entries.

Taking the conjugate transpose of (23), we find that B* satisfies the differential
equations

.= { B*p(f(BB*))
a(f(B*B))B*

p(f(B*B))B* } [.
B*a(f(BB*)) B(O)

from which it follows that

(29) B(t)* Q(t)**P(t) R(t)[*S(t)-,
where^P, Q, R, and S are as defined above. (Of course the expression B(t)*
Q(t)*B*P(t) is already obvious.) The matrices B(t)*B(t) and B(t)B(t)* also satisfy
certain differential equations. Easy computations show that

(30)
d
---(B’B) [B*B p(f(B*B))] [a(f(B*B)) B*B]
dt
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(31)
d
----(BB*) [BB*,p(f(BB*))] [a(f(BB*)) BB*]
dt

where IX, Y] XY YX. Thus B*B and BB* are QR flows of the type described
in [16],[17], and elsewhere. We also note that

(32) B(t)*B(t) Q(t)*[3*[3Q(t) R(t)[3*[3R(t) -1,

(33) B(t)B(t)* P(t)*[3[3*P(t) S(t)[3[3*S(t) -1.
Because these are QR flows, we have [16], [17]

(34) exp(f(/}*/})t) Q(t)R(t),

(35) exp(f(/}/}*)t) P(t)S(t).

These are QR decompositions.

4.1. The relationship between the QR flows and the QR algorithm for
the SVD. For a special choice of f the QR flow interpolates the constant shift QR
algorithm. Obviously f(x) log(x + #), # > 0, is defined on the common spectrum
of/*/} and//}*.

THEOREM 4.1. The QR algorithm (2), (3) with initial matrix i and the QR
flow (23) with f(x) log(x + #) and initial matrix [3 are related by Ai B(i),
i O, 1, 2,.... In other words, the QR flow with f(x) log(x + #) interpolates the
QR algorithm with constant shift #.

Proof; The assumptions imply that fi.* +pin exp(f(/*/)) and fi.* + pin
exp(f(BB*)). Therefore (34) and (35), taken at t 0, 1,2,..., can be rewritten as

(36) (.; ;.., + #Im )i Q(i)R(i), i=0,1,2,....
+#In) P(i)S(i),

Comparing these with the decompositions (9) and recalling that the QR decomposi-
tions are unique in the nonsingular case, we find that

(37) Qp() Qi, R(i)= Ri, i= 0,12,...P, S(i) Si,

Thus, by (6) and (26) we have

A PAQ P(i)*hQ(i) B(i), i-- 0, 1, 2,....

The same conclusion can also be obtained using (12) and (28) instead of (6) and (26):
Ai SiR1 S(i)[3R(i)-1 B(i). D

For choices of f other than log(x / #) we have the following weaker interpolation
properties.

THEOREM 4.2. The QR algorithm (2,3) with initial matrix and the QR flow
(23) have the following relationships:

If* + t.tim exp(f(/}*/})), then AAi + Irn exp(f(B(i)*B(i))) for i
0, 1,2,....

If tt* + #In exp(f(//*)), then AiA + #In exp(f(B(i)B(i)*)) for i
0, 1,2,....
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Proof. If A*A + exp(f(/}*/)), then the equations in the first line of (36)
and (37) hold. In particular, Q(i)- Qi, i-o, 1, 2,.... Therefore, by (7) and (32),

AAi + #Im (A*A +
Q(i)* exp(f([3*[3))Q(i)
exp(f(Q(i)*[3*[3Q(i)))
exp(f(B(i)*B(i))).

The second assertion is proved similarly. D

4.2. Convergence of QR flows. The flows satisfy convergence theorems anal-
ogous to Theorems 2.1 and 2.2. Let /} UEV* be the SVD of /, with U
[Ul,’’’,Un] E Cnn, E diag{al,...,ar} Cnm, al

_
(T2

_ _
ar > O,

and Y Iv1,..., Vm] e Cmm. The eigenvalues of exp(f(/*/)) and exp(f(//*))
are i- exp(f(a)), i- 1,...,r. If r < m (or r < n), exp(f(/*/})) (respectively,
exp(f(//*))) has the additional eigenvalue Ar+l exp(f(0)) of multiplicity m- r
(respectively, n- r). For convenience we will assume that f is a strictly increasing
function. This has the effect that the eigenvalues satisfy 1 _> 2 _> _> r > Ar+l.
In analogy with Theorem 2.1 we have Theorem 4.3.

THEOREM 4.3. Let B(t) be the solution of (23), where f is strictly increasing.
Suppose ak > ak+l for some k, and

(38) (Vl,’’’, Vk) (Ck+l,"" ", Cm) {0} (in cm),

(39) (ul, uk> fq <ek+l, en> {0} (in Cn).

Partition B(t) as

B(t) Bl1(t) B12(t)
B21(t) B22(t)

with Bll(t) . Ckk. Then B21(t) --* 0 and B12(t) - 0 as t -- oc. The singular
vahte8 of Bli(t and B22(t)converge to {al,...,ak} and {ak+i,"’}, respectively.
The convergence is linear with contraction number Ak+l/Ak.

Proof. The proof is identical to that of Theorem 2.1, except that exp(f(/}*/))
and exp(f(//*)) replace A*. + Im and * + In, and the continuous variable t
replaces the discrete variable i. D

In analogy with Theorem 2.2 we have Theorem 4.4.
THEOREM 4.4. Let B(t) be the solution of (23), where f is strictly increasing.

Let TI >’’" > Tj be the distinct nonzero singular values of [, and let Uk exp(f(T)),
k- 1,... ,j, be the corresponding eigenvalues of exp(f(J*J)) and exp(f(//*)). Let
mk denote the multiplicity of Vk and Uk, k 1,...,j. (Thus ml +." + mj r.)
Suppose the subspace conditions (38) and (39) hold for every k for which ak > ak+l.
Then B(t) converges to the block diagonal form

(40)

71W1 0 0 0
o o o

o o o
0 0 0 0
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where Wk E Cinkink is unitary, k 1,... ,j. Convergence of the kth main diagonal
block is linear with contraction number Pk max {tk+l/k, k/k-1 }, where to oc
and .+1 exp(f(0)). (p.+ 0 if m n r.)

Proof. The proof is analogous to that of Theorem 2.2.
Remarks. (1) If/ is upper triangular, then B(t) is upper triangular for all t

by (28). Therefore each of the main diagonal blocks in (40) must be both unitary
and upper triangular, hence diagonal. Therefore B(t) converges to diagonal form,
provided the subspace conditions (38) and (39) are satisfied.

(2) If the nonzero singular values of/ are distinct, and the subspace conditions
are satisfied, B(t) diag{5,’..,Sr} Cnxm, where [Ski ak, k- 1,...,r. The
columns of the transformation matrices Q(t) and P(t) converge to (multiples of unit
modulus of) right and left singular vectors, respectively.

(3) Consider the important special case f(x) log(x + #). If/ is bidiagonal,
with real, strictly positive entries on both the main diagonal and the superdiagonal,
then both exp(f(/*/)) *+#Im and exp(f(//}*)) JJ*+#In are unreduced
tridiagonal matrices. Thus the singular values are distinct [10], the subspace condi-
tions (38) and (39) are satisfied for all k [9], [15], and convergence to diagonal form
is guaranteed.

(4) Both Theorem 4.3 and Theorem 4.4 can be extended to the case in which
f is not monotone. In this case the ordering of the eigenvalues can differ from that
of the singular values. The order of the blocks in (40) depends on the order of the
eigenvalues, not the singular values. In particular the zero block on the main diagonal
need not be at the end; it can be sandwiched between nonzero blocks. Note that this
block is not necessarily square; it has dimensions (n-r) x (m-r). Both the statement
and the proof of Theorem 4.3 become more delicate in this case.

5. Generalized QR algorithms and flows. The practical QR algorithm uses
a different shift at each step to speed convergence. At step i a shift ai is chosen.
Instead of (2) we have

(41) A_IAi_ -aiI

Then Ai is defined by

(42)

as before. Equations (41) can be expressed more compactly as

(43) Pi(A’-IAi-) O,ii, pi(Ai-xA_l) PiSi,

where pi(x) x ai. More generally we can carry out the process (43), ^(42), where
Pl,P2,P3," is any sequence of functions defined on the spectra of A*A and AA*.
This is the generalized QR algorithm for the SVD problem.

Clearly AAi O, A_ Ai_ , and AiA Ai_ A_ i, showing that the
transformations Ai*_ 1Ai- --+ AAi and Ai- Ai*_ -- AiA amount to shifted or
generalized QR steps. Equations (6)-(8) continue to hold. Equations (9) are replaced
by

(44) 1-I p(A.A) QiRi, p (AA*)
.i= .i=
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Notice that if pi(A_lAi_l and pi(Ai_iA_l) are nonsingular, then both of the
QR decompositions in (43) are unique. This is typically the case. For example,
if pi(x) x- hi, where ai 0 is not an eigenvalue of fi.*. and .fi.*, then both
Pi(A_ Ai- and Pi (Ai- A_ are nonsingular.

If all of p(A*A) and p(AA*), i 1,2,3,... are nonsingular, then equations
(10)-(13) all hold, and the QR decompositions in (44) are unique.

The algorithm can be shown to converge for various choices of Pt, P2, P3,’" "- For
example, if pi(x) x- hi, where (hi) converges to an eigenvalue, and the subspace
conditions (38) and (39) are satisfied, the algorithm will converge. Because the shifts
approach an eigenvalue, the block in the lower right-hand comer will converge rapidly.

5.1. Generalizing the QR flow. Given a generalized QR algorithm, we would
like to find flows which interpolate the algorithm at integer times. To this end we
consider nonautonomous flows satisfying differential equations of the form

(45) / Bp(f(t,B*B)) p(f(t, BB*))B, B(O) [,

where f is piecewise continuous in t. For this type of flow the properties (24) through
(33) all continue to hold, except that f now depends on t. In particular,

:(B’B) [B*B, p(f(t, B*B))]
dt

rl
----(BB*) [BB*, p(f(t, BB*))],
dt

showing that B*B and BB* are nonautonomous QR flows of the type studied in 9
of [17]. Therefore by Theorem 9.1 of [17], we have

(46) exp { fot f(s, *)ds} Q(t)R(t),

(47) {/o }exp f(s, [*)ds P(t)S(t),

where Q, R, P, and S are the unique solutions of

(48) 0 Qp(f(t, B’B)), Q(O) I,

(49) / a(f(t,B*B))R, R(O) I,

(50) /5 Pp(f(t, BB*)), P(O) I,

(51) a(f(t, BB*))S, S(O) I.
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5.2. The connection between generalized QR algorithms and QR flows.
THEOREM 5.1. Suppose

(52) f(s, x)ds log(p.(x)), j 1, 2, 3,....
-1

Then the generalized QR algorithm based on Pl,P2,p3,’" ", with initial matrix E
Cnxm, and the generalized QR flow based on f, with initial matrix J t, are
related by Ai B(i), i O, 1, 2,....

Proof. Substituting .* (=/}*/}) for x in (52), summing j from 1 to i, and taking
exponents, we find that for i 1, 2, 3,...,

exp f(s,[*[)ds H PJ(*’)"
j=l

Then by (46) and (44), Q(i)R(i) QiRi, i 0,1,2,.... By uniqueness of the QR
decomposition, Q(i) Qi find R(i) R/, i 0, 1, 2,.... Performing the same steps
with AA* in place of A’A, we find that P(i) Pi and S(i) Si, i 0, 1,2,....
Therefore by (6) and (26),

Ai PAQi P(i)*[Q(i) B(i)

for i 0, 1, 2,....
Remark. We could have drawn the same conclusion using R and S instead of Q

and P.
Provided that pl,p2,p3,"" are chosen so that log(pi(*)) and log(pi(.*)) are

always meaningful, there are many ways to choose f so that the equations (52) are
satisfied. Some examples are given in [17, Examples 9.4-9.7]. There is no need to
repeat them here.

6. Preservation of band structure. A matrix C (co.) E Cnxm is said to be
lower k-banded if cO. 0 whenever i- j > k. For example, upper triangular matrices
are lower 0-banded. It is easy to show that the product of a lower k-banded matrix
with an upper triangular matrix, in either order, is lower k-banded. A matrix is upper
k-banded if its transpose is lower k-banded. A matrix that is both lower 0-banded
and upper 1-banded is bidiagonal.

THEOREM 6.1. Let B(t) be a flow which satisfies an initial value problem of the
form (45). If [ is lower k-banded, then B(t) is lower k-banded for all t. If [ i8 upper
j-banded, then B(t) is upper j-banded for all t. In particular, if B is bidiagonal, then
B(t) is bidiagonal for all t.

Proof. Suppose/} is lower k-banded. By (28) S(t) S(t)[R(t) -1, where both
S(t) and R(t)-1 are upper triangular. Thus S^(t) is lower k-banded.

Now suppose/ is upper j-banded. Then B* is lower j-banded. By (29) B(t)*
R(t)[*S(t)-, where R(t) and S(t)- are both upper triangular. Therefore B(t)* is
lower j-banded for all t; that is, B(t) is upper j-banded for all t.
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CONTINUOUS HOMOTOPIES FOR THE
LINEAR COMPLEMENTARITY PROBLEM*

LAYNE T. WATSON, J. PATRIGK BIXLER, AND AUBREY B. POORE$

Abstract. There are various formulations of the linear complementarity problem as a Kaku-
tani fixed point problem, a constrained optimization, or a nonlinear system of equations. These
formulations have remained a curiosity since not many people seriously thought that a linear combi-
natorial problem should be converted to a nonlinear problem. Recent advances in homotopy theory
and new mathematical software capabilities such as HOMPACK indicate that continuous nonlinear
formulations of linear and combinatorial problems may not be farfetched. Several different types of
continuous homotopies for the linear complementarity problem are presented and analyzed here, with
some numerical results. The homotopies with the best theoretical properties (global convergence and
no singularities along the zero curve) turn out to also be the best in practice.

Key words, homotopy algorithm, globally convergent, linear complementarity problem, fixed

point, expanded Lagrangian, nonlinear equations
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1. Introduction. Given a real n n matrix M and a real n-vector q, the linear
complementarity problem (LCP), denoted by (q, M), is to find n-vectors w and z such
that

w Mz q,

w >-_ O, z >= O, wtz O.

The constraint wtz 0 is called the complementarity condition since for any i,
1-< i <_- n, zi 0ifwi 0, and vice versa. A solution where some zi wi 0
is called degenerate. The linear complementarity problem arises in such diverse ar-
eas as economic modeling [15], [16], [59]; bimatrix games [29], [32]; mathematical
programming [10], [19], [34]; mechanics [17]; lubrication [28]; and numerical analysis

There are numerous algorithms for solving special classes of linear complemen-
tarity problems. Those based on pivoting or simplex-type processes include Lelnke’s
complementary pivot algorithm [29]; Cottle and Dantzig’s principal pivot method [6];
Bard-type algorithms [4], [45], [60]; and the n-cycle algorithm [62], [64]. There are
also linear iterative techniques, similar to those for solving linear systems of equa-
tions, such as SOR [2], [3], [8], [351, [50], [51], [61] and various related fixed point
iteration schemes. A very different algorithm is the simplicial homotopy algorithm of
Merrill [37], applied to a Kakutani fixed point formulation (solution is a fixed point
of a point-to-set mapping) of the linear complementarity problem.
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A more recent development was the formulation of the linear complementarity
problem as a differentiable nonlinear system of equations [33], and the solution of
this system of equations by a globally convergent homotopy method [66]. This ap-
proach has remained a curiosity because few people took seriously the formulation of
a linear combinatorial problem (like the LCP) as a highly nonlinear problem. Re-
cent advances in homotopy theory and mathematical software for nonlinear systems
of equations [68]-[69], and new nonlinear formulations of linear, discrete, and combi-
natorial problems ([33], [53], [54], [66], [67]) suggest that nonlinear formulations of the
linear complementarity problem should be investigated further.

The present paper proposes and analyzes several nonlinear homotopies for the
linear complementarity problem. The existence theorems implied by the globally con-
vergent homotopy theorems are as general as any derived by other methods. Section
2 defines some terminology, {}3-9 describe and analyze different homotopy maps, 10
describes some numerical experiments, and 11 summarizes.

2. Preliminaries. In this section we gather some terms and fundamental results
about globally convergent homotopy methods. For additional background refer to [65],

Let En denote n-dimensional, real Euclidean space and let Enxn be the set of
real n x n matrices. The ith component of a vector v E E’ is denoted by vi, and for
a matrix A E Enxn, Ai. denotes the ith row and A.. denotes the jth column. For
subsets I, J C {1,..., n), AIj denotes the submatrix of A with rows indexed by
I d colus indexed by J. Let e En be the vector such that ei 1 for all i. For
v e En, v+ denotes the vector with components (v+) m{0, v), and v- denotes
the vector with components (v-)i m(0,-vi}. The support of v, denoted by S(v),
is simply (i vi 0). We use the following notation when comparing a vector a En

to 0:
a0 ifai0foralli,

a0 ifa0anda0,

a>0 ifai>0foralli.

Let M Enxn be a real n x n matrix and let q be a real n-vector. M is
nonnegative if each element of M is nonnegative, copositive if xtMx >= 0 for all x => 0,
and strictly copositive if xtMx > 0 for all x >_ 0. M is called nondegenerate if all of its
principal minors are nonzero, and a P-matrix if all of its principal minors are positive.
The vector q is nondegenerate with respect to M if q is not a linear combination of
any n- 1 columns of (I,-M). Finally, M is strictly semimonotone if for each vector
x >_ 0 there exists an index k such that Xk(MX)k > O.

When w >= 0 and z _-> 0 satisfy w- Mz q, (w, z) is called a feasible solution. If
wtz 0 also, (w, z) is called a complementary feasible solution.

A C2 (twice continuously differentiable) function F En Em is said to be
transversal to zero if the m x n Jacobian matrix DF(x) has rank m on F-l(0). The
theoretical justification for modern probability-one homotopy methods rests on a result
from differential geometry, known as a parameterized Sard’s theorem [65]"
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LEMMA 2.1. Let p: Em x [0, 1) x En --+ En be a C2 map which is transversal
to zero, and define

Pa (A, z) p(a, A, z).
Then for almost all a Em, the map Pa is also transversal to zero.

The significance of Lemma 2.1 is partially given by:
LEMMA 2.2. In addition to the hypotheses of Lemma 2.1, suppose that for each

a Era the system pa(O, z) 0 has a unique solution z(). Then for almost all
a E Em there is a smooth zero curve ff C [0, 1) x En of pa(A, z), emanating pore
(0,z()), along which the Jacobian matrix Dpa(A,z) has rank n. ff does not intersect

itself or any other zero curves of Pa, does not bifurcate, has finite arc length in any
compact subset of [0, 1) x En, and either goes to infinity or reaches the hyperplane

LEMMA 2.3. Under the hypotheses of Lemma 2.2, if the zero curve is bounded,
then it has an accumulation point (1,2). Furthermore, g rank Dpa(1,2) n, then ff
has finite arc length.

Conceptually, the algorithm for solving the nonlinear system of equations F(z)
0 is simple. Using the leas above, just follow the zero cue if, starting from some
point (0, z()) and ending at a point (1, 2), where 2 is a zero of F(z). Computationally
this may be nontrivial, but at least the idea is clear. A typical simple choice for the
homotopy map is

pa(A,z) AF(z)+ (1 A)(z- a).
Although this homotopy map has the same form as a stdard continuation or em-
bedding mapping, there are two important differences. First, in stdard continuation
the embedding patterer A increases monotonically from 0 to 1 as the trivial prob-
lem (z- a) 0 is continuously defoed to the given problem F(z) 0. With the
present homotopy method, turning points on ff cause no special difficulties and so A
can increase and decrease as the cue is being tracked. Secondly, the fact that the
Jacobi matr Dpa has full ra along ff d the way in which the zero cue is
tracked arantee that there are never any "sinlar points" which afflict stdard
continuation methods.

3. The 1979 homotopy. To provide a backdrop for the homotopies presented
in the next few sections, we briefly review the homotopy map of [66]. Mangasarian
[33] has shown that the linear complementarity problem (q, M) can be reformulated
as a zero finding problem

H(z) =o,
where H(z) can be made as smooth as desired. Taking 0(t) t3 in Mangasarian’s
Theorem 1 [33], we define H(z) by

Hi(z) -[Mi.z + qi zi[ 3 + (Mi.z + qi)3 + zi3
and

pa(A,z) A U(z) + (1 A)(z- a).
By noting the signs of each term in H, it is clear that z >= O, Mz + q >- O, and
(Mz + q)tz 0 if and only if H(z) 0. That is to say, z solves the LCP if and only if
H(z) 0. The following result from [66] gives conditions on the matrix M to insure
that a zero curve of the homotopy map Pa can be tracked to obtain a zero of H.
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THEOREM 3.1. Let M E Enn be either positive definite, a P-matrix, nonde-
generate strictly copositive, or nondegenerate strictly semimonotone, and let q En

be nondegenerate with respect to M. Then there exists 5 > 0 such that for almost all
a >- 0 with Ila[Ioo < 5 there is a zero curve "l of pa(,z), along which Dpa(A,z) has

full rank, having finite arc length and connecting (0, a) to (1, 2), where 2 is a zero of
U(z).

Although it was not stated in [66], the proof of Theorem 3.1 there showed that
if the nondegeneracy assumptions are removed, then the conclusion still holds, except
that (1, 2) is only an accumulation point of the zero curve /(of possibly unbounded
variation). The map Pa above is the standard hcmotopy map. In the context of this
paper we can view it as relaxing all of the solution requirements of the LCP while the
zero curve is being tracked. Initially z is set to some arbitrary point a having nothing
to do with the solution to (q, M). As A gets closer to 1 we can say that, in some

sense, z gets closer to such a solution. However, for any A < 1, z and w Mz q-q do
not necessarily form a feasible solution or a complementary solution to (q, M). These
conditions are imposed only at the end, when A 1, and then all at once. In the next
few sections we present several homotopies, based on Mangasarian’s function, that
attempt to maintain at least feasibility or complementarity for a modified LCP right
from the start. The hope is that the homotopy process is then more efficient.

4. Relaxation of M. In this map, all of the continuation is applied to the
matrix. We maintain a complementary feasible solution for some other matrix which
is a convex combination of M and the identity. When 0 the matrix is the identity,
and when , 1 the matrix is M. We can view this map as relaxing only the matrix
M as the zero curve is being tracked.

Define h:[0, 1) En --. En by

Ai(A, z) -[[(1 A)I + AM]i.z + qi Zi[ 3 - ([(1 )I + AM]i.z + qi) 3 + z
for/-- 1,...,n.

Observe that since this is simply Mangasarian’s map with a modified matrix for
M, feasibility and complementarity are preserved wherever h is zero.

LEMMA 4.1. Let P be any of the following properties:

(a) positive definite,

(b) P-matrix,

(c) nondegenerate strictly copositive,

(d) nondegenerate strictly semimonotone,

and let 0 <= A <- 1. If a matrix M Enxn has property P, then (1 A)I + AM also
has property P except possibly for finitely many values of A.

Proof. (a) It follows from the definition of positive definite that

xt[(1 A)I + AM]x (1 A)(xtx)+ A(xtMx) > 0

for all x 0 whenever M is positive definite.
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(b) It can be shown [13] that M is a P-matrix if and only if for all x - 0 there is

an index k such that Xk(MX)k > O. Let M be a P-matrix and let x 0. Then

Xk ([(1 A)I + AM]x)k (1 A)x,(Ix)k + Axk(Mx)k
(1 A)x + Axk(MX)k

>0

for some index k.

Let M be nondegenerate and let K C (1,..., n}. Because the determinant is

multilinear we have

det((1 A)I + AM)Kg Z (1 A)lgl-IJlAlJI detMjj,
JCK

which is simply a polynomial in A. Notice that, since ((1 A)k-A 0 <_- j -<_ k)
forms a linearly independent set of polynomials, and det Mjj 0 for any subset
J C (1,..., n}, this polynomial is not identically zero. (By convention, detM 1.)
This polynomial has only a finite number of zeros and so (1-A)I+AM is nondegenerate
except for finitely many values of A.

(c) It follows from the definition of strictly copositive that

xt[(1 A)I + AM]x (1 A)(xtx)+ A(xtMx) > 0

for all x _> 0 whenever M is strictly copositive.

(d) An argument similar to that for (b) holds if M is strictly semimonotone and
x>0.

Lemma 4.1, Theorem 3.1, and the subsequent remark give us the following theo-
rem.

THEOREM 4.1. Let M E Enxn be positive definite or a P-matrix, and let
q En. Then there exists a zero curve of A emanating from (0, q-) and reaching a

point (1, 2), where 2 solves the LCP (q, M).
Note that Theorem 4.1 does not include strictly copositive or strictly semimono-

tone matrices, nor any reference to the rank of the Jacobian matrix along the zero

curve /. If M is nondegenerate strictly copositive or nondegenerate strictly semi-

monotone, there is a solution to the LCP (q, [(1 )I + M]) for every e [0, 1]
by Theorem 3.1. However, there may be multiple solutions, and when the number of
solutions changes at some some of the zero curves of A either "stop" or "start" at
A. Thus there is no guarantee that a single zero curve of A will reach all the way from
A --0 to A 1. For example, take

M= 0 1 10 q= -4.0
1 0 1 -0.9
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M is nondegenerate strictly semimonotone, but the zero curve emanating from (0, q-)
disappears at 2 0.8. Also we cannot say that the Jacobian matrix DA(A,z) is
nonsingular along the entire zero curve /. The ith row of the Jacobian matrix of h is

(DA(A,z))i. (-31AI(A)(-I + M)i.z + 3(B)2(-I + M)i.z,

3]AI(A)(Amil + 3(B)2($mil),
31AI(A)(-$ + Amii)+ 3(B)2(1 + $mii)+ 3z,...
31Al(A)($mi,)+ 3(S)(Amin)),

where A [(1 $)I + $M]i.z + qi zi,

B [(1 A)I + AM]i.z + qi.

Observe that if Iql > 0, then rank DA(0, q-) n, and so the starting point z q-
for the zero curve is nonsingular.

PROPOSITION 4.2. Let M E Enxn be positive definite or a P-matrix, and
let q En. Whenever M and q are such that (,2), the solution to (q,M), has
S() S(q-), the Jacobian matrix ofh has singularities along the zero curve " of A.
There is at least one singularity for each element in the disjoint union

s(q-)) \ s(q-)).

Proof. Let (@,) be the solution to (q,M) and let i e S(2) \ S(q-). First note
that, on the (unique) zero curve - of A, both z and w are continuous functions of A.
Since z q- when A 0, there must be a point Ao such that, along the zero curve,
zi 0 for 0 -< A =< Ao and zi > 0 for Ao < A < Ao+e for some e. Since complementarity
is maintained along the zero curve, wi 0 for Ao < A < Ao + e. By continuity, wi
must be 0 at A Ao. This means that both zi and wi [(1 A)I + AM].z + qi are
zero at A Ao, and hence the Jacobian matrix Dh(Ao, z(Ao)) is singular.

Similarly, let i S(q-) \ S(2). There must be a point A1 such that, along the
zero curve % zi > 0 for 0 -< A < Ax and zi 0 at A A. Again by complementarity
and continuity, wi must be 0 at A Ax and the Jacobian matrix DA(A,z(A1)) is
singular. [:]

5. Relaxation of q. We can also relax the right-hand side of the LCP keeping
the matrix M fixed. This map maintains feasibility and complementarity, but uses a
convex combination of the vectors q and Ilqllooe for the right-hand side of the equation.
When A 0, we have the trivial problem (llqllooe, M) where the right-hand side has
all components positive and, when A 1, we have the given problem (q, M).

Define O:[0, 1) x En -- En by

o 13 (M + Aq / (1 A)llqllo) a 4- z
for i 1,..-,n.

Since this is once again Mangasarian’s map with a slightly different vector for q,
feasibility and complementarity on the zero set of O is guaranteed. By Theorem 3.1
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and the remark following it, we know that the LCP has a locally unique solution for
any q whenever M is nondegenerate strictly semimonotone. Thus we easily have the
following theorem about O.

THEOREM 5.1. Let M Enxn be positive definite or a P-matrix, and let
q En. Then there exists a zero curve "7 of 0 emanating from (0, O) and reaching a

point (1, 2), where 2 solves the LCP (q, M).
Note that Theorem 5.1 does not include strictly copositive or strictly semimono-

tone matrices, nor any reference to the rank of the Jacobian matrix along the zero
curve /. If M is nondegenerate strictly copositive or nondegenerate strictly semi-
monotone, there is a solution to the LCP (Aq + (1 A)llqllooe, M) for every A [0, 1]
by Theorem 3.1. However, there may be multiple solutions, and when the number of
solutions changes at some some of the zero curves of O either "stop" or "start" at
A. Thus there is no guarantee that a single zero curve of O will reach all the way from
A 0 to A 1. For example, take

M-- 5 1 10 q- -2
1 1 1 -1

M is nondegenerate strictly semimonotone, but the zero curve emanating from (0, 0)
disappears at A 4/5.

Furthermore, we cannot say that the Jacobian matrix is nonsingular along the
entire zero curve. The ith row of the Jacobian matrix of O is

(DO(A,z)) i. (- 31AI(A)(qi- Ilqlloo) + 3(B)2(qi -Ilqllo),

31AI(A)(mil)+ 3(B)Zmi1,
31al(a)(m- 1) + 3(B)m + 3z,.. ,
31al(a)(m,)+ 3(B):m=),

where A Mi.z + $qi + (1 ,X)llqlloo z,

B M.z + ,kqi + (1 ,X)llqllo.

Note that the first column and the diagonal element differ slightly in form from the
rest of the entries. Also note that if zi and wi Mi.z+qi+(1-)llqllo are both zero
for some A, then every entry in (DO)i. is 0. Hence, the Jacobian matrix is singular
and we have the following proposition.

PROPOSITION 5.2. Let M E Enn be positive definite or a P-matrix, and let
q e En. Whenever M and q are such that (z, 2), the solution to (q, M), has 2 O,
the Jacobian matrix of 0 has singularities along the zero curve " of O. There are at
least as many singularities as there are nonzero components of 2.

Proof. Let (0, 2) be the solution to (q,M) and let i be such that 2i > 0. First
note that, on the (unique) zero curve of O, both z and w are continuous functions of
A. Since z 0 when A 0, there must be a point o such that, along the zero curve,
zi 0 for 0 -< -< Ao and zi > 0 for o < < o+e for some e. Since complementarity
is maintained along the zero curve, wi 0 for Ao < < Ao / e. By continuity, wi
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must be 0 at A Ao. This means that both zi and wi Mi.z + Aqi + (1
are zero at A Ao, and hence the Jacobian matrix DO(Ao, z(Ao)) is singular.

Geometrically, the singularity corresponds to the point at which the vector Aq
(1 A)llqllo passes through the boundary of one complementary cone [44], [48], [56],
[62] and into another. If it happens that this vector stays in such a boundary for all
A in some interval [o, A1], then zi and wi are simultaneously 0, and the Jacobian
matrix is singular, along that entire interval. Since there are a finite number (2n) of
complementary cones, however, we can always perturb the right-hand side by adding
some (e, e2, an), for example, so that there are only a finite number of singularities.

6. Relaxation of complementarity. This section presents a map that uses
the given matrix M and the given vector q, but does not maintain a complementary
solution as we track the zero curve. Although nonnegativity of z is preserved along
the curve, complementarity is enforced only at the very end of the curve, when 1.
Throughout this section, let M E Enxn and q En be fixed.

Define En x [0, 1) x En En by

i(a, , z) -AlMi.z + qi- zil 3 + (Mi.z + qi)3 + zi
3 (1 ,)ai3

for i 1,...,n. For fixed a En let a(,Z) 9(a,A,z). The next few lemmas
show that, for suitable matrices M, there is a zero curve of that can be tracked to
obtain a solution to the LCP (q, M).

LEMMA 6.1. If a >- O, then z >- 0 on -1(0).
Proof. Note that if both zk and Mk.z + qk are negative, then the entire sum

comprising (a(A,Z))k is negative. If, on the other hand, zk < 0 and Mk. + qk >= 0,
then IMk. + qkl < Mk. + qk zk, and the sum is again negative.

LEMMA 6.2. Let M be strictly semimonotone. Then there exists r > 0 such that
zeE, > II=rz o, and ]lz implies that zk(Mz + q)k > 0 for some index k.

Proof. First let
(z) max zi(Mz)i

l<_i<_n

and note that, because M is strictly semimonotone, (I) > 0 for z >_ 0. Also note
that since (I) is continuous and {z" z >- 0, Ilzlloo 1} is compact, (I) must assume its
minimum on that set. Call that minimum and take r > Ilqllo/. Then for z _-> 0
and Ilzll r, there is some index k such that

zk(Mz + q)k Ilzll ’i’(dllzll<><>)+ z#qk
_-> Ilzll:’<><>,i, Ilzll<>o Ilqll<,<,

Ilzllo<> (11 11o<> Ilqllo<>)
>0.

LEMMA 6.3. Let M be strictly semimonotone. Then there exists r > 0 such that
qo(, z) 0 for 0 <= <= 1 and ]lzll r.

Proof. By Lemma 6.1, it suffices to consider z >- 0. Let r and k be as in the
conclusion of Lemma 6.2 above and simply notice that, since zk and (Mz + q) are
both positive, o(, z) cannot be 0. [3
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LEMMA 6.4. Let M be strictly semimonotone. Then there exists r > 0 and
6 > 0 such that 0 <= A <- 1, Ilzlloo r, and []al[oo < 6 implies a(, Z) # O.

Proof. Let r be as in Lemma 6.3, and note that {(a, A, z) a 0, 0 _-< A =< 1,
]lzlloo r} is disjoint from -1(0). Since the first of these sets is compact and the
second is closed there is a positive distance ti > 0 between them, measured in the max
norm. This satisfies the conclusion of the Lemma.

Notice that a positive definite matrix is also a P-matrix, a P-matrix is strictly
semimonotone by the sign-reversal property of P-matrices [13], and a strictly copos-
itive matrix is clearly strictly semimonotone. Hence, Lemmas 6.1-6.4 hold for any
such matrix and we can state the following theorem.

THEOREM 6.5. Let M E Enxn be positive definite, a P-matrix, strictly copos-
itive, or strictly semimonotone, and let q En. Then there exists > 0 such that
for almost all a > 0, Ilalloo < 5 there is a zero curve " of a(,z), along which the
Jacobian matrix Da(, z) has furl rank, emanating from (0, a) and reaching a point
(1, 2), where 2 solves the LCP (q, M).

Proof. First observe that, for a > 0, is transversal to 0 (i.e., its Jacobian matrix
has full rank on -(0)). To see this, note that O/Oal is zero if i j, and nonzero
if i j. Thus, the n columns ofD corresponding to the partials of with respect
to the ai are linearly independent. Clearly, a is C2, and therefore by Lemma 2.1, for
almost all a > 0, a is also transversal to 0. Thus, by the implicit function theorem,
a has a zero curve q, starting from (0, a), along which the Jacobian matrix Da(, z)
has full rank. All of this is true regardless of the conditions on the matrix M.

For M strictly semimonotone (positive definite, strictly copositive, or a P-matrix),
Lemma 6.4 insures that there exists 5 > 0 such that the zero curve /is bounded for

Ilalloo < and 0 -_< -<_ 1. Note that (0, a) is the unique zero of a at 0, and by
the implicit function theorem, -/cannot return to (0, a). Since the curve can neither
simply stop, nor return to , 0, nor go to infinity, it must reach a point (1, 2), where
solves the LCP (q, M).

7. Expanded Lagrangian homotopy. The expanded Lagrangian approach
[54] may be described as an optimization/continuation approach and has in its simplest
form two main steps.

Step 1. (Optimization phase).
At r ro > 0 solve the unconstrained minimization problem

min P(w, z, r),

where

1 1 n n

P(w, z, r) rr Ilzo Mz qll / (zo, z) u r In z, rZ In
i=1 i=1

Step 2A. (Switch to expanded system).
A (local) solution of minP must satisfy

I )(w-Mz-q)0 V(w,z)P _M r
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Introduce the following variables:

w-Mz-q

0 (w, z)

#i --, i 1,...,n,
wi

r/i --, i 1,...,n,
zi

which ultimately represent the Lagrange multipliers. This helps to remove the in-
evitable ill conditioning associated with penalty methods for small r and we thus
obtain our equivalent but expanded system:

(1) (z)_M ,8 + 0 O,w

w- Mz q- r O,

(w, z) rO O,

#iwi r O, i 1,. ,n,

?izi r O, i 1, n.

(Remark. As a result of the optimization phase and the initial starting point with

ro > O, the solution (w(),z()) of minP(w,z, ro) satisfies z() > 0 and w() > O. As
a consequence, #(o) > 0 and r/() > 0 from the definitions of # and r/. They remain
positive until r- O, where we formally have

(1) (z)_M + O- O,w

w Mz q O,

(o, z) =0,

#w O, i 1,...,n,

Tizi O, i 1,..., n,

w, z, O, #, ? >-_ O,

which implies that we have solved the problem.)
In practice we do not solve the optimization problem minP to high accuracy

since a highly accurate solution may have only a digit or two in common with the
final answer. However, it is imperative that VP be reasonably small in magnitude,
say, less than ro/10. The expanded system is converted to a homotopy map by letting
r to(1 A) and modifying the first equation to obtain:

(1) (z) (#) r (o)
_M + O- ---VP(w() z ,ro)=O,

w-Mz-q-r=O,

(w, z) rO O,

#iWi ?" O,

iZi " O,
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Write this system of 5n + 1 equations in the 5n + 2 variables , w, z,/, 0, #, r/as

Step 2B. (Track the zero curve of T from r ro to r 0.)
Starting with arbitrary ro > 0, w() > 0, and z() > 0, the rest of the initial point

(0, w() z() (o), 0o, #(o), r/(o)) is given by

f(o) w() -Mz()-q
ro

(w(01 z(O))
00 ro

#o) ro
w_.(o), i 1,..., n,

r/}o) ro
zO),

i 1,..., n.

This approach requires careful attention to implementation details. For example,
the linear algebra and globalization techniques with dynamic scaling are critically
important in the optimization phase. For degenerate problems the path can still be
long. One possible resolution is the use of shifts and weights as developed in the
method of multipliers [5], but holding r ro fixed. (This approach is currently
under investigation in the context of linear programming [53].) However, in keeping
with the philosophy of the "pure" homotopy approach of the current work, we do
not solve the optimization problem (Step 1), but instead use the above equations
T(,k, w, z, f, 0, #, r/) 0 as a "pure" homotopy.

Logarithmic barrier potential functions are hardly new [5], and have been used
recently by Kojima et al. [26], [27] and Mizuno et al. [38] to extend the ideas of Kar-
markar to obtain polynomial-time algorithms for the LCP. The exact details of how
the barrier parameter, step size selection, concomitant numerical linear algebra, and
initial point computation are handled are crucial to the practical utility of such meth-
ods, and in practice are far more significant than theoretical polynomial complexity. It
is reasonable that the pure expanded Lagrangian homotopy (without the optimization
step) would behave significantly differently from other logarithmic barrier homotopies
[26], [27], [38], which include a Phase 1 step equivalent to Step 1 here. These latter
homotopies of Kojima et al. are certainly not globally convergent, since they require
a nontrivial preliminary computation to get a special starting point at which to begin
the homotopy.

8. Absolute Newton method. The method of this section is not a homotopy
method, but is presented for the sake of comparison and as an example of what can be
done with a Newton-type iterative scheme (see also [1] and [35]). Let x (w, z) E E2n

and define F E2n E2n by

w-Mz-q
WlZ1

WnZn



270 L.T. WATSON, J. P. BIXLER, AND A. B. POORE

Then the LCP (q, M) is equivalent to F(x) 0 for x nonnegative. F(x) 0 is a
polynomial system of equations of total degree 2n, which in general has 2n solutions
over complex Euclidean space C2n, counting multiplicities and solutions at infinity.
Thus all solutions of the LCP (q, M) are among the zeros of F(x), including degenerate
solutions, which correspond to manifolds (in C2n) of zeros of F(x). The algebraic
geometry theory of polynomial systems is rich and deep, and beyond the scope of this
paper. Discussions of the pertinent aspects of algebraic and differential geometry for
polynomial systems are in [39], [40], [41], and [68]. It suffices to note here that F(x)
is a polynomial system with a particularly simple structure.

The Jacobian matrix of F is

DF(x) diag(z,...,zn) diag(w,...,wn)

a 2n x 2n marN. The absolute New,on iteration is

(k+l) (k)_ [D((k))]-l((k)) =0,1,,""

for arbitra starting point (o) Nn. The absolute value signs mean to replace
each component of he vector by is absolute value (precisely, z+ + When
ghis ieration is well defined is given by the following theorem:

THEOREM 8.1. Let M Enxn be nondegenerate and let (, 2) be a zero of
F. Then the Jacobian matrix DF() is invertible if and only if + > O.

Proof. Suppose that k 2k O. Then the (n + k)th row of DF() is zero, so
DF() is not invertible.

Conversely, suppose that + 2 > 0. Obsee that and 2 are complementa
vectors, since (, 2) is a zero of F. For each index k such that 2k 0 interchange
the kth d (n + k)th colus of DF(). This produces a matr of the form

0 diag( +,...,N +n)
where A.i {I.i,-M.i} for i 1,..., n. detA is a principal minor of-M and is thus
nonero, since M is nondegenerae by assumption. rther, since + > 0 and ,
are eomplemenga, i + i 0 for i 1,..., n. Thus

det DF() de A de diag( + ,..., +)

detA(i + 2i)
i=l

0,

d DF() is invertible.
This absolute Newton iteration has been used for chemical equilibrium systems,

which have a unique real positive solution. It has never been obseed to fail for
those systems with a random starting point x() [36]. The asymptotic behavior of this
absolute Newton iteration is not derstood, nor even the ordinary Newton iteration
in complex Euclidean space Cn, which is related to Julia sets and chaotic dynamical
systems. Both the standard Newton iteration and the absolute Newton iteration were
tried on F(x) O, where M was a P-matr, and both completely failed for starting
points distant from the solution. Why the absolute Newton method should be so
successful on chemical equilibrium polynomial systems, and fail on LCP polynomial
systems, is not clear.
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9. Kojima-Saigal homotopy. This homotopy [25] uses the same nonlinear
system as the absolute Newton method. Suppose that w(),z() E En have been
obtained such that

w(O) Mz(o) q,

w()>0, z()>0.

This can be done, for example, by applying Phase 1 of the simplex algorithm to the
problem

w- Mz q- e + Me,
w>-O, z>=O

to get a feasible solution (, 2) -> 0. Then w() + e > 0 and z() 2 + e > 0 will
suffice. The homotopy map K :[0, 1) x En x En En is given by

K(X,w,z)

w-Mz-q
WlZl --(1- A)w)z)

-(1 )

The following theorem shows that this is a reasonably good homotopy map, at least
for P-matrices.

THEOREM 9.1. Let M Enxn be a P-matrix and let q En. Then there exist
w(), z() En such that

w()-Mz()=q, w() >0, z() >0.

Furthermore, there is a zero curve "7 of K(A, w,z), along which the Jacobian matrix

Dg(A,w,z) has full rank (for 0 -< A < 1), emanating from (0, w(), z()) and reaching
a point (1, , 2), where 2 solves the LCP (q, M). A is strictly increasing as a function
of arc length s along "7 (dA/ds > 0).

Proof. Since M is a P-matrix, the LCP (q e q- Me, M) has a solution (b, ) by
Theorem 6.5. Then w() b-b e > 0 and z() -b e > 0 have the desired properties.

The Jacobian matrix of K(A, w, z) is

DK(A,w,z)

0 I -Mw)z)
diag(zl,..., z) diag(wl,...,

Suppose (w, z) > 0 and consider the last 2n columns D(w,z)K of DK:

( -- )detD(,z)K det
diag(zl ...,z,) diag(wl,...,w,)

det
0 diag(w,...,w,) + diag(,.--,,) M

det (diag(w, , ton) + diag(,..-,) M)
>0
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since diag(wl,...,wn)+ diag(zl,..., zn)M is also a P-matrix (it is easily verified
that the principal minors remain positive after multiplying by and adding a positive
diagonal matrix). Thus rank DK(A, w, z) 2n for 0 <- A < 1 and w > 0, z > 0. By the
Implicit Function Theorem, there is a zero curve /of K emanating from (0, w() z()),
and the Jacobian matrix DK(A, w, z) has full rank along /for 0 -< A < 1 since w > 0,
z > 0 along /by continuity and the definition of K.

"7 can be parametrized by arc length s, giving A A(s), w w(s), z z(s)
along /. Furthermore, the last 2n columns of Dg(A(s), w(s), z(s)) being independent
means that w w(A), z z(A), and dA/ds > 0 along "7 (this is well known, see [65],
for example). Thus A A(s) is strictly increasing along

To prove that "7 reaches A 1, it suffices to prove that "7 is bounded. Let
a mAax(llAIIoo, IIA-111oo}, where the maximum is taken over all matrices A

with A.i E (Li, -M.i} for i 1,..., n. a is well defined since each det A is a principal
minor of -M, which is nonzero by assumption. Fix Ao in (0, 1), and let e maxi(1
o)w)z). Then for o < (s) -< 1, either w(s) < e or z(s) < e along /. For
i 1,...,n, let yi be wi(s) or zi(s), whichever is less than e, and let i be the
complementary variable. Write w(s) M z(s) q as

Ay+Bf/=q.

Then

[l[l []B-l(q Ay)ll =< IIB- [Io (llqll + IIAllo Ilyllo ) < (llqllo + ),
which says that w(s) and z(s) are bounded for o < (s) --< . [:]

Note that the theorem does not include strictly semimonotone matrices since
diag(w,... ,wn) + diag(z,... ,zn)M can be singular for strictly semimonotone M.
Thus while K is a better homotopy than A, , and T, it is not as generally applicable
as Pa or a.

10. Numerical experiments. The homotopy maps from the previous sections
were tested on several problems, chosen to illustrate certain features of the various
homotopies. A complete description of the data, tables of numerical results, and
a comparative discussion of the different homotopy maps and numerical results are
in [70]. The main observations from those experiments are summarized here: The
probability-one homotopies Pa and a work for everything that the theory predicts.
The computational complexity of Pa and a, measured by the number of steps along
the zero curve, is relatively insensitive to n. This is in direct contrast to pivoting
methods, which can exhibit exponential complexity in the number of steps [47]. The
homotopies h and O frequently fail, but when they work at all, may be more efficient
than the homotopies Pa or a. The expanded Lagrangian homotopy T without the
optimization phase fails for most starting points, with the zero curves of T either
going off to infinity or returning to another solution at r to. T does work very
well from sufficiently close starting points, but these are not random starting points
(as are used for Pa and a), and the homotopy algorithm based on T without opti-
mization is certainly not globally convergent. The Kojima-Saigal homotopy requires
Phase 1 of the simplex algorithm just to get a starting point, which is antithetical
to the homotopy philosophy of global convergence from an easily obtainable starting
point. Furthermore, K and iX/a both essentially relax complementarity, and a is more
generally applicable.
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11. Conclusion. There are many reasonable ways to construct a homotopy
map for the LCP, and only a few of the possibilities have been considered here. The
homotopies here fall into three different classes: artificial, natural, and interior. (See
the discussion of the words "artificial" and "natural" in relation to homotopies in

[69].) 3_ and O are "natural" homotopies in the sense that for each [0, 1] the
equation A(A, z) 0 or O(, z) 0 corresponds to an LCP. Thus, the intermediate
points (A, z) on the zero curve of the homotopy map have interpretations as solutions
to a related family of LCPs. In contrast, Pa and Pa are "artificial" homotopies in that
the homotopy equations Pa(, z) 0 and Pa(A, z) 0 do not correspond to an LCP
for 0 < < 1, and the points (,, z) on the zero curves for 0 < A < 1 have no useful
interpretations as LCP solutions. T and K would be considered "interior" methods,
since they only generate points (A, w, z) interior to the feasible region, i.e., (w, z) > 0
for 0 <- A < 1. These class distinctions are not always clear-cut, but are useful at a
high conceptual level.

The theory of globally convergent probability-one homotopy maps can be applied
to the LCP in several ways; the maps Pa and Pa are two examples. The convergence
theory for the homotopy maps Pa and Pa is very satisfactory: global convergence from
an arbitrary starting point is guaranteed for a wide class of LCPs. Theorems 3.1 and
6.5 are existence results, and as such are close to the best known existence results.

Our computational experience, reported in [70], indicates that 9a is the best
homotopy. It never failed, is indeed globally convergent, and was frequently more
efficient than h and O, even on problems where 3. and O did well. Pa takes second
place, since it also never failed, but tends to be very expensive (long homotopy zero

curves). This is not surprising, since a was crafted with the benefit of ten years expe-
rience since Pa was created. It is quite likely that a more efficient globally convergent
homotopy map than 9a can yet be constructed.

3_ and O failed badly on problems with many singularities (corresponding to the
right-hand side passing through the face of a complementary cone) along the zero
curves of the homotopy maps 3. and O. One might hope that the curve tracking
algorithms would, by chance, miss hitting the singularities exactly and thereby step
past them. This does happen, to some extent, but when there are a large number of
singularities close together or highly rank deficient singularities (corresponding to the
right-hand side passing through a lower dimensional face of a complementary cone),
the numerical linear algebra is simply overwhelmed by the ill conditioning.

Overall, the natural homotopies 3_ and O are much worse than the artificial homo-
topies Pa and 9a. For particular problems, a natural homotopy may be very efficient,
but their performance is unreliable and very much data dependent. The difficulties,
both theoretical (cf. Propositions 4.2 and 5.2) and practical, of natural homotopies
like 3_ and O appear to remove them from further consideration (cf. the discussions
in [39]-[41] and [69]).

The numerical experiments show that the expanded Lagrangian homotopy is un-
acceptable as a robust homotopy without solving the optimization problem (Step 1).
The zero set of T contains loops (in [0, 1) E5n+1) starting and ending at A 0 as
well as unbounded curves. Although the increased dimension is discouraging, we do
note that 2n of the 5n/ 1 equations result in diagonal matrices which can be exploited
in the linear algebra. Furthermore, T does work well for fair starting points, and so
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T may be useful for LCPs using an optimization phase to get a fairly good starting
point. Although the expanded Lagrangian homotopy is an interior method based on
a logarithmic barrier potential function similar in spirit to methods of Kojima et al.
[26], [27], [38], it is not equivalent to any of those methods. The Kojima et al. methods
converge to a solution in polynomial time from an arbitrary interior starting point (for
a restricted class of LCPs), which is not true of the expanded Lagrangian homotopy
method. However, generating a feasible interior starting point for K is tantamount
to the optimization Step 1 for T, and neither K nor T can be considered a globally
convergent homotopy for the LCP in the same sense as #a and a. Furthermore, the
Kojima et al. homotopies without Phase 1 would be even less successful than the
expanded Lagrangian homotopy is without Step 1.

The Kojima-Saigal homotopy is closely related to the continuous Newton ho-
motopy of Smale. Both are theoretically interesting, but computational experience
on real problems [67], [68] suggests that the globally convergent probability-one ho-
motopies (like Pa and a) are more robust and more general than the continuous
Newton homotopies. Our numerical experience is that interior homotopies like T and
K (lacking dynamic scaling) are very inefficient, but worthy of further study. At any
rate, a is more general than K (cf. Theorems 6.5 and 9.1). Similar comments apply
to the polynomial-time homotopies of [26], [27], and [38], which are both less stable
numerically and less generally applicable than probability-one homotopies like a.

There are numerous fixed point iterative schemes for the LCP [2], [3], [8], [18],
[35], [50], [51], [61], but they generally involve nonsmooth operators (e.g., v+ or Ivl)
or apply to a small class of matrices (e.g., symmetric positive definite M). Homotopy
algorithms are more versatile than fixed point iteration algorithms, but whether they
are competitive with fixed point iteration remains to be seen. A systematic comparison
of complementary pivoting, fixed point iteration, and homotopy methods would be a
worthwhile undertaking.

The LCP is a linear combinatorial problem. That the LCP should be reformu-
lated as a nonlinear problem, which is in turn embedded in a complicated nonlinear
homotopy, is counterintuitive. Nevertheless, a homotopy algorithm based on a(A, z)
is globally convergent for a wide class of LCPs, numerically robust, reasonably efficient,
and (most encouraging) rather insensitive to the dimension of the problem.

12. Acknowledgment. The authors are indebted to Jong-Shi Pang, Katta
Murty, and Romesh Saigal for useful comments and suggestions.
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Abstract. In this paper the concept of the co-square root of a complex matrix is introduced. Methods for
obtaining co-square roots ofmatrices are presented. This concept is applied to solving boundary value problems
related to the matrix differential equation Xt2)(t) -AX(t) O.
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1. Introduction. Second-order matrix differential equations with constant coefficient
matrices appear in the theory of vibrational systems 10 ].

Let us consider the matrix differential equation

(1.1) X(2)(t)-AX(t) 0

where A and X(t) are complex n n matrices. Boundary value problems of the follow-
ing type:

X(2)(t)-AX(t)=O,
(1.2) EIX(0) -t- E2X(l)(0) 0,

FIX(a)+F2X(I)(a)=O, O<-_t<-a

where E, Fg, for 1, 2, A, and X(t), are n n complex matrices, have been studied
in 8 when A is nonsingular, and in 9] for the more general case where the matrix A
has a pair of square roots X0 and X, such that X X0 is nonsingular. Under the above
hypothesis, the general solution of the matrix differential equation (1.1) admits a rep-
resentation of the form

(1.3) X(t) exp (tXo)C+exp (tX1)D

where C and D are arbitrary n n complex matrices, and this fact provides existence
conditions and explicit expressions for solutions of problem (1.2).

A necessary and sufficient condition for the existence of square roots of a square
matrix is given in 4 ], and interesting methods for computing square roots of matrices
may be found in [1] and [6].

In this paper we study the boundary value problem (1.2) from a more general
algebraic point of view. It is shown that even for the case where the matrix A does not
have square roots, as well as when the matrix A does not have a pair of square roots
whose difference is a nonsingular matrix, the problem 1.2) may have nontrivial solutions.
Sufficient conditions for the existence of nontrivial solutions and their closed form so-
lutions are given.

In 2 we introduce the concepts of co-square root a and fundamental set of co-
square roots ofa square complex matrix. Different methods for obtaining co-square roots
and fundamental sets of co-square roots of matrices are presented.
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In 3 we use the above concepts to obtain an expression for the general solution
of (1. l) that permits us to find existence conditions and explicit closed form solutions
for the boundary value problem (1.2).

Throughout this paper we denote by Cn n the set of all n n complex matrices,
and for a matrix B in Cnn, the set of all eigenvalues of B, is denoted by (B).

2. Co-square roots of complex matrices. If X, T are matrices in Cnxn, then it is
easyto show that Z(t) X exp (tT) is a solution of(1.1) if and only if

(2.1) XT2-AX=O.

This suggests the following definition.
DEFINITION 2.1. Let A be a matrix in Cn x n. We say that a pair of matrices (X, T)

with X, T in Cn n is a co-square root ofA, ifX :/: 0 and (2. l) is satisfied.
Example 1. If A e Cn and B is a square root of A, and I denotes the identity

matrix in Cn x n, then (I, B) is a co-square root ofA.
The next example shows that any square matrix A e Cn x has co-square roots.
Example 2. Let z be an eigenvalue of//, and let w be a complex number such that

w2 z; then the kernel of the matrix (w-I-//) is nontrivial. Thus, for any nonzero
matrix Xin Cnxn such that (w I-//)X O, the pair (X, wI) is a co-square root of//.

Example 3. Let us suppose that (X, T) is a co-square root of A, and let H be a
nonsingular matrix in Cn n; then (XH-1 HTH- is also a co-square root of.4.

Note that Example 2 shows for any square matrix .4 e Cnxn, there exist co-square
roots of//. Furthermore, if z e a(A), and w is a complex number satisfying wE z, and
S wEI- .4, then the general solution of the equation

(2.2) SX= O,

is given by the expression

(2.3) X=(I-S+S)Z

where Z is an arbitrary matrix in Cnn, and S+ denotes the Moore-Penrose pseudoinverse
of S (see [12, Thm. 2.3.2]. Hence the following result has been proved.

THEOREM 1. Let .4 be a matrix in Cn x n. Then A has co-square roots X, T), where
T wI, with w a complex number satisfying w z (r(A), andX the nonzero matrices
defined by (2.3), where S w2I- A, and Z is any matrix in On n.

To compute co-square roots of a matrix A Onn, we only need an eigenvalue
z e a(A), and the computation of the Moore-Penrose pseudoinverse of S w2I- A.
In 2, p. 12 ], two interesting algorithms for computing S/ are given.

Now we are going to consider a functional method for obtaining co-square roots
(X, T) of matrices, such that T is not a scalar multiple of the identity matrix I. This
method is based on the reduction of the degree of the algebraic equation (2.1) and may
be regarded as a continuation of 2 of [7].

The following result provides us with a necessary condition for a pair (X, T) of
matrices in Cn n to be a co-square root ofA.

THEOREM 2. Let Cz [0)], and let (X, T) be a co-square root ofA. Ifp(z) is a
polynomial such that 19(T) 0 and p( Cz) is the block partitioned matrix defined by

BI2] BijCnn, <-_i, j<=2,(2.4) p(CL)
[ B21 B22
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then (X, T) satisfies the system

(2.5) BIIX+B2XT=O, B21X+B22XT=O.

Proof. Note that X, T Cn n, is a co-square root ofA if and only ifX 4 0 and

(2.6)
XT

T= Cz
XT

From (2.6) we obtain

(2.7)

for all positive integer p. Hence, using the hypothesis p(T) 0, we have that

(2.8)
XT

p(T) p(Cz)
YT

O.

From (2.4) and (2.8), the result is established.
Note that from (2.6), which characterizes the co-square roots (X, T) of a matrix

A, it follows that if p(z) is an annihilating polynomial of Cz, then Xp(T) 0 for any
co-square root (X, T) ofA. Also, from (2.6) we obtain that if (X, T) is a solution of a
system ofthe type (2.5), where (Bo) p(Cz) for some polynomial p(z), then a necessary
condition to be a coosquare root ofA is that Xp(T) 0. The next result is a re6iprocal
one of Theorem 2.

THZOr.M 3. Let p(z) be a polynomial, and let (Bo) p(C). If (X, T) is a
solution of the system (2.5), ifX 0, and ifB2 is nonsingular, then (X, T) is a co-
square root ofA and Xp( T) O.

Proof. From the equality Czp(Cz) p(C)Ct., it follows that

Hence, we have

(2.9)

[ ][ wll Wl2 W12] [m0B2 B22] [BIB21 B22

B21 BIzA, B22 B.
If we multiply the first equation of (2.9) by X, and the second by X T, it follows that

(2.10) BzlX-" BlzAX, BzzX T= BIXT
so that

(2.1 1) BzlX+ BzzX T BlzAX+ BllX T.

As (X, T) satisfies the system (2.5), we obtain that the first member of (2.11) is equal
to the matrix zero, so,

(2.12) B2AX+BXT O.

From the first equation of system (2.5), we have BX -BIzXT; hence, from (2.12)
it follows that

(2.13) 0 BIzAX- BlzX T2 Bz(AX-XT2).
From (2.13) and from the invertibility of B2, we obtain that (X, T) is a co-square root
ofA. Also, from the previous comments to the statement of Theorem 3, it follows that
Xp( T) O.
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To understand what class of polynomials must be considered in Theorem 3 for
obtaining co-square roots of A, note that Xp(T) 0, and X 4:0 implies that p(T) is
singular. Thus, from the spectral mapping theorem [5 ], the polynomial p(z) must an-
nihilate a part of the spectrum r(T).

On the other hand, (2.6), the condition X 4: 0, and the Rosenblum theorem [13
imply that

a(T)a(C,);

and this means that the class ofpolynomials that must be considered are those polynomials
p(z) that are multiples of a proper divisor of the minimal polynomial of CL. This is
shown in the next example.

Example 4. Let A [ ]. An easy computation yields a(A) { O, 2 }, (CL)
{ 0, 21/2, --2 l/z}, and the minimal polynomial q(z) of CL coincides with its character-
istic polynomial and takes the form q(z) z2(z 21/2)(z + 21/2). Let us consider
the polynomial p(z) z(z2 2/2), and note that p(z) is a multiple of the proper
divisor r(z)= z of the minimal polynomial of CL. Computing, we get that p(Cz)=
C(C 2 /2I) takes the form

0
P(Cz)= A(A_2/2I) A-2/2I]0

BI1 B22 0,

-21/2 ]B2= -21/2 B2 =(2-2/2)A.

Thus B_ is nonsingular, and the reduced system (2.5) takes the form

BEXT=O, BEX= 0.

As BI2 is nonsingular, we have X T 0. Solving the system B21X 0, we have

(2-21/2)
x. x22J

a_bb for all complex values a and b nonsimulta-Hence X takes the form X [-a
neously zero.

When we solve the system

-a -b t2 t22

it follows that T (t0) is given by

T= ,aC.
aa -a

Thus an infinite set of co-square roots (X, T) ofA has been obtained.
The following example shows that not every multiple of a proper divisor of the

minimal polynomial of the companion matrix C provides co-square roots ofA through
Theorem 3.

Example 5. Let A be the matrix of Example 4, and let p(z) z2(z 21/2) be a
proper divisor of the minimal polynomial of Cz. Then p(CL) C2 C. 21/2i) takes
the form

[ -2/2A A ]P(C)
A 2 _2/2A
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and thus (Bo) p(Cz) with BI2 A singular, which means that Theorem 3 does not
provide co-square roots ofA.

Theorems 2 and 3 permit us to obtain co-square roots of a matrix A, but as is
shown in Example 5, the class of polynomials that provides co-square roots ofA is not
characterized. Note that the co-square roots ofA, given by Theorems 1, 2, and 3, allow
us to get solutions of the matrix differential equation (1.1). However, our main interest
is to obtain a pair of solutions of (1.1) by means ofan appropriate pair of co-square roots
ofA, satisfying the property that they generate the general solution of(1.1). This desirable
property is characterized by the following definition.

DEFINITION 2.2. Let A C, n, and let (Xi, Ti), for 1, 2, be co-square roots of
A. We say that { (Xi, Ti); 1, 2 } is a fundamental set of co-square roots ofA if the
block partitioned matrix V defined by

(2.14) V=
X1 T1 X2T2

is invertible in CZn
Example 6. If A C, n and T1, T2 Cn, are square roots of A, then the pair

(I, T )(I, T2) define a fundamental set of co-square roots ofA if and only if the matrix
T2 T is nonsingular (see [8, Lemma 1]).

The next result shows that for a very general class of matrices A C, there exists
a fundamental system of co-square roots.

THEOREM 4. Let A Cn n, and let us suppose that CL [OA I0]. Then A admits a
fundamental set ofco-square roots ifand only ifCz is similar to a block diagonal matrix

J--
J2’

where Ji Cn ,for 1, 2. Ifthe similarity matrix takes theform

P= PijC Cnx
Pz P22

for <= i, j <= 2, then PI, J and P2, J2) define afundamental set ofco-square roots
ofA.

Proof. From the hypothesis we have that P is invertible and

(2.15)
e21 P22 0 J2 0 P21 P22

so that

(2.16) P JI PI
and

P J AP

(2.17) PzJz P22, P22J2 APz.
By substitution of the first equality of (2.16) and (2.17) in the corresponding second
ones, we have

pj2 =API and PJ2=AP2.
Thus (P, J and (Pz, Jz) are co-square roots ofA, because PI 4:0 and P2 4: 0, from
(2.16), (2.17), and the invertibility of P. Also, note that { (P, J ), (P2, J2) } is a
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fundamental set of co-square roots of A because the corresponding block matrix V of
(2.14 takes the form

V=[PJ1 P12Jz] P21 P22

Conversely, let us suppose that { (X1, T1 ), (X2, %.)} is a fundamental set of co-square
roots ofA. Then from the definition (2.2), the matrix V defined by (2.14) is invertible,
and an easy computation yields

V diag TI Tz CLV.

Hence the result is proved.
Remark 1. Ifthe elementary divisors ofthe matrix polynomial M- CL are denoted

by (, ij)o, j 1, ki, 1, 2, r, then as the exponents of the elementary
divisors coincide with the dimensions of the Jordan blocks of CL, the condition CL not
similar to a block diagonal matrix with diagonal blocks of dimension n n means that
for any set of possibly repeated numbers ci, their addition is always different from n (see
[11], Thm. 2, p. 270] for details).

Example 7. Let A be the matrix introduced in Example 4. From the spectral in-
formation of CL and the fact that the minimal and the characteristic polynomials of CL
coincide and are equal to p(z) zZ(z 21/2)(z + 21/2), it follows that the Jordan
canonical form of CL is given by the matrix

where

J1
0 0

J2=
0 2 -1/2"

An easy computation yields that CL pjp-1, where

-1
-1 -1 -1
0 21/2 2 /2

0 -1 2 /2 2 1/2

Thus, taking

PI2Pll
-1 -1

it follows that (P11, Jl and (P12, J2) define a fundamental system of co-square roots of
A because of Theorem 4.

Note that as a(A) {0, 2}, for any square root B of A it follows that a(B)
{ 0, 21/2}, or r(B) 0, -21/_}. In the first case, the characteristic polynomial of B
is p(z) z(z 21/2) and then p(B) B(B 21/2i) B2 21/2B A 21/2B 0;
this is B 2-1/2A. If r(B) {0, -21/2}, then its characteristic polynomial is q(z)
z(z + 21/2) and q(B) B(B + 21/2i) B2 h- 21/29 A + 21/2B 0. So, in this case
B =.-2-1/2A. An easy computation shows that +_2-1/2A are square roots of A. As a
consequence, B1 2-1/2A and B2 -2-1/2A are the unique square roots of A and
BI B2 21/2A is singular. This fact and Example 7 shows the existence ofa fundamental
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set ofco-square roots without the existence ofa pair ofsquare roots ofA, whose difference
is nonsingular.

3. Applications of co-square roots to boundary value problems. We begin this section
with a result that provides the general solution ofthe differential equation (1.1), in terms
of a fundamental system of co-square roots of the matrix A as happens for the scalar
case, with the obvious difference that for the scalar case the corresponding characteristic
algebraic equation z2 a 0 is always solvable. For the matrix case we are going to
consider co-square roots of the matrix A.

THEOREM 5. Let A C,, ,, and let { (Xl, T ), (X2, T2)} be a fundamental set of
co-square roots ofA.

The general solution of (1.1) on the real line is given by the expression

(3.1) X(t)=X exp (tT)D +Xz exp (tT_)D2,

where Di, for 1, 2, are arbitrary matrices in C, ,.
(ii) The unique solution of (1.1) that satisfies the initial conditions X(O) C,

X()(0) C_ is given by (3.1), whereD and D2 are uniquely determined by the expression

(3.2)
D2 C2

and V is the block matrix given by (2.14).
Proof. Considering the change X Y, X() Y2, it is clear that a Cauchy problem

of the type (1.1) with the initial condition X(0) C, X()(0) C2 is equivalent to the
first-order system

Y()(t)=czr(t), Y(O)=
C2’

Y(t)=
Y2(t)

Thus, it is clear that the above Cauchy problem has only one solution 3 ]. By differen-
tiation in the expression (3.1), it follows that

(3.3)
X()(t)=XT1 exp (tT)D +XzT2 exp (tTz)D2,

Xt2)(t)=XT exp (tT)D +XzT2 exp (tTz)D2

for all real numbers t, and for all matrices D and D2 in C,,. Thus we have that X(t)
given by 3. l) satisfies

x(z)(t)-AX(t)=(X1T2 -AX) exp (tT)D1 +(XzT-AX2) exp (tT)D2=O.

So, to prove (i) and (ii), it is sufficient that the solution of equation (1.1) that satisfies
X(O) C,Xt)(O) C2 may be expressed by the matrix function X(t) defined by (3.1)
for appropriate matrices D and D2 in C,,. Taking into account (3.1) and (3.3),
and if we impose that X(t) given by (3.1) satisfies the conditions X(0) C and
X()(0) C2, it follows that D, O2 must satisfy

C =XD +X2D2, C2=XTD +X2T2D2
or

(3.4) [C X2
C2 ] [ xIXIT1 X2T2 ] [DD2 ]"
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From the hypothesis, the block matrix Vdefined by (2.14) is invertible, so solving (3.4),
we have that DI, D2 are determined by (3.2). This concludes the proof of Theorem 5.

Now we will use the representation (3.1) for the general solution of equation (1.1)
to solve the boundary value problem (1.2). For the sake of clarity in the statement of
the next result, we introduce the following block matrix:

[ EIXI + E2X, T1 E1X2 + E2X2T2 ](3.5) S=
(FXI+FzXT)exp(aT) (F1Xz+FzX2Tz)exp(aT2)"

THEOREM 6. Let us suppose that A e Cn n has afundamental set ofco-square roots

{ (XI, T ), (X., T2) }. Then problem (1.2) has nontrivial solutions ifand only ifthe block
matrix S defined by (3.5) is singular. Under this hypothesis, the general solution of
problem (1.2) is given by the expression (3.1), where D, D2 are matrices in C,,
given by

(3.6) [ DDI2 ] (I2n- S+S)Z

where I2 denotes the identity matrix in C2n2, and Z is an arbitrary matrix in C2,,.
Proof. From Theorem 5, the general solution of the matrix differential equation

(1.1) is given by (3.1), where D, D2 are arbitrary matrices in C,. To satisfy the boundary
value conditions of problem 1.2 ), the matrix function X(t) given by (3.1) must satisfy
the boundary value conditions of (1.2). Taking into account (3.3), it follows that the
matrices D, Dz must satisfy the algebraic system

(3.7) S
D2

0

where S is given by (3.5). Now the result is a consequence of Theorem 2.3.2 of
[12, p. 24].
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MORE ON A RAYLEIGH-RITZ REFINEMENT TECHNIQUE FOR
NEARLY UNCOUPLED STOCHASTIC MATRICES*
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Abstract. A Rayleigh-Ritz refinement technique is analyzed that is suitable for accelerating the convergence
of iterative procedures for computing the stationary distribution of a nearly uncoupled stochastic matrix. In
particular, for that case the error of the new approximation in terms of the previous error and the degree of
coupling gets a special form. Cases where the refinement is promising are given as well. All the analysis requires
the single assumption that the Markov chain under consideration is irreducible.

Key words, aggregation/disaggregation, stochastic matrices, near uncoupling
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1. Introduction. Let P e Rn be a stochastic matrix representing an irreducible
Markov chain, and let y be its stationary distribution. The irreducibility assumption
implies that y is the unique row vector satisfying yP y and yu 1, where u is a vector
and all its entries are one. Moreover, Y > 0 for _-< -< n. Let S ( l, 2, n } be the
corresponding state space, and let F (J(1), J(2), J(p) } be a partition of the
state space to p subsets, J(1), J(2 ), J(p). Also for K, L c_ S let PrL be the submatrix
of P, where rows are indexed by K and columns by L. For L K we use Pr instead of
P/K. A similar definition applies for xr as a subvector ofx R.

After permuting rows and corresponding columns, P can be represented with respect
to the partition F as follows:

JOJ(l) JOJ(l)J(2) JOJ(l)Jo./(p)
PJ(2)j(I) Pj(2)" Pj(2)Pj(p)

PJ(p)J(l) PJ(p)J(2)" PJ(p)

We say that P is nearly uncoupled, or nearly completely decomposable with respect
to the partition F, if the row-sums ofPr for K e I are significantly greater than the row-
sums ofPKL for K, L e F and K : L. Namely, Pr for K e I are almost stochastic. Hence,
in that case P P* + eC, where P* diag (P<), Pj(2), Pj(p)) for some stochastic
matrices P<), P(2), PJ(p) close to Pj<), P<2), Ptp). Thus e is a small number
and all row-sums for C e R n are zero. Also the diagonal blocks of C are nonpositive,
while its off-diagonal blocks are nonnegative. We will assume that e is smaller than the
modulus of the largest eigenvalue of C. Note that P* and hence C are not uniquely
defined.

Let x e R be a given probability vector that is thought to be an approximation to
y. Assume that for each J e F there exists some e J such that xt > 0. Next we state the
Rayleigh-Ritz refinement technique. In particular, a new approximation to y is found.

Step O.
For each J P
Let zs(x) xs/ ,ts xt
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Step (aggregation step).
(a) For all I, J I’

Let QIJ z(x)Pju
(b) Find the stationary distribution of Q, namely, find q e R+ such that

qQ q and qu 1.

Step 2 (disaggregation step).
For each J I
For each t J
Let Yt qjzt(x)

It is easy to see that Q e R+p is a stochastic matrix and that e R is a probability
vector. Hence, we may consider as an updated approximation to y.

The above-mentioned procedure has been extensively considered in the literature,
in particular in the context of nearly uncoupled stochastic matrices. The first to look at
this method in that context were Simon and Ando (1961). See also Courtois (1977);
Stewart (1983); Chatelin (1984); Haviv and Van der Heyden (1984); McAllister, Stewart,
and Stewart (1984); Cao and Stewart (1985); and Haviv (1987).

Our main result stated as Theorem and given in 2, expresses the error of Y in
terms of the error ofx up to an additive term of the order O(e). Section 3 contains the
proof of Theorem 1. These results will be shown in 4 to be useful for nearly uncoupled
stochastic matrices, as it leads to identifying cases where the Rayleigh-Ritz step should
be applied. A numerical example is given in 5. Finally, we refer the reader to Haviv
(1987 for some numerical examples concerning this and other methods.

The method considered here was classified as a Rayleigh-Ritz method by McAllister,
Stewart, and Stewart (1984). This is the case, as by solving a smaller-dimensional problem
and utilizing a given approximation one finds a new approximation. However, as was
pointed out to us by the referee, this terminology might be misleading, as it is usually
preserved for a corresponding technique to approximate eigensystems ofsymmetric ma-
trices. A detailed description on the latter can be found in Parlett (1980, pp. 213-217 ).

2. Preliminary notation and main results. Our main result is stated as Theorem
at the end of this section. First we develop the required notation.

Let x be a fixed probability vector with (at least) one e J for all J e I such that
xi > 0. Then the completely uncoupled (with respect to I’) stochastic matrix II e
R n is defined as follows:

zt(x) if s, teJforsome JeF,
ILl

0 otherwise.

Note that x xII, that z(x) z(x)H, that YII and that for the completely uncoupled
P*, P*II II.

For a stochastic matrix Trepresenting a Markov chain (not necessarily irreducible),
let E(T) be its stationary matrix, namely, E(T) lim_ 1/N ,- o Tm. Also, let
Y(T) be its deviation matrix, namely, Y(T) [I- T + E( T)]- E(T). It is well
known (cf. Campbell and Meyer (1979)) that Y(T) is the group inverse of I- T and
as such satisfies

(1) (I- T)Y(T)=I-E(T)= Y(T)(I- T).

The dimension of q equals the number of subsets. The component of q corresponding to subset J will be
denoted by qj.
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Returning to nearly uncoupled stochastic matrices, note that for the nearly uncoupled
P P* + eC, PII is also nearly uncoupled as PII (P* + eC)II P*II + eCII II
+ eCII. Also note that PII is irreducible as well. In order to emphasize the dependence
on e, let PII(e) II + eCII, let E(e) E(PII(e)), and let Y(e) Y(PII(e)). Also, let
Q(e) e R+xp be the aggregation matrix of II + eCII, namely, for I, J e I’, I 4: J,
Qu(e) ezx(x)(CII)uand for Ie r, QIz(e) Z/z Qu(e). Finally, letDe RPx be
the deviation matrix of Q(1) .2

Finally, Schweitzer (1981) developed series expansions for nearly uncoupled sto-
chastic matrices. In particular, from his results we obtain

(2) Y(e) _1 yt-l)+ y(O)+ O(e)

for some matrices y(-l) and ytO). Moreover,3

y-l)=Duzj(x) for icIandjcJ.

THEOREM 1. Let e and be x y and y, respectively. Then

= e(I- II)Y) + eO(e)

e(I+ CY t-l)) + eO(e).

3. Proofs. In this section we prove Theorem 1. Before that, we need the following
Lemma and Theorem 2 as prerequisites.

LEMMA 1.4 ) YPII.
Proof. Let j e J for some J e r; then

YPII]j , 2(PII )ij
iS

i(eII)ij
IeI’iI

q z(x) , eiz(x)
lr iI kJ

z(x) qQu= z(x)q

2. c?

Note that as P is ieducible, the same is the case with PH and hence is the unique
stationaw distribution of PH. The following theorem already appears in Haviv (1987).
We prove it here for completeness.

THEOREM 2. e(I- H)Y(PH).
Pro@ First note that

(-y(-en) (I-en y(i- e)n +y(n -I).

In order to ease the exposition, we assume here that Q(1) is stochastic. However, if this is not the case D
can be replaced with eD(e) for any small enough where D(e) is the deviation matrix of the stochastic matrix
D(e).

In Schweitzer 1981) the matrix D has a different definition. We omit a detailed proof for the equivalence
between the two definitions. For such a proof see Haviv and Van der Heyden (1984).

This result originally appeared in Chatelin and Miranker (1984, Thm. 2). Here we give a different proof.
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The first two terms on the fight-hand side are zero by Lemma and by the definition
of y, respectively. Hence,

(-y)(I- Pn) y(I- II).

As noted before, x xII and hence

(- y)(I- PII) (x- y)(I- H)

or

(I- PII e(I- II ).

Note that as P and II are stochastic; PII is also stochastic. Postmultiplying the last equality
with Y(PII) coupled with (1), we obtain

[I-E PII e(I II)Y(PII).

Finally, PII is irreducible with stationary distribution (see Lemma 1), implying that
E(PII) u. Hence, g,E(PII) 0, which completes the proof of the theorem. E]

Proofof Theorem 1. First express Y(e), the deviation matrix of PII II + eCII,
as suggested in (2). Then by (1),

(4) [I-PII(e)IY(e)=(I-II-eCII)(1y(-I)+ Y()+O(e)) I-E(e)

Since E(e) is stochastic, the fight-hand side of the above equality is bounded. Hence,
the coefficient of /e is zero. Thus,

(5) (I-- II)y(-I) O.

This, coupled with Theorem 2 and (4), implies that

= e(I- II)Y () + eO(e).

Our proof will be completed by showing next that e(I- II)Y() e(I + Cy(-I)). From
identity (4) we obtain

(I- II)Y()- CIIY(-) I- lim E(e).
e--O

From (5), IIY(-) Yt-). Finally, as E(e) is a matrix all its rows are identical, the
same is the case with its limit. Hence, e limb-. 0 E(e) 0. This completes the proof of
Theorem 1. [2]

4. When to apply the Rayleigh-Ritz step. Let x be a probability vector and consider
it as an approximation to y. We say that x contains two types of errors. The first, "the
local error," is defined by/i [z(x) z(y)]i for e S; the second, "the global error,"
is defined by Az ,ii (xi yi) for I e 1’.6 The names "local" and "global" are given
because zi(y) is the limiting distribution conditional of being in subset I, and ii Yi is
the limiting probability for being in subset I. Similar interpretations, as corresponding

In Schweitzer (1981) one can find the explicit expression for this limit, which is a matrix whose rows are
identically the limit of the stationary probabilities of II + elIC.

See Step 0 for the definitions of z(x) and z(y).
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approximations, exist for zs(x) and ’ieI Xi. Note that for e I, ei diios + AzZ(X),
where O)I 2i I Yi. Also note that x and have identical local errors.

The next theorem bounds the rate ofthe error reduction while applying a Rayleigh-
Ritz step for nearly uncoupled stochastic matrices. The bound is given in terms of the
local error 6 and the global error A.

THEOREM 3. For any norm or seminorm on R",

(6) lie(I+ c:r’<-’>)II--< Ilell max max r‘’+ Ax)(e) 1
J I" j . S [ AJff,j X) "- jO)j J

wherefor J . r, fs(e) Es,r o Ei, 6i Z,r DKj ,kK Cik.
In particular,

(7) I111/II ell - O(max max I#/1) + o().dl" j.S

Proof. For j J, first consider

-l) zs(x) Zr Zi eiY Z,,xCiDs,[e(Cy(-l))lj Eisei Z,sCiYs ,v r

where the last equality follows from (3). Write e for L as 6wL + ALz(x). Now
partition that last summation into two parts: one for the contribution of iiwt, and one
for the contribution of Az(x). The first summation is easily seen to equal zj(x)fs(e).
Next we show that the second part of the summation equals -zj(x)As. Indeed,

(8) za(x) Z AL Z zi(x) Z Duj Z Cik zX(x) Z AL _, DKJ Z Zi(X) Z Cik
L-I" i.l KI’ k.K L.I" K.I" i.I k.K

Zj(X) AL DKJ( QLK(1) LK)
L.I" KI’

for ft,.s- 0 if L # K and ’LL 1. Note that the last equality in (8) follows from the
definition of the aggregation step. Then by (1) for the matrix Q(1), (Q(1) I)D
E(Q(1)) 1. Hence, (8) equals z(x)A(E(Q(I)) I)s, where (E(Q(1)) 1)s is the
column of the matrix E(Q(1)) I corresponding to J. But AE(Q(I)) 0, as all the
rows of E(Q(1)) are identical and as the sum of the entries of A is zero. Thus, for j J,
8 equals -zj(x) Aj.

Finally, for ej > 0,

[e(I+ CY(-))]j e[ +

Hence from the above, we have

lie(I+ Cy(-I))II- Ilell max max
J. I" jJ

+-zS(x)as+ zg(x)f(e)
asZAX) +

Ilell max max In;J+ z)(x)fs(e)
sr J zXsz(x)+

completing the proof of (6). Inequality (7) is then an immediate conclusion of (6),
Theorem 1, and the definition of/is(e). [21
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Inequality (7) says that the right time to apply the Rayleigh-Ritz step is when the
ratio between the local and global errors is ofthe order O(e), making the two summands
on the fight-hand side of (7) the same magnitude.

Note that such a sharp bound cannot be obtained directly from Theorem 2. Theorem
2 implies that

[I - e(I II Y(PII) II.
Indeed, in Haviv (1987) it is shown that Ile(I- H)II O(maxjr maxjj 16./AjI), but
from (2) we obtain Y(PII) O(1 /e), which is large in the nearly uncoupled case.

Finally, we note that the closest work to our own is McAllister, Stewart, and Stewart
(1984). They, following Simon and Ando (1961) by using spectral decomposition and
by assuming some technical and structural properties on P, considered the fast and slow
phases ofthe convergence ofthe power method when applied to nearly uncoupled chains.
The fast phase is intimately related to the local approximation notion: its (almost) ter-
mination implies that the approximation in hand induces a good local approximation
(see their expression 4.1), but the converse is not necessarily true. Also, they show that
the Rayleigh-Ritz step can ruin some of the convergence that was achieved in the fast
phase (see there the discussion following the proof of Theorem 4.2).

5. A numerical example. Let P e R9+X9 be the following stochastic matrix:

.85 0 .149

.1 .65 .249

.1 .8 .0996

0 .0004 0
.0005 0 .0004
0 .0005 .0004

0 .00005 0
.00003 0 .00003
0 .00005 0

.0009 0 0
0 .0009 0
.00O3 0 0

.35 .2995 .35

.3999 .3 .3

.299 .4 .3

0 .00005 0
.00004 0 0
0 .00005 0

.00005 0 .00005

.00005 0 .00005
0 .0001 0

0 .0001 0
.0001 0 0
0 0 .0001

.6 .2499 .15

.1 .8 .0999

.1999 .25 .55

P is nearly uncoupled with respect to the partition I’ [(1, 2, 3), (4, 5, 6), (7, 8, 9)]
and e .001. For x (.1332, .1389, .0609, .1169, .1102, .1059, .0802, .1857, .0681),

ell max eg- min ej. =. 1303
jS j-S

and maxjr max.s 16/AjI .0162. The value ofYis (.0966, .1007, .0442, .0907, .0855,
.0822, .1200, .2780, .1020)and then 111[ .ooo6. In particular, I111/Ile[I .0046, which
is 28 percent of maxs r maxj.s 16/

Acknowledgment. The author acknowledges a key comment made by Y. Ritov.
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ANALYSIS AND PROPERTIES OF THE GENERALIZED TOTAL LEAST
SQUARES PROBLEM ,4X B WHEN SOME OR ALL COLUMNS

IN ,4 ARE SUBJECT TO ERROR*

SABINE VAN HUFFEL AND JOOS VANDEWALLE"

Abstract. The Total Least Squares (TLS) method has been devised as a more global fitting technique than
the ordinary least squares technique for solving overdetermined sets of linear equations AX B when errors
occur in all data. This method, introduced into numerical analysis by Golub and Van Loan, is strongly based
on the Singular Value Decomposition (SVD). If the errors in the measurements A and B are uncorrelated with
zero mean and equal variance, TLS is able to compute a strongly consistent estimate of the true solution of the
corresponding unperturbed set AoX Bo. In the statistical literature, these coefficients are called the parameters
of a classical errors-in-variables model.

In this paper, the TLS problem, as well as the TLS computations, are generalized in order to maintain
consistency of the parameter estimates in a general errors-in-variables model; i.e., some of the columns of A
may be known exactly and the covariance matrix of the errors in the rows of the remaining data matrix may
be arbitrary but positive semidefinite and known up to a factor of proportionality. Here, a computationally
efficient and numerically reliable Generalized TLS algorithm GTLS, based on the Generalized SVD (GSVD),
is developed. Additionally, the equivalence between the GTLS solution and alternative expressions ofconsistent
estimators, described in the literature, is proven. These relations allow the main statistical properties of the
GTLS solution to be deduced. In particular, the connections between the GTLS method and commonly used
methods in linear regression analysis and system identification are pointed out. It is concluded that under mild
conditions the GTLS solution is a consistent estimate of the true parameters ofany general multivariate errors-
in-variables model in which all or some subsets of variables are observed with errors.

Key words, total least squares, generalized singular value decomposition, errors in variables, numerical
linear algebra

AMS(MOS) subject classifications. 15A18, 65F20

C.R. classification. G 1.3

1. Introduction. Every linear parameter estimation problem gives rise to an over-
determined set of linear equations AX B. Whenever both the data matrix A and
observation matrix B are inaccurate, the Total Least Squares (TLS) technique is appro-
priate for solving this set. The problem of linear parameter estimation arises in a broad
class of scientific disciplines such as signal processing, automatic control, system theory,
general engineering, statistics, physics, economics, biology, and medicine. It can be de-
scribed by a linear equation:

(1) al Xl + + a,,Xn b

where al, an and b denote the variables and x [x, xn] T e n plays the role
of a parameter vector that characterizes the special system ( denotes the set of real
numbers). A basic problem of applied mathematics is to determine an estimate of the
true but unknown parameters from certain measurements of the variables. This gives
rise to an overdetermined set of rn linear equations (rn >_- n):

(2) Ax b
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where the ith row of the data matrix A mxn and the vector of observations b e m
contain the measurements of the variables al, "’, an and b, respectively.

In the classical least squares (LS) approach the measurements A of the variables ai
(the left-hand side of (2)) are assumed to be free of error and, hence, all errors are
confined to the observation vector b (the right-hand side of 2 ). However, this assumption
is frequently unrealistic: sampling errors, human errors, modelling errors, and instrument
errors may imply inaccuracies of the data matrix A. For those cases, TLS has been
devised and amounts to fitting a "best" subspace to the measurement points (Ar, bi),

1, ..., m, where A is the th row ofA.
Much ofthe literature concerns the classical TLS problem in which all variables are

observed with errors (see, e.g., 31 ], 14 ], 11 ], 34 with particular emphasis on the
univariate linefitting problem, i.e., n in (1) (see, e.g., [1], [29]). If the errors on the
measurements A and b are uncorrelated with zero mean and equal variance, then under
mild conditions the TLS solution of (2) is a strongly consistent estimate of the true
but unknown parameters x in (1), i.e., converges to x with probability one as the
number of equations m tends to infinity. However in many linear parameter estimation
problems, some of the variables ai in (1) may be observed without error. This implies
that some of the columns of A in (2) are assumed to be known exactly. For instance,
every intercept model

(3) a + al xl + + anXn b

gives rise to an overdetermined set of equations

with lrn [1, 1] r in which the first column of the left-hand side matrix is known
exactly 11 ], 13 ]. To maximize the accuracy of the estimated parameters x it is natural
to require that the corresponding columns of A be unperturbed since they are known
exactly. Moreover, the errors in the remaining data may be correlated and not equally
sized. In order to maintain consistency of the result when solving these problems, the
classical TLS formulation can be generalized as follows (E denotes the expected value
operator).

GENERALIZED TLS FORMULATION. Given a set of m linear equations in n d
unknowns X:

(5) AX B, A mxn,Be 1md and X ,.na

Partition A [A ;A2 ], A1 ,mnl A2_ ,m n2, n nl -t- n2,

(6) X= [X(;X]
Assume that the columns ofA1 are known exactly and that the covariance matrix E(ArA)
of the errors A e mx(n2+d) in the perturbed data matrix [A2; B] is given by C e
(,2+a)x(,2+a), up to a factor of proportionality. Let C RRc be nonsingular. Then
a generalized TLS (GTLS) solution of (5)-(6 is any solution of the set

(7) AX=AIXI -t- A2X:z =/
where [A1; A2] and/ are determined such that

(8) Range (/}
_
Range (d),

(9) [z=; AIRg IIF-- [Az-A=;B-/]e IIF is minimal.
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The problem offinding [2; m/] such that (8)-(9) are satisfied, is referred to as the
GTLS problem. Whenever the solution is not unique, GTLS singles out the minimum
norm solution, denoted by ) []; 2r] r.

An even more general GTLS formulation, that allows for correlations between the
errors in each column of [A2; B], is given in [35]. It is worth noting that when all
columns of A are known exactly and when C I, the GTLS solution reduces to the
ordinary Least Squares (LS) estimate. By varying nl from zero to n, this formulation
can handle the ordinary LS problem, as well as every TLS (C I) and GTLS problem.

Although the name "total least squares" has appeared only recently in the literature
[14 ], this method of fitting is certainly not new and has a long history in the statistical
literature where the method is known as orthogonal regression or errors-in-variables
regression. Indeed, the univariate linefitting problem (n 1) was already scrutinized in
the previous century ]. About 20 years ago, the technique was extended to multivariate
problems (n > 1) and later on to multidimensional problems that deal with more than
one observation vector (d > in 5 )), e.g., 31 ], 11 ]. More recently, the TLS approach
to fitting has also attracted interest outside of statistics. In the field ofnumerical analysis,
this problem was first studied by Golub and Van Loan [14 ]. Their analysis, as well as
their algorithm, is strongly based on the Singular Value Decomposition (SVD). Geo-
metrical insight into the properties ofthe SVD has brought us independently to the same
concept. We have generalized the algorithm of Golub and Van Loan 14 to all cases in
which their algorithm fails to produce a solution, described the properties of these so-
called nongeneric TLS problems and proved that the proposed generalization still satis-
fies the TLS criteria (8)-(9) if additional constraints are imposed on the solution
space 39 ]-[ 40 ].

Although this linear algebraic approach is quite different, it is easy to see that the
multivariate errors-in-variables regression estimate, given by Gleser 11 ], coincides with
the TLS solution given by Golub and Van Loan [14 whenever the TLS problem has a
unique minimizer. The only difference between both methods is the algorithm used:
Gleser’s method is based on an eigenvalue-eigenvector analysis, while the TLS Algorithm
uses the SVD, which is numerically more robust. Furthermore, the TLS algorithm com-
putes the minimum norm solution whenever the TLS problem lacks a unique solution.
These extensions are not considered by Gleser. Also in the field of experimental modal
analysis, the TLS technique (more commonly known as the Hv technique), has recently
been studied [25]. And finally in the field ofsystem identification, Levin [26] first studied
the same problem. His method, called the eigenvector method or the Koopmans-Levin
method 6 ], computes the same estimate as the TLS Algorithm whenever the TLS problem
has a unique solution.

Much less considered is the case in which some of the columns of A in (5) are
known exactly. It is quite easy to generalize the classical TLS Algorithms, given in 14 ],
[34], and [39 ], in order to compute the more general TLS estimate [r; r]r
satisfying the TLS criteria 7 )-( 8 )-(9 with Rc I. The technique involves computing
a QRfactorization ofthe "known" columns At and then solving a TLS problem ofreduced
dimension [12 ], 34, 1.7 ]. Using a generalization ofthe Eckart-Young-Mirsky matrix
approximation theorem [13 ], Golub, Hoffman, and Stewart have proved that this pro-
cedure indeed finds the best rank r (=<n) approximation [A A2;/ to [A; B that leaves
A fixed such that

(10) II[AI;Az;B]--[AI;AZ;J]IIF min II[A;Az;BI-[AI;Z;JIIIF.
rank([A;J2;/}])

_
In particular, this algorithm is able to compute the Compensated Least Squares (CLS)
estimate as derived by Guidorzi [17] and Stoica and Srderstrrm [33]. When the only
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disturbance of the input-output sequences is given by zero mean white noise of equal
variance, the CLS, GTLS and eigenvector methods all give the same estimate. Observe
that our TLS Algorithm, that allows for exactly known columns in A and coincides with
our GTLS Algorithm in 2 for the case that C I, is computationally more efficient
than the computation procedure presented in [33 ].

The generalization of the TLS problem, presented in this paper, that allows for
correlations between the measurement errors in the data A and B, is inspired by a gen-
eralization of the classical errors-in-variables model discussed in [9]. As said before, the
TLS solution is not very meaningful unless the errors in the measurements A and B in
(5) are independently derived and equilibrated. In statistical terms, this means that the
errors must be uncorrelated with zero mean and all have the same variance, i.e., the
associated error covariance matrix C in (6) is I. The best statistical approach, directly
related to the classical TLS concept, is the "errors-in-variables" model 11 that considers
all observations as coming from some unknown true values plus measurement errors.
The true values are assumed to follow a linear relation (1). The estimation ofthe param-
eters in this model is a problem with a long history in the statistical literature [1 ], yet
one with a considerable recent emphasis. Much less considered is the following general
"errors-in -variables" model, directly related to our generalized TLS formulation given
above, in which some subset of variables is observed with errors.

GENERAL ERRORS-IN-VARIABLES MODEL FORMULATION.

Bo =AoX 24-1 Xl + (A2)o X2
md mn nd m>(n2 nzd

(11)
A2 (A2)o + AA2

B=Bo+AB.
Xl and X2 are the true but unknown parameters to be estimated; A and (A2)o are of full
column rank. They consist of constants as well as Bo. Al is known but (A2)o and Bo not.
The observations A2 and B of the unknown values (A2)o and Bo contain measurement
errors AA2 and AB such that the rows of [AA2; AB] are independently and identically
distributed (i.i.d.) with zero mean and known positive definite covariance matrix Ca, up
to a factor of proportionality c, i.e.,

(12) Ca 2C--c2[ Ca Cab] with C(n2+d)(n2+d known.
Cb J

Observe that this model requires that the rows of [ba_; bB] are independently derived.
If this assumption is not satisfied, we can premultiply the data [A; B] in advance with
an appropriate m m matrix D such that the preprocessed data D [A; B DA DA;
DB satisfy the assumptions of model (11). IfD is ill-conditioned, this premultiplication
must be performed implicitly, as outlined in 35 ]. This preprocessing operation does
not affect the true solution X of model (11).

Now to compute strongly consistent estimates ofthe true but unknown parameters
X of model (11)-(12), the classical TLS Algorithm, as given in 14 ], 34, 1.8 ], and
[39] can be used whenever Ca I. However, in case that the covariance matrix Ca is
more general, the classical TLS algorithm may not be used straightforwardly. To maintain
consistency, the data can be pretreated appropriately such that the covariance matrix of
the transformed data is diagonal with equal error variances (i.e., Ca c2I). The classical
TLS Algorithm can then be used to solve this transformed set of equations and finally
the solution of the transformed system must be converted to a solution of the original
set of equations. Such transformation procedures are described in [10], [11 ], and [34,
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4.5 for the case that n 0 and C in (12) is positive definite. This approach, however,
is not recommended in general since computing [A; B]R (with C RRc) usually
leads to unnecessarily large numerical errors if Rc is ill-conditioned with respect to the
solution of equations.

The objective of this paper is to solve the generalized TLS problem, defined above,
by making use of the Generalized SVD (GSVD). Hereto, a computationally efficient
and numerically reliable Generalized Total Least Squares GTLS Algorithm is developed.
As shown in 3, this algorithm is able to compute consistent estimates ofthe parameters
in any errors-in-variables model (11) directly without transforming the data explicitly.
The great advantage of the GSVD is that it replaces these transformation procedures by
one, which is numerically reliable and can more easily handle (nearly) singular covariance
matrices C in (12). Moreover, the GSVD reveals the structure of the general errors-in-
variables model (11) more clearly than the usual transformation procedures. Additionally,
statistical properties ofthe GTLS solution are deduced by proving the equivalence between
the GTLS solution and alternative expressions of consistent estimators described in the
statistical literature [9], [33]. The GSVD of a matrix pair (A, B) is defined as follows
[151, [411.

THEOREM 1. GSVD of (A, B). IfA e lmXn(m >-- n) and B IpXn, then there
exist orthogonal T Im X m and W 1p p and a nonsingular Z such that

(13) TrAZ DA and WrBZ DB
with

Dn diag (a, an)mX n,
and

DB diag (/31, ,/q)t I,pn, /iO q=min {p,n }
r rank (B).

The assumption m >= n is not restrictive from the applications point of view. The elements
of the set a(A, B) { ai/i, 1, r} are referred to as the ordinary generalized
singular values ofA and B. The remaining generalized singular values ai/i in which ai
is nonzero (respectively, zero) and i is zero, are called infinite (respectively, indefinite)
3 ]. It is worth emphasizing that infinite generalized singular values are not necessarily

badly behaved. In fact, the infinite generalized singular values of (A, B) are the zero
generalized singular values of (B, A) since the roles of A and B are interchangeable.
Theorem is a generalization ofthe ordinary SVD in that ifB In then tr(A, B) equals
the singular value spectrum tr(A ofmatrix A. Note that there exists an intimate theoretical
link between the GSVD ofthe matrix pair (A, B) and the generalizedsymmetric eigenvalue
problem 15 ]. Indeed

2(14) ale a(A,B) ff X(A rA, BrB)
where X(A rA, BrB) is the set of generalized eigenvalues of the matrix pair (A rA, BrB)
and correspondingly

(15) A rAzi a2i B TBzi
where the generalized eigenvector zi is given by the ith column ofthe matrix Z in Theorem
1. This matrix diagonalizes A rA and BrB simultaneously. The value of the GSVD is
that these diagonalizations can be achieved without forming A rA and BrB. These con-
nections to the generalized symmetric eigenvalue problem allow us to prove the interesting
statistical properties of the GTLS solution (see 3 ).
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In this paper, the main emphasis is put on the linear algebraic approach of the
GTLS problem. The statistical analysis of the GTLS solution is limited and relies on
showing the correspondence ofparticular cases ofour GTLS problem with that ofothers
in the literature. For a more detailed statistical appraisal and consistency analysis of the
GTLS solution in different applications, the reader is referred to the list of references,
e.g. [2], [9], [11], [22], [33]. This paper is organized into four sections. In 2, the
GTLS Algorithm is presented. Its main difference with respect to the classical TLS Al-
gorithm is the fact that the GSVD is used instead ofthe ordinary SVD. Section 3 describes
the properties of the GTLS solution. Alternative expressions of the GTLS solution are
deduced that allow us to derive the main statistical properties of the GTLS solution.
Finally, 4 gives the conclusions.

2. The generalized TLS Algorithm GTLS. The original motivation is to compute
consistent estimates of the parameters in a general errors-in-variables model of the form
(11), thereby improving the computational efficiency and numerical robustness of the
methods currently used in statistics, linear regression [9], and identification [6], [30],
33 ]. Therefore, the classical TLS problem has been generalized in the previous section.

In this section, the GTLS Algorithm which solves the GTLS problem is described in
detail. As shown below, the GTLS Algorithm mainly performs orthogonal transformations
and does not need to square or invert matrices (as done in [11]), which guarantees its
numerical reliability. Moreover, by first performing a QR factorization [15] we need
only to compute the GSVD ofa smaller submatrix, which makes the GTLS Algorithm
computationally more efficient than methods described in 6 ], 30 ], and 33 ]. The GTLS
Algorithm is outlined below.
ALGORITHM. GTLS

Given

An m d matrix B and an m n matrix A [A1; A2] whose first n columns
A have full column rank and are known exactly, n n + n2 and m >= n.
An (n2 + d) (n2 + d) matrix C, proportional with the covariance matrix E(ATA)
of the errors Amn_+ a) in the matrix [A2; B], or any square root Rc of C (such
that C= RRc).

Step 1: QR factorization and Cholesky decomposition.

1.a. Ifn > 0 then begin
compute the QR factorization of [AI; A; B]:

(16)
QT[A;A2;B] =R=[R RI2] nl

R9_2 m- n
n nz+d

with Q being orthogonal and RI upper triangular.
if n n then begin

solveR R12 by back substitution
stop
end

end
else R22 -- [A;B]

1.b. If C is given and In + a, compute the Cholesky decomposition of C:

(17) C=RRc
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Step 2: GSVD.

2.a. Compute the GSVD (or SVD if C I) of the matrix pair (R22, Rc) as in (13):

(18) TrRzzZ=diag(al, ,a),as+ an+d=0, s=min {m-nl,nz+d}
WrRcZ= diag (t3 ,/3n2+d)

where the generalized singular values ai ai/13i, 1, n + d are organized
in decreasing order of magnitude (i.e., a >- ri + and the corresponding columns,
z, of Z are normalized to unit norm.

2.b. If not user determined, compute the rank r(_-< n2) of the matrix pair (R22, Rc) by

(19) try>= --- trr> Ro trr+ O’n2+d

with Ro a user-defined rank determinator.

2.c. Solve by back substitution:

(20) Z2 ’-[Zr+ 1, ,Zn2+d]’ RIlZI-- -RI2Z2

Step 3: GTLS solution ) [;2r] .
3.a. If C I, + a, d > and r < n2, orthonormalize [zZ] using a QR factorization:

-- Qz QrzQz I-r+ d and Rz upper triangularz z
3.b. Perform Householder transformations such that

(21)
Z2

Q=
0 I’ d

nz-r d

with Q being orthogonal and I’ d by d upper triangular.

If I’ is nonsingular then { GTLS problem is genetic

(22) solve I’ Y
else { GTLS problem is nongeneric }

begin
r - r o where o is the multiplicity of
go back to Step 2.c.
end

END

The following comments are in order:
The GSVD can readily be applied to (5) to yield the solution of the generalized
TLS problem. Just as the SVD is a valuable tool for the solution and analysis of
the classical TLS problem, so the GSVD plays the same role for the generalized
problem. Stable numerical methods have emerged for computing the GSVD 3 ],
[27], [32], [42]. The methods proposed in [3] and [27], being based on an
implicit Kogbetliantz approach, have potential for systolic implementation [4 ].
For background information on the GSVD the reader is strongly recommended
to consult 28 and 41 ].
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To compute the decomposition (17) of any positive semidefinite covariance matrix
C, a Cholesky decomposition with complete pivoting can be used. This method is
proven to be one of the most numerically stable methods 5, p. 3.16 ]. Software
for computing this decomposition is readily available, notably in the LINPACK
library [5, Chap. 8 ]. An error analysis of this Cholesky decomposition is given
in [19]. Whenever C is singular, Rc is not of full row rank. Hence, indefinite
generalized singular values (i.e., ai =/i 0 in 18 )) may occur. These values and
corresponding columns in Z are to be considered in the GTLS computation.
The QRfactorization of[A ;A2; B] can be computed with the LINPACK routine
SQRDC 5, Chap. 9 ]. Pivoting may be done within three groups of columns: the
first n columns A, the next n2 columns A2 and the last d columns B. Columns
may not be pivoted with columns from another group. Even for full rank problems,
column pivoting seems to produce more accurate solutions [21 ]. If pivoting is
done, the columns in Rc must be permuted correspondingly if C In2+d,
and the inverse permutations must be performed in the last step of the GTLS
Algorithm.
To orthonormalize the columns of [] in Step 3.a., a QR factorization is per-
formed. This can again be computed with the LINPACK routine SQRDC 5,
Chap. 9 ].
Ifno columns ofA are known exactly n2 n) and C In + d, the GTLS Algorithm
reduces to the classical TLS Algorithm, given in [14], [34, 1.8.1], and [39].
If a subset A1 ofA is known exactly and C In2 / d, the GTLS Algorithm reduces
to the TLS Algorithm with exactly known columns, as described in [34, 1.8.2 ].
Observe also that the GTLS algorithm solves the ordinary LS problem, using a
QR factorization, if all columns ofA are known exactly (nl n).
Mostly, the matrix pair (R22, Rc) has maximal rank r n2. If r < n2 (e.g., when
the set of equations AX B is underdetermined), the GTLS solution is no longer
unique. In this case, GTLS singles out the minimum norm solution. Indeed if the
solution [-i] is deduced from an orthonormal basis [r , then

I111 Ilc-’ll=-d and ll2ll=(1-amin(P))/amin(P)

as proved in [15, p. 422] and [34, p. 69], based on the CS decomposition
[15, Thm. 2.4-1]. Hence we have to select d base vectors [rY] within the
Range ([ that IIF1 such lit-’ is minimized and the minimal singular value
O’mi (F) of F is maximized. This is done by computing an orthonormal matrix Q
(e.g., by using Householder transformations) such that

Z2Q d 0 I’ d

n2- r d

Z2 and Z2Q have the same singular values. Denote by "i, 1, d, the
singular values of a submatrix of Z_ or Z2Q (obtained by deleting n2 r col-
umns) and by ai, 1, d, the singular values of Z2 or Z2Q, in decreasing order
of magnitude. Then, the interlacing property for singular values 15, p. 286 yields

-1 > -1"ri--<aiorequivalently’i =r 1, ,d.

Hence, ’-l[I /d= 72 a2"} and are minimized if-}i ai, for all i. Since the
d by d submatrix I’, defined above, has the same singular values as Z2, it follows
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directly that the TLS solution YI-1, computed from (21)-(22), has min-
imal norm [[" 112 and [1" [IF.

Observe that the expressions of I1 112 and [1 IIF are deduced from the or-
thonormality of [r] Therefore the base vectors in [Zz] must first be orthonor-
malized in Step 3.a.

If C In / d, the columns in [] are already orthonormal since they are the
fight singular vectors of R22 [A; B], obtained from its SVD in Step 2.a.

If d 1, I is a scalar. To minimize I1? IIF, this scalar must be maximized.
This can be accomplished by (21) such that the last column [rr ’ has the largest
(n + 1)th component of all unit vectors within the Range zZ ). Therefore, the
columns of [] need not be orthogonal.

If r n is unique. The columns of z,[z_] need not be orthonormalized
since the GTLS solution is invariant with respect to any base transformation
P in its solution space. Indeed, with r

Y in. (21) a basis (not necessarily orthog-
onal) of the TLS solution space, Range ([_xI]), we have that [rr]P [fete]. Hence
the GTLS solution -(YP)(FP)-1 YPP-F- YI- remains invariant.

IfI in (21) is nonsingular (respectively, singular), the GTLS solution is called
generic (respectively, nongeneric). As shown in 3, F can only be singular when
A is (nearly) rank-deficient or when the set of equations AX B is highly incom-
patible. In this case, the genetic GTLS solution does not exist but the GTLS
computations are generalized in order to solve these nongeneric GTLS problems
in the same way as the nongeneric TLS problem [39], [40].
IfA does not have full column rank, i.e., rank (AI) rA < n, we can always
replace A with a matrix having rA independent columns selected from A 1, apply
the GTLS Algorithm and set the coefficients of’ corresponding to this missing
column to zero without changing either the rank of the result or the norm of the
difference (9). Note, however, that the GTLS solution " no longer has minimal
norm in this case.
Finally, observe that we only need to compute afew vectors zi associated with the
smallest generalized singular values of (R22, Rc) in order to obtain the GTLS
solution . Moreover, we only need to compute a basis of the solution space
Range ([zz2]). Indeed, as proven before the GTLS solution is invariant with
respect to any base transformation P in its solution space.

Based on these properties, we were able to improve the efficiency ofthe TLS
computations by computing the SVD only "partially" [36]. This results in the
development ofan improved algorithm Partial Total Least Squares (PTLS) 38 ].
PTLS is about two times faster than the classical TLS algorithm 14 ], 39 ], while
the same accuracy can be maintained. The same modifications could be applied
to the generalized SVD and GTLS Algorithms insofar as they are based on the
QR Algorithm 15, 8.2 ].

3. Properties of the generalized TLS solution. In this section a number oftheorems
are proven that link the GTLS solution with alternative expressions ofconsistent estimators
given in literature. These links allow us to deduce the main statistical properties of the
GTLS solution as shown below.

Throughout this section we will make use ofthe following notation and assumptions:

(23a) Consider the set of equations given in (5)-(6), and assume that A has full
column rank n and is known exactly.

(23b) The n by n identity matrix is denoted by In.
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(23c) Let the covariance matrix E(A*rA*) of the errors A* in [A; B] [A; A2; B]
be given by C*, up to a factor of proportionality:

C*r C d 0 n + d
n d nl n2+d

where

Ca Ca," n2
C=

n2 d

is the positive definite covariance matrix E(ArA) of the errors A in [A2; B], up
to a factor of proportionality.

(23d) Let R be any square root of C*, defined by C* RrR and partitioned as
follows:

IRma Rab ] _nR=
[lba Rb J d--
n d

0 0 ]nl0 Rc n2+d
nl

where Rc is any square root of C, i.e., C RRc.
(23e) Denote by

21] nl

the GTLS solution, as computed by the GTLS algorithm (given in 2).
(23f) Let a(A, B) (respectively, (A, B)) be the set of generalized singular values ai

(respectively, generalized eigenvalues ki) of the matrix pair (A, B), organized in
decreasing order of magnitude, i.e., ai >= ai / (respectively, ki >= hi / ). Analo-
gously, if B I, then a(A) (respectively, (A)) denotes the ordinary singular
values (respectively, ordinary eigenvalues) ofA.

Based on the properties of the (generalized) eigenvalue decomposition and the (gener-
alized) SVD [15, 8.6 ], the following links between the different problems can be es-
tablished (assume C C* and m >= n for simplicity):

The generalized eigenvalue problem: [A; B r[A ;B zi ,iCzi

The ordinary eigenvalue problem: C-1 [A; B] r[A; B zi Xizi

The generalized SVD of ([A ;B],Rc):

Tr[A;BlZ=diag (a,, ,a,+a),

WrRcZ=diag (, ,n+a), zi ith column of Z
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The symmetric eigenvalue problem: RT[A ;B] T[A ;B]R vi Xivi and zi R vi

n+d

TheordinarySVDof[A;B]R= , triuvjr 2=, zi=Rl)i.
i=1

These links are used to prove the main theorems in this section.
THEOREM 2. Consider the notation and assumptions (23). Let r* n + r <= n be

the rank of ([A; A2; B], R) as computed by the GTLS Algorithm from (19), and
assume that I in (21) is nonsingular; then

([ ]) c Range (Z * suchthat llllF and ll]ll2 are minimalRange
--Id

where Z n+a)tn+a-r*)contains the vectors zi associated with the (n + d- r*) smallest
generalized singular values, obtained from the GSVD (13) of the matrix pair
([A; 1, ).

Proof. Set s n + d- r*. Let Z be a diagonal matrix containing on its diagonal
the s smallest generalized singular values of the GSVD (13) of the matrix pair
([A; B], R) and let

Z2 n2+d

be the s corresponding columns of the nonsingular matrix Z(n+d)(n+d). NOW USe the
link (15 between the GSVD of ([A; B], R) and the generalized symmetric eigenvalue
problem ([A; B] [A; B], C* )"

(24) [A;Blr[A;B]
Z2 Z2

Compute the QR factorization 16 of [A; B].
Since Q is orthogonal, the generalized eigenvalues Z22 and corresponding eigen-

vectors z,z] of([A; B]r[A; B], C*) and (RrR, C*) coincide. Hence, (24) yields

RrR[ Zl]Z2 [R rlRl
R T2RI R Tl2Rl2RlRld-R22R22T ][ ZI]Z2 [0 0 [ ZI]0C Z2

22

(25) or RrI(RIZ +RIEZ2) 0

(26) RrE(RZ +RZE)+RT
22R22 22 CZ2 2

2.

Since A has full column rank, R is nonsingular. Hence, the columns ofR span the
whole n-dimensional space n and thus, (25) is only satisfied if

(27) RIIZ +RIEZ2 =0

Substituting (27) into (26), we obtain

(28) R rEER22 ZE CZ2,22.

Equation (28) implies that the generalized eigenvalues Z22 and corresponding eigen-
vectors Z2 are obtained from the symmetric eigenvalue decomposition of (R’2RE2, C)
or equivalently, from the GSVD of (R22, Rc). It is precisely this matrix Z2 which is
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computed in Step 2 of the GTLS Algorithm. Once Z2 is computed, Z is obtained from
(27), as also done in Step 2.c of our GTLS algorithm

(29) Z -R-iIR2Z2.

Hence, [], as computed in Step 2 of our GTLS algorithm, equals precisely the vectors
zi in Z *, associated with the (n + d- r*) smallest generalized singular values obtained
from the GSVD (13) of the matrix pair ([A; B], R).

Since the orthonormalization of [zZ] in Step 3.a of our GTLS algorithm (if needed)
does not change its range and since Range ([rr]) c Range ([zz]) from (21)-(22), it
follows that

Range ([ ’-Id])=Range([ YI" ] I’- ) c Range (Z * Range ( [ZI-
As proven in 2,2= -rr- has minimal norm II211F and ll2112.

This theorem allows us to deduce the following relationships between the GSVD of
the matrix pairs ([A; B], R), (R, R) and (R22, Rc) (with R, R22 defined in (16)).

COROLLARY 1. Consider the notation and assumptions (23) and let 16 be the QR
factorization of[A; A2; B]; then

Vi 1, n2 + d: tri tr(R22,Rc), O’n + i tr([A ;B],R) trn + i tr(R,R)

and the (n2 + d) corresponding vectors Z:: of (R22, Rc), Z3B of([A; B], R) and
Z of(R, R) obtainedfrom their respective GSVD (13) are, up to a normalization
factor, related by

-R-{d RI2Z22z z, z
Proof. The proof follows straightforwardly from the proof of Theorem 2.
Theorem 2 and Corollary imply that the GTLS solution can also be computed

from the GSVD of [A; B ,R), namely, from the vectors zi corresponding to its smallest
generalized singular values, as follows:

Range ( [i] ) Range Z * and f Z{Z

where

are the vectors zi associated with the d smallest generalized singular values obtained from
the GSVD (13) of([A; B], R).

For the one-dimensional GTLS problem (i.e., d in (5)) with A offull column
rank and I’ in (21 nonsingular (this is the problem mostly considered in literature), this
means that the GTLS solution can also be computed from the vector Zn / corresponding
to the smallest singular value an +1 of the GSVD (13) of ([A; B], R) or equivalently,
from the generalized eigenvector zn / corresponding to the smallest generalized eigenvalue
trn+l of the matrix pair ([A; B]r[A; B], C*). However computing the GTLS solution
in this way requires the GSVD of a larger matrix pair than the matrix pair
(R22, Rc) used in the GTLS Algorithm. It is evident that our GTLS algorithm is com-
putationally more efficient than the Koopmans-Levin method described in [6], and the
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compensated LS estimation method described in [33 ]. These methods are based on
computing the GSVD of the matrix pair ([A; B], R) even ifR is given by

0

Since Rc I in the latter case, the solution can be computed by the TLS algorithm with
exactly known columns, given in [34, 1.8.2], which first performs a QR factorization
of the known columns and then proceeds with an ordinary SVD of the submatrix R22.

In Theorem we assumed that F in (21) is nonsingular, i.e., the GTLS solution is
generic. Analogously to the classical TLS problem (see [34], [39 ]), we can deduce
conditions that guarantee the existence and uniqueness of the genetic GTLS solution.
Hereto, we apply the results of Theorem 2.

THEOREM 3. Existence and uniqueness ofthe genetic GTLS solution. Consider the
notation and assumptions (23). Let m >= n and denote by tr’ (respectively, a) the small-
est (respectively, n + 1)th) generalized singular value of (A, Ra) (respectively,
([A; B], R)), then

a’>atheGTLSsolution )= [1 ]f[2 is unique and generic.

Proof. Compute the QR factorization (16)of[A1; A2; B] and let R be partitioned
as follows:

[Rl Rl2] r/1 _[R Ra Rb](30) R
0 R22.] rn- nl 0 R2a R2b
n nz -t- d n n2 d

Denote

Since

Ra= Rca n2

nl n2

la R2a 0 R2a

we can prove analogous relationships between the GSVD of

(A,R:a),
0 R2a

,Ra

and (R2a, Rca) as given in Corollary 1. This and Corollary imply that

(31) a’=tr,2=min {tr(R2a,Rca)} and tr=an2+,etr(R22,Rc).

Since Rca and Rc are nonsingular, we can use the link with the corresponding ordinary
SVD problems (as given in the beginning of this section). Hence, (31) yields

(32) a’=a,:=min {tr(R2aR:a)}, o’=ffn2+leO’(R22Rl),
Z2

=Rl
V2
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where

Zl]n2Zd
respectively, [ V n2

are the d vectors zi (respectively, fight singular vectors vi) associated with the d
smallest (generalized) singular values ai, obtained from the GSVD (18) of (R22, Rc)
(respectively, SVD of R22R1 ). The assumption a’ > a guarantees that the TLS solution

X22 -VIV ofthe classical TLS problem R22R& [_i] 0, is unique and genetic (i.e.,
V2 nonsingular) according to the existence and uniqueness theorems [34, Thms. 1-1,
and 1-2 ], 39 of the classical genetic TLS solution. Since the GTLS solution 2 of the
GTLS problem, R22[-x] 0 with corresponding error covariance matrix C RRc,
is given by 2 -ZIZ (Zl, Z2 defined by (32)), 2 and 2 are related by

V2
R’l -I

(-v) z= (-z,_).

Since Rc is nonsingular, the existence and uniqueness of the genetic TLS solution

_
imply that the genetic GTLS solution a is unique and genetic (i.e., Z2 nonsingular).
Since A has full column rank, Rl is nonsingular. This implies that
R i-I R 12 ]Z] using 20 )-( 21 )-(22 )) exists and is unique. Thus, the GTLS solution

of the GTLS problem is unique and genetic. V]

Whenever r in (21) is singular, the GTLS problem is called nongeneric. Using
Theorem 3 this happens when a’ =< a, i.e., when A is (nearly) rank-deficient (a’ O)
or when the set ofequationsAX B (or at least one subset AXi Bi) is highly incompatible
(a’ a) (see also [34, 1.6], [39], and [40]).

Gallo 9 used a statistical approach to prove under which condition his estimate
(which equals our GTLS solution as proven by Theorem 4 below) is genetic. These
statistical results agree with our algebraic approach.

Now using the previously proven theorems, the correspondence between particular
cases ofour GTLS solution and alternative expressions ofconsistent estimators described
in the literature can be proved, as done in the following theorem. These equivalences
allow us to derive the main statistical properties ofthe GTLS solution in different statistical
situations.

THEOREM 4. Consider the notation and assumptions (23). Let a’ =min
{ a(A, Ra } and assumefurther that a an + an + d a( A B], R) has multi-
plicity d.

If a’ > a, the GTLS solution ) is given by

(33) 2 (A rA aZC*a )-I(A TB-- o’2C*ab).

Proof. Using the link (15) between the GSVD of ([A; B], R S) and the symmetric
generalized eigenvalue problem ([A; B] r[A; B], C* ), we obtain

(34) ([A B]r[A’B] a2C*)[ Y ] =0
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where [vr] are d base vectors of the d-dimensional eigensubspace associated with the
smallest generalized eigenvalue 0

"2 of([A;B]T[A;B], C*)ofmultiplicity d. Partitioning
C* in (34) yields

(35) BTA _2",T -’0.
o ’- ab BrB- 2C

Since tr
2 has multiplicity d, the left-hand-side matrix of (35) has rank n and solutions

to (35) will be determined by equations corresponding to any n linearly independent
rows of that matrix. Consider the first n equations of (35):

(36) (A rA rEC*a r+ (A rB- TEC*ab) r --0"
then, the assumption r’ > guarantees that A rA trC*a is invertible and also guar-
antees that I"- exists. Hence, (36) yields

(37) -rr- (A TA a2C*a )-1 (A TB-- aZC*ab).

Theorem and the assumptions above imply that the GTLS solution space

and thus 2 -YI’-1 since the GTLS solution is invariant with respect to any base
transformation in its solution space (see 2). Hence, (37) yields (33).

Theorem 4 allows us to derive the main statistical properties ofthe GTLS solution.
First, assume that none of the columns of A are known exactly (nl 0 and

C* C).

If C In+d, the expression (33) reduces to

(38) J= (A VA 2I,)-A VB,
which is a well-known expression of the classical TLS solution as proved in [14]
for d and in 34, 2.2 for d >_- 1. The consistency, distributional, and asymp-
totic properties of the classical TLS estimate have been proved by Gleser for any
d >_- 11 ]. Assuming that the rows of the error matrix AA; AB] in (11) are
independently and identically distributed (i.i.d.) zero mean vectors with common
covariance matrix C I, + d and that lim, / rn)AAo exists and is positive
definite, Gleser has proved that the TLS solution " is a strongly consistent estimate
of the true but unknown parameters X of the corresponding unperturbed model
AoX Bo. This result holds, regardless of the common distribution of the errors.
When this common error distribution has finite fourth moments, " is shown to
be asymptotically normally distributed. Expressions for the covariance matrix of
this distribution are given in 11 ], as well as large-sample approximate confidence
regions.

While Gleser assumes that the elements ofA0 and B0 in model (11) are fixed
(i.e., the functional equations model 23 ), Kelly 22 considers the case in which
these elements are random (called the structural equations model [23 ]). More
specifically, Kelly assumes that the rows of[A0; B0 are i.i.d, with common mean
vector and common covariance matrix. By calculating the influence function of
Gleser’s errors-in-variables estimator (which equals the classical TLS solution),
Kelly is able to derive an explicit expression for the asymptotic covariance matrix
of this estimator in the structural equations model.
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(39)

Finally, Aoki and Yue [2] have studied the statistical properties of the TLS
solution (called the solution of the eigenvector method or the Koopmans-Levin
method) ofToeplitz-like sets ofequations arising in autoregressive moving average
(ARMA) modelling and system identification. These models are given by

y(t)+aly(t- 1)+ +anaY(t-na)=blu(t 1)+ +bnbU(t--nb)

where the (u(t)) and (y(t)) are the input and output sequences, respectively,
and { aj.} and { bj) are the unknown constant parameters of the system. The
observations at the input and output are assumed to be perturbed by mutually
independent white noise sequences (i.e., i.i.d, random variables) with zero mean
and equal variances. If sufficient observations are taken, (39) gives rise to an
overdetermined set of equations of the form (2) where the corresponding error
covariance matrix on the data In / d. Assuming that the given system is stable
(i.e., the polynomial + Y ’al aizi has all zeros outside the unit circle) and the
input sequence { u(t)) is uniformly bounded, the TLS solution of this set is
strongly consistent if and only if the matrix

m

lim (l/m) stsrt
m t=

(40)

where S [-y(t + na 1), -y(t), u(t + nb 1), u(t)] r, is positive
definite 2 (observe that these conditions are analogous to the consistency con-
ditions imposed by Gleser). This is the case if the input sequence is persistently
exciting of order na + nb (i.e., limm (1 / m) ’= qtqTt, where

qt=[u(t+na+nb 1), ,u(t)] ,
is positive definite) and if the polynomials + alaizi and blbiZi
are relatively prime. The first condition is always satisfied if the input is white
noise, whereas the second condition means that (39) is a minimal realization of
the input-output sequences. Additionally, Aoki and Yue have given explicit
expressions for the mean square error of the TLS estimates as a function of the
observation noise variances and the number of observations. As demonstrated in
[6 ], the accuracy of these TLS estimates is comparable with that of the joint
output method 30 and superior to all other methods described by Srderstrrm
30 ]. Moreover the TLS method based on the SVD is numerically much more

robust and plays an important role in ARMA modelling. See [2], [6], [30] and
34 for more details.
Now if the error covariance matrix C, has the more general form c2Cmwhere C
is known and positive definite--Gleser proposed 10 ], 11 to transform the orig-
inal data [A;B] to new data [A; B]R (where C RRc, Rc upper triangular)
such that the error covariance matrix corresponding to the transformed sys-
tem In+ a. Computing the classical TLS solution of this transformed system
and converting this result back to the original set, preserves consistency of the
result. It is easy to prove that this estimate equals our GTLS solution that can be
obtained straightforwardly without pretransforming the original data. Indeed, in
the transformed system the TLS estimate is obtained from the eigenvectors V

-1corresponding to the smallest eigenvalues A of the data matrix [A; B]Rc

RI[A;Blr[A;BIR-JV VA.
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(41)

Substituting R by Z, we obtain the corresponding generalized eigenvector
equations:

[A;B]T[A;B]Z=CZA.
The GTLS solution is computed straightforwardly from the eigenvectors Z, using
a GSVD. The transformation formulas given by Gleser 10 ], 11 just transform
the solution obtained from (40) to the GTLS solution obtained from (41 ). Observe
that Gleser needs to compute the inverse of the square root of the covariance
matrix that may cause numerical problems especially when Rc is ill-conditioned.
This inversion is avoided in our GTLS algorithm.

Even if the true covariance matrix Ca is not known but an estimate S of it,
up to an unknown factor of proportionality, the GTLS solution " can still be
consistent [7]. An experiment wherein several observations for each row of
[A0; B0] in (11) are available is an example of this case. Assume that the esti-
mator S is distributed as a multiple of a Wishart matrix with n-lm degrees of
freedom independently ofA and B, where r/is a fixed positive number. Further
assume that d in (11) and that the rows of the error matrix [AA; Ab] are
i.i.d, as a multivariate normal random variable with zero mean and covariance
matrix Ca so that E(S) Ca. Under these assumptions, Fuller [7] has proved
that Vm("- x) converges in distribution to a normal random variable with
zero mean and computed an explicit expression for the covariance matrix of this
variable.

In ARMA modelling and system identification, the situation ofknown noise
covariance functions is treated in 24 and 8 ]. In 8 Furuta and Paquet discuss
the case of correlated noise when all the correlation functions are known, up to
a factor of proportionality. The suggested procedures, based on solving a gener-
alized eigenvalue problem, are extensions of the eigenvector method described
by Levin [26]. It is easy to see that these solutions coincide with our GTLS
solution whenever the GTLS problem has a unique minimizer. Hence, the results
in 24 and 8 can be applied straightforwardly to the GTLS solution. Conditions
for strong consistency of the GTLS estimates in multi-input multi-output system
models of the form (39) have been derived in [24] and are similar to those for
strong consistency ofthe TLS estimates in the single-input single-output case 2
(see above).

Consider now the case that n columns A1 ofA are known exactly.
If C In2 + d, (33) reduces to

(42) )= (A TA o"2

Equation (42) equals the expression of the compensated least squares estimate,
derived by Stoica and Srderstrrm [33 ]. Assume that the given system (39) is
stable and that the polynomials + ’a aiz and bizi are relatively prime.
If the observations at the input are noise-free, persistently exciting of order na
nb and independent ofthe observation noise, and ifthe observations at the output
are perturbed by zero mean white noise of equal variance, (42) is a consistent
estimate of the parameters ai and b; in the ARMA model (39). Additionally,
Stoica and S/Sderstrrm 33 have proved that this estimate is asymptotically
Gaussian distributed and an expression of the covariance matrix is explicitly
given. As shown before, our GTLS Algorithm is, however, computationally more
efficient than the computation procedure presented in [33 ].
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If the error covariance matrix has the general form c2C--where C is known and
positive definite--the statistical properties of the GTLS solution for the one-
dimensional problem (d 1) can be derived from Gallo [9]. Indeed, Theorem
4 proves the correspondence between our GTLS solution and the consistent es-
timate derived by Gallo in 9, Thm. ]. This link allows us to investigate the
properties of our GTLS solution as an estimator ofthe parameters in the general
one-dimensional errors-in-variables model, given by (11) for d 1. More specif-
ically, when the joint distribution of the errors possesses finite fourth moment
and when

(43) Vm min { X(ArA0) } -- m and
(min { X(ArA0) })2
max {X(AorA0)} ---c asm--,

Gallo has proved that the GTLS solution ) is a weakly consistent estimate of the
parametersXin model (11). This property holds, regardless ofthejoint distribution
of the errors. Observe that the conditions (43) are less restrictive than those as-
sumed by Gleser (i.e., limm (1 /m)A[Ao exists and is positive definite).

Finally, in ARMA modelling and system identification, systems of the form
(39) whose inputs are observed exactly and whose observed outputs are disturbed
by zero mean correlated noise, have been treated in [20] and [16] for the case
that n, nb. James, Souter, and Dixon have used the same basic principle of
bias correction as Stoica and S6derstr6m in [33] and have derived an expression
of the form (33). Grosjean and Foulard have extended the eigenvector method
of Levin [26] to the identification of multi-input multi-output systems whose
outputs are disturbed by correlated noise. Assuming that the order n, nb of the
system and the correlation functions ofthe output noise are known, these estimates
coincide with the GTLS solution. Conditions for strong consistency of the GTLS
solution in these cases have been described and are similar to those given by
Stoica and S6derstr6m in 33 ]. For more details, see 24 and 16 ]. Observe that
multi-input multi-output systems in [16] and 24 are treated as s multi-input
one output problems where s is the number of outputs, i.e., as s one-dimensional
GTLS problems (d 1).

Since Theorem 4 proves the link between our GTLS solution and Gallo’s estimate, the
following alternative expressionsfor ourGTLS solution can be deduced straightforwardly
from Theorem of 9 ].

THEOREM 5. Consider the notation and assumptions (23). Let r’ =min
{ r(A, Ra) } and assumefurther that r an + a, + a a( [A; B], R) has mul-
tiplicity d. If a’ > r, the GTLS solution f is given by

(44) 22 (A fPA2 o’2Ca) -1 (APB- 0"2Cab),

(45) ) (AAI)-’A (B-A2)2)

with

and

P= Im-AI(A A1)-IA

(46)

(47)

22=(R -2aR2a 0"2Ca) (RaR2b 0"2Cab),

21
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where the matrices Ro are defined by the QRfactorization of[Al; A2; B]:

(48) [A1;A2;B]=QR=[Q1 Q2][Rll Rla Rib]hi0 Rza Rzb m-n1

rll rn H H1 H2 d

Proof. Equations (44) and (45) follow straightforwardly from Theorem of 9 ].
Substituting A1 in the definition ofP by QR from (48) yields

(49) P=I,-QQ(.

Now substitute (49) in (44) and replace A, A2, and B by their equivalents QRI,
QRIa + Q2REa and QRb + QREb obtained from the QR factorization. Making use of
the orthonormality of Q, we obtain

(50) A fPA2 A fA2 gag ga 2aR2a,

(51) A fPB A fB R aRlb RfaRzb,

(52) (A T1A,)-IA (B= R-(]QB= R-{1Rb,

(53) (A [A1)-’A A2 R#Q[A2 R#Rla,

which prove (46) and (47).
In case that the GTLS solution is either nonunique or nongeneric or when the subset

A ofA in the GTLS problem (5)-(6) is rank-deficient, the GTLS solution is no longer
consistent but is in fact a biased estimator of the parameters in (11). Our approach in
these situations can be justified as follows. All these cases mentioned above refer to the
presence of multicollinearities, i.e., there is a (nearly) exact linear relation among the
columns ofA in the model (11). The consequences are well known; in particular, coef-
ficient estimates obtained by ordinary LS or TLS (without rank reduction) tend to be
inflated and can have extremely large variances. One way ofhandling the multicollinearity
problem and stabilizing the coefficients is reducing the rank of the data matrix A and
amounts to filtering out the smallest (generalized) singular values from the estimator.
This approach has been adopted in our GTLS Algorithm and is similar to the biased
estimation techniques: principal component regression 18 and latent root regression
43 ], used in linear regression (see also 37 and 40 ).

Observe however that in these cases of nonuniqueness or nongenericity the GTLS
solution no longer equals the solution obtained by applying the usual transformation
procedures (see, e.g., 11 or 34, 4.5 ]). This is evident from (40) and (41). Indeed,
the minimum norm or nongeneric TLS solution computed in the transformed system
of equations, i.e.,

[A BIRI[ -I
and converted back to a solution ofthe original set, does not coincide with the minimum
norm or nongeneric GTLS solution of the original set of equations. The properties of
the GTLS solution in these cases are not yet fully analyzed.

Summarizing, consistency results of the GTLS solution have been derived in this
section:

For any multidimensional (d >= 1) errors-in-variables model given by (11), in
which none ofthe columns ofA are known exactly (nl 0) (based on [11]); and
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For any one-dimensional (d 1) errors-in-variables model given by (11) in which
some columns of A are known exactly (n >= 0) (based on [9]). However the
authors strongly believe that the consistency results of Gallo and Gleser can be
generalized in order to prove consistency of the GTLS solution for any multidi-
mensional errors-in-variables model given by (11) in which some columns ofA
are known exactly (n >= 1).

4. Conclusions. Every linear parameter estimation problem arising in signal pro-
cessing, system identification, automatic control, or in general engineering, statistics, and
medicine, gives rise to an overdetermined set oflinear equations AX B that are usually
solved with the ordinary least squares method. Very often, errors occur in both A and
B. For those cases, the Total Least Squares (TLS) technique was devised as a better
method of fitting. This method introduced into numerical analysis by Golub and Van
Loan, is strongly based on the Singular Value Decomposition (SVD). If the errors on
the measurements A and B are uncorrelated with zero mean and equal variance, TLS is
able to compute a strongly consistent estimate of the true solution of the corresponding
unperturbed set AoX Bo. In this paper the TLS problem is generalized to maintain
consistency of the solution in the following cases: first of all, some columns ofA may be
error-free and second, the errors on the remaining data may be correlated and not equally
sized provided the covariance matrix of the errors on the rows of the remaining data
matrix is known, up to a factor ofproportionality. Here, a numerically reliable Generalized
TLS algorithm GTLS, based on the Generalized Singular Value Decomposition (GSVD),
is developed. This GSVD avoids transforming the data A, B explicitly and is numerically
more robust with respect to ill-conditioned covariance matrices. This explains the better
numerical performance ofthe GTLS Algorithm with respect to the explicit transformation
procedures. Moreover, by first performing a QR factorization, the GTLS Algorithm only
needs to compute the GSVD of a smaller submatrix. This makes the GTLS Algorithm
computationally more efficient than other methods described in literature.

Additionally, the correspondence between the GTLS solution and alternative
expressions of consistent estimators, described in the literature, is proven. From these
relations, the main statistical properties ofthe GTLS solution are deduced. In particular,
the equivalence between the GTLS method and the errors-in-variables regression esti-
mator, well known in statistics, is shown. It is concluded that under mild conditions the
GTLS solution is a consistent estimate ofthe true parameters ofany general multivariate
errors-in-variables model in which all or some subset of variables are observed with errors.
Furthermore, it is shown that the GTLS algorithm computes the same estimate as the
eigenvector method, also called the Koopmans-Levin method, and the Compensated
Least Squares (CLS) method. These methods, commonly used in system identification,
were developed in order to provide consistent parameter estimates in ARMA modelling
using noise-corrupted data. If the only disturbances in the observed outputs and the
inputs (if they cannot be measured exactly) are given by mutually independent zero
mean white noise sequences ofequal variance, the CLS, TLS, and eigenvector methods
all compute strongly consistent estimates. Using the GTLS Algorithm, consistency can
be maintained in cases where the disturbances are not necessarily white provided the
covariance matrix of the correlated noise on the input-output data is known, up to a
factor of proportionality.

Acknowledgment. The author would like to thank Hongyuan Zha for his helpful
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PARTIAL POLE AND ZERO DISPLACEMENT
BY CASCADE CONNECTION*

I. GOHBERGf, M. A. KAASHOEK:I:, AND A. C. M. RAN:I:

Abstract. Recent interpolation results for rational matrix functions with incomplete data are applied to
solve a problem of shifting a part of the poles and the zeros of a given rational matrix function, keeping the
other poles and zeros unchanged and the McMillan degree as small as possible.
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Introduction. This paper concerns a problem of partial pole and zero shifting. Let
Wbe an rn m rational matrix function that, say, is regular at infinity, has poles in the
points p, Pi, Pi+, Pk, and zeros in the points Zl, zj, z. + , zt. Fur-
thermore, a nonempty set f is specified such that the points p, Pi, Zl, "", z are
not in f. The problem we deal with is the following. Construct a m m rational matrix
function R such that we have the following:

(1) R has no poles and zeros in the set A {p, Pi, z, zj }.
(2) R is regular at infinity.
(3) WR has all its poles and zeros in the set ft tO { z z, p, Pi }.
(4) The McMillan degree 6(WR) of WR is as small as +possible.

In other words, we want to shift the poles at Pi + 1, P and the zeros at zj / l, , zt
to ft by a cascade connection of Wwith R, keeping the pole and zero structure at pl, ,
Pi and Zl, z, respectively, and such that 6(WR) is as small as possible.

In this paper we shall describe explicitly all functions R that solve the problem just
stated. Our solution is based on our recent study [GKR of interpolation problems for
rational matrix functions with incomplete data (see also [GK]).

Another version of this problem, in which we only desire to shift either the poles
Pi + 1, Pk or the zeros zj + , zt, has been solved recently with a different method
by Van Dooren [VD].

In of this paper we state our main result, which is proved in 4. In 2 and 3
we explain the necessary results from [GKR] and [GK]. In 5 we shall consider as a
special case the problem stated in [VD], and give a complete solution for the case when
all functions considered are square and regular at infinity.

1. The main result. In this section we state the main theorem that will be proved
later. Let W(,) Im + C(Mn A)-B be a given rational matrix function, analytic
and invertible for , e I’, where/’ is a given contour in the complex plane. By 3"+ we shall
denote the region inside I’, by 3’- the region outside F. Let P, respectively P, be the
spectral projection of A, respectively, A , corresponding to the eigenvalues in 3"+. We
define the 3"+-spectral triple of Wby

-r+ { CIM,A IM), (A [mp,pxB),P IM:MImP )

where M Im P.
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The problem we consider is the following. Given a nonempty set f,
find all rational matrix functions R such that

W,(X):= W(X)R(X)

has the following properties:

(1.1) W has all its poles and zeros in f t_J 3’+.

(1.2) The -y+-spectral triple of W is z+.

(1.3) The McMillan degree of WI, 6(W), is as small as possible.

(1.4) W(oo) Im.
This problem is exactly the problem stated in the Introduction. Indeed, condition (1.2)
is equivalent to saying that R has no poles and zeros in -y+. Note also that instead of-y+
we could just consider the poles and zeros of Winside I’, as is done in the Introduction.

Before stating the solution of this problem we must introduce several spaces and
operators. Let Mx Ker px. Note that Ker px Ig M Mx. Choose a complement
NofM Mx in M, and a complement KofIm px [in Im P. Introduce the projections
op in M onto M f) Mx along N and Oz in Im px onto K along Im pXlg. Also, let rip be
the imbedding ofM f3 Mx into M and rtz the imbedding ofK in Im px.

Since (opCIgng, ot,A Ic) is observable, there exist operators G C -- MMx and S M Mx -- M (’1 Mx such that

(1.5) pp(A GC) IMCM S,

(1.6)

Likewise, (OzAIK, OzPB) is controllable and there exist operators F: K -- ([m and
T K -- K such that

(1.7) pz(A PBF) K T,

(1.8) (T)c ft.

(Compare Rosenbrock’s theorem [R]; see also [GKR], 1.) Choose any such pair
(S, G) and any such pair (F, T).

Let X: K -- M and Y: Im px
__
M 71Mx be the unique solutions of the Lyapu-

nov equations

(1.9) AIMX--XT=Az,

(1.10) YA IimpX SY-- A21,

where A2:K -- M and A21: Im px
__
M fq Mx are defined via the following equations:

(1.11) Az(I-pz)=pp(AlM- gpp-GClM)I’t,

(1.12) (I-p,)A2 rt(AIM-nzT-PBF)nz,

(1.13) Azlpz=(ppA12-GF+ I’lT-S[’)pz.

Here I’I’K -- MIm px, such that I’tpxIM (I- pp) and PXI’t (I- p). The operator ppAlz:K "-
M f) Mx is chosen arbitrarily. Then (1.13) defines Azpz, or, in other words, it defines
the action ofA2 on K. Since Ker r Ker (I- p) the fight-hand side of(1.1 1) defines
A2(I- pz). Next, since Im I’t Im (I- pp), (I- pp)A2 is well defined by (1.12).
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Finally, let I’o ypxx- Yz opX + F1. Note that

YP [M+ Pp FO Y I pp F 0 I

Take L: Im P M such that

ppL Flpz PIM(I--pp)L+pz=IM.

(This way L is well defined in a unique manner.) Then the inverse ofthe middle operator
is easily seen to be [ g’] It follows that

(1.14)
-1PIM -PX+z

YP [M -4- pp F0

where F>(I L + rlpY + XPz: Im P -- M.THEOREM 1.1. Let the pair (S, G) satisfy (1.5), (1.6) and let (F, T) satisfy (1.7)
and (1.8). Further, let X and Y be given by (1.9) and (1.10), and F( by (1.14). Then
allfunctions R(X) such that WI(X) W(X)R(X) satisfies (1.1)-(1.4) are given by

[AXIMR(X)=I-(C,C(p-px)x+F+Cnz) X-
0

(1.16)

where

pzpXB

{ppP+ YP(I-P)}B-G

V/ YPBC+ GC, V

_
-BCPX- BF.

The correspondingfunctions W (X) are given by

(1.17)
W(X)=I+C(X--AIM)-’

+ (-CPX- F)(X- T)-pPB,

WI ()t) -1 =I- { C(I’]<l-PXpz)+Fpz}(X-AX)-lpXB

C’Op k S)-I(- ypxB + G).

The McMillan degree ofW (X) is given by

di(W) dim M+ dim K= dim Im px + dim MfqMx.
Theorem 1.1 describes all functions R(X) such that Wl WR satisfies 1.1)-( 1.4).

This description does not provide an explicit parametrization ofthe set of all such divisors
R(X). However, there is considerable freedom in the choice of R. In particular, there is
freedom in the choice of the subspaces K and N, in the choices of the pairs of operators
(G, S) and (F, T), as described in Rosenbrock’s theorem [R], and finally in the choice
of the operators r and ppA 12.
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2. Admissible triples and factorization. In this section and the next, which have an
auxiliary character, we recall several concepts and results from [GK] (see also [GKR]).

Let W()) Im + C( M, A)-B be a minimal realization of W, and let a be a set
in the complex plane. First we introduce the following triple:

(2.1) r {(CIM,AIM),(AXIImP,pxB),pxIM’M’- Im px}
where P, px are the spectral projections ofA and A x, respectively, corresponding to the
eigenvalues in a, and M Im P. Any triple

(2.2) r+ { Cp,Ap), (Az,Bz), F}
obtained from - by

(2.3) Cp CIME E-(A ME A,

(2.4) EAIImeEz=Az, Bz=EPB,

(2.5) I’=EPIME,
is called a a-spectral triplefor W. In fact z+ contains a fight pole pair for W" (C,, A,),
a left zero pair for W: (Az, Bz), and the matrix I’ coupling these two pairs via

(2.6) FAp-AzF BzCp.

(We easily check that (2.6) holds, by checking it for the special case of - and using
(2.3)-(2.5).)

Note that the pair C,, Ap) in a (r-spectral triple for a rational matrix function W is
observable, and the pair (Az, Bz) is controllable. From now on we shall call any triple
r { C, A), (Az, Bz), I’ } with C, A) observable, (Az, Bz) controllable, (r(Ap) and
(r(Az) inside a set (r, and such that I’ satisfies (2.6) a a-admissible triple.

If we take for (r a set containing all eigenvalues of A and A , then M and Im P
just become the whole state space, and PIM" M Im P is the identity operator. In
that case the operator r in any a-spectral triple for Wwill be invertible, and we have the
following minimal realizations for W and

(2.7) W(X) I+ Cp(X-A,)-’F- Bz,

(2.8) W()-1 =I-Cpr-l(X-Az)-Bz

(see [GKLR], [BR]). An admissible triple r { (Cp, A,), (Az, Bz), I’} with I’ invertible
will be called a global spectral triple. The function given by (2.7) will be called the
function corresponding to - in this case.

The following theorem describes the situation when two functions have a common
a-spectral triple.

THEOREM 2.1. Let W(?) Im + C(M-A)-BandW() Im + C(-A)-IB
have a common (r-spectral triple. Then R() := W )-1 W1 () has no poles and zeros
on (r. Let P, respectively, P, be the spectralprojection ofA, respectivelyA l, corresponding
to eigenvalues in (r, and let P, respectively, P>(, denote the same spectral projection for
A , respectively A >(. Then thefunction R() has thefollowing realization"

(2.9)
R( )) (I- C(I- P)(X-A)-1B)(I+ C1 (I- P)(X-A)- B)

+ C(h-A )-1 (I- P)E1 P1 B1 CE2P(I- P)(h-A)-B,
(2.10)

R(X) -1 (I- C(I- P{)(X-A ]<)-1BI)(I+ C(I- P)( X-A )-I B)
+ C(X-A >)-1 (I- P>)E- PB- CE P(I- P)()x-A)-I B,
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where El Im P -- Im P, E2 Im P]< -- Im P are invertible operators such that

(2.11)

(2.12) AIIm’E2=EzA Im’,

P lm eEl E2

Proof Consider the a-spectral triple for Wgiven by

"l’: {(Cllmp,A[imP),(AllmP,PB),PlimP: Im P-- Im P}
and the a-spectral triple for W given by- { (C lime,A lmpl), (A>( lme’(,P>(B),P>( lime Im P-- Im

Since W and Wl have a common a-spectral triple, there exist invertible operators
and E2 such that (2.11)-(2.13) hold. Using these identities and the fact that BC
(k A x) (k A), BC (k A]) (h A), it is straightforward to check (2.9)
and (2.10 ). From these formulas we see that R(),) has no poles and zeros.

The theorem has been proved in Theorem 5.1 of GK] and also in Lemma 1.3 of
BGR]. In fact, in GK and BGR more has been proved. It turns out that the converse

to Theorem 2.1 also holds, i.e., if W(X)-W (),) has no poles and zeros on a, then W
and Whave a common g-spectral triple. Since we do not use the converse in the sequel,
we choose not to prove it.

3. Minimal complements. In this section z { (Cp, Ap), (Az, Bz), I’} is an admissible
triple, where Ap and Az act on Xp and Xz, respectively. We shall assume that I’ is not
invertible, so that z is not a global spectral triple for some function. Let a(Ap) t3 a(Az)
be denoted by a. In this section we shall give a description of all rational matrix functions
IV(,) with IV(oo I such that z is a a-spectral triple for IV, and with McMillan degree
as small as possible.

Recall from GK that if z0 { Cpo, Apo), (Azo, Bzo), I’0 is an e-admissible triple,
where e N a J, then z (R) r0 is defined by

rro={([Cp Cpo] ApApo) (AzAzo,[ Bz] ) [ I’ Ial2] }Bzo F2 Fo

where Ial2 and F21 are the unique solutions of

I12Apo-AzI12 BzCpo, F21Ap-AzoI21 BoC.
An e-admissible triple ro will be called a complement of if the coupling operator

I’,(R),o of z (R) 0 is invertible. We say that 0 is a minimal complement of if it is a
complement and for any other complement z b we have

rank F (R) o --< rank
If z0 is a minimal complement of z then the function W(h) corresponding to z (R) z0 will
be a solution to the problem stated in the first paragraph of this section, and any solution
is obtained this way. So our problem can be rephrased as follows. Describe all minimal
complements of r.

To give this description we first introduce some spaces and projections. Let N be a
complement in Xp to Ker F, and let K be a complement in Xz to Im F. So

Xv N-i- Ker F, Xz= Im F-i-K.
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Let tap be the projection along N onto Ker I’ and pz the projection along Im I’ onto K.
Further, let np be the imbedding of Ker F into Xp, n the imbedding ofK into Xz.

We easily verify that Ker F is (Cp, Ap)-invariant and that Im I’ is (Az, Bz)-invariant.
By Rosenbrock’s theorem [R], there exist S" Ker F - Ker I’ and G" cm _,. Ker I’
such that

(3.1) pp(Ap- GCp) ce v S.

Likewise there exist T" K -- K and F" K -- Cm such that

(3.2) pz(Az-BzF)lr T.

In fact this can be done in such a way that a(S) e, tr(T) e, where e C is an arbi-
trary set.

We also select a generalized inverse I’t of I’ such that IT 1- Oz, I’*I’ 1- .
The next theorem describes all minimal complements of z.
THEOREM 3.1. Let z { Cp, Ap), (Az, Bz), I’ } be a r-admissible triple. Choose a

set e C such that tr e gO, and choose pairs S, G) and F, T) such that (3.1) and
(3.2) hoM, respectively, and a(S) e, a(T) e. Then

(3.3) zo { (-C,X- F, T), S, YB+ G), I’o }

is a minimal complement for , where X K -- X, and Y: Xz Ker I’ are the unique
solutions ofthe Lyapunov equations

(3.4) ApX-XT A 12,

(3.5) YAz- SY A21.

Here A2 K -- Xp and A21 :Xz -’ Ker F are defined as follows. Choose F K --,.

Ker F and tpA2 arbitrarily, and let

(3.6) .421 (I- pz) pp(hp- Spp- GCp) I’t,

(3.7) (I- pp)A2 Ft(Az-nT-BzF)nz,

(3.8) A2az ppAl2 +GF+ FT-SF.
Finally, Fo YFX Y apX + F

Conversely, every minimal complement

ro (Cpo,Apo), (Azo, Bzo), I’o }
with Apo K -- K andAzo Ker F -- Ker F is obtained as in thefirst part ofthe theorem
up to a change of basis in K and Ker I’. Consequently, every minimal complement is
similar to a minimal complement obtained as in thefirst part ofthe theorem.

The theorem has been proved in [GKR], and for a special case also in [GK].
Here we will sketch only part ofthe proof, namely, that ro is a minimal complement

of r. For full details and the proof of the converse part we refer the reader to GKR].
First, it is an easy check that (3.1) and (3.6) are not contradictory, and that (3.2)

and (3.7) do not contradict each other. Next, we show that (CpX + F, T) is observable
and (S, -YB + G) is controllable. Indeed, suppose 0 4: x K is an unobservable
eigenvector of the pair (CpX + F, T) corresponding to 3 e. Then Tx ,x, -CpXx
Fx. By (3.7) we have

BzFx= [’Al2X- Tx +Azx I’Al2x-(X-Az)x.
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On the other hand, by (2.6) and (3.4) we have

-BzCpXx AzI’Xx- I’ApXx= AzI’Xx- rA12x- ,I’Xx.

So, by equating these two, we obtain

(X-A)(x- rXx) 0.

Since X e, X g a(Az), so x +I’Xx. But then x K fq Im I’ (0), which contradicts
x 4: 0. So (CpX + F, T) is observable. The controllability of (S, -YB + G) is proved
likewise.

A straightforward computation using (2.6) and 3.4)-( 3.8 shows

I’oT- SVo (- YBz + G)(-CpX- F).

So ro is indeed an e-admissible triple.
One next computes that the coupling operator of z z0 is given by

[ I’ -I’X+z].XpK_..Xz Ker .(3.9) F(R) -YF + pp Io
It is easily seen that this operator is invertible. Hence z0 is a complement to . Note that
ifz is a minimal complement of z then

rank F(R) 5 dim Xp (R) K dim Xz Ker F;

it then follows that zo is a minimal complement.

4. Proof of the main theorem. In this section we give a proof ofTheorem 1. l, using
the concepts developed in the previous sections.

Let r+ be the -y+-spectral triple of Wgiven by

-+= { Clt,A lt), (A lime,PB),P lt},

and let (S, G) satisfy (1.5), (1.6), and let (F, T) satisfy (1.7), (1.8). Let X and Ybe
given by (1.9) and (1.10) and I’ ] by (1.14). Note that according to the result of 3

z0 := { (-CPX- F, T), S, YPB+ G), Fo }

is a ft-minimal complement of +, and that any 2-minimal complement of/ is of this
form. Also, the function W() given by (1.17) is the function corresponding to + (

r0 as we easily verify using (2.7). Define

R(X)= W(X)-’W,(X).

Clearly, by construction W satisfies 1.1)-(1.4). As (1.17 ), 1.18 are minimal realiza-
tions, the formulas for 6(W) hold. To obtain the formulas for R(,) and its inverse, it
remains to use the formulas in Theorem 2.1, using the realizations (1.17) and (1.18) for
WI(,) and W(X)-, and W(X) I + C() A)-IB, W(,)- I- C(X A)-B.

Indeed, using the realization 1.18 for W X)-l we have

0
BI= -ypxB+ G

Cl c( rfi PXo) + fo, Cn,l,

AIMA F+ (R) o 0
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Using (3.9), we check that

E?=[ PXIM ]ypx [M+ Pp

Inserting in (2.9), we obtain

R(X)- (1- Crlp(X- S)-( YPB+ G))(I+ C(,-A Kere)- (I P)B)

+ Crlp( , S) -l (- ypx + ov)PB

-( C( r> PXz) + Fp)( X -A Ker p)- (I-- P)B,

which is (1.16) after a little rewriting.
Likewise we prove 1.15 from (2.10) using the realization 1.17 of W().

5. Displacement of either poles or zeros by cascade connection. In this section we
consider the following problems that were considered before in [VD ]. Given a rational
m m matrix function W(X) Im + C(M,, A)-B and a nonempty set 3"/ we wish
to factorize W as W(,) W (X)W2(,), where W, W2 are square, regular, W (oo)
W2( Im and

(5.1) The poles of W2 and the zeros of W are in 3’+,

(5.2) di(W) is as small as possible,

or, where (5.1) is replaced by

the poles of Wl and the zeros of W2 are in 3"+.

We shall solve two problems, imposing seemingly stronger conditions on W and W2.
Later we shall see that these conditions are actually equivalent to (5.1), (5.2) and 5.1 ’),
(5.2), respectively.

Let Wbe as above, and let P be the spectral projection corresponding to the eigen-
values ofA in 3"+. We introduce the admissible triple

z-= { (CI re,A Ire), (0, 0), r},
where I Ker P -- (0) is the zero operator. The problem we consider is that of finding
a function R(X) such that for

we have the following:

(5.3)

w(x):= w(x)R(x)

W has all its poles and zeros in C,

(5.4) The 3"_-spectral triple of W is z_,

(5.5) iS(W) is as small as possible,

(5.6) W() Im,

which is basically problem (1.1)-(1.4) for a special case. Clearly, if W is a solution to
this problem, then W has all its zeros in 3"+. We shall construct a solution R(X) and
show that with W2(X) defined by

W2(,) R(X)-we have a solution to problem (5.1)-(5.2), i.e., all the poles of W2 are in ,/.
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Conversely, if W, W2 solve (5.1), (5.2) it is clear that the zero pair for W corre-
sponding to zeros in 3"_ is (0, 0). Also since W2 has no poles in 3"_, W has a pole pair
corresponding to poles in 3"_ that is as follows:

((ClKerp, Co) [ AlKere * ])0 A0

where P is the spectral projection of A corresponding to 3"+. However, since we want
6(W) to be as small as possible, it follows that the pole pair for W corresponding to 3’-
must in fact be (CI Ker P, A[Ker/’). SO the 3"_-spectral triple for WI is

7"- {(ClKerp,a[KerP),(O,O),r}

where I’ Ker P -- (0) is the zero operator. So, with R(X) W2()-1 we have a solution
to (5.3)-(5.6). Hence the two problems are equivalent.

The construction of a solution to (5.3)-(5.6) is straightforward. Let S Ker P --Ker P and G: cm _. Ker P be such that

(5.7) (A-GC) IKere=S, tr(S)c3"+.

Then a minimal complement to 7"_ is given by

7"+ {(O,O),(S, G),IKerP}.
Let W (X) be the function corresponding to 7"_ 7"+; then Wl satisfies (5.3)-(5.6).

THEOREM 5.1. Let S, G) satisfy 5.7 ). Then a solution to (5.1), (5.2) is given by

(5.8)

(5.9)

(5.10)

Wl (,) I+ C(k-A KerP)-la,

W(X)- =I-C(X-S)-IG,

WZ(X)--I+[CIKerp, CIM]( X--

Wz(,)-I 1- C(X-A)-(B- r/G)

)-1[ (I-P)B-G]pB
where Ker P -- C n is the natural imbedding. Here M Im P andA A BC.

Proof Clearly, the function W corresponding to 7"_ (R) 7"+ is given by (5.8),
(5.9). Further,

W2(X) W(X)-W(X)=(I-C(X-S)-’G)(I+C(X-A)-IB)

I- C(X- S)-IG + C(X-A)-B- C(X- S)-GC(X-A Kre)- (I P)B

C(X- S)-GC(X-A [t)- PB.

Using (5.7), we obtain the formula for W2. Note that indeed W2 has all its poles in
3"+. Finally,

W2(,)- W(X)-W(X)=(I-C(X-A)-B)(I+C(X-A)-nG

I- C(X-A)-B + C(X-A)-nG C(X-A)-BC(X-A)-G.

Using BC ( A) ( A), we get the formula in the theorem, ff]

Comparing it with the Algorithm 3.1 in Van Dooren’s paper [VD], we see that our
solution is precisely the same as his solution. Note that the minimal McMillan degree
of W, 6(W) turns out to be dim Ker P, i.e., the number of poles ofR in 3"_ (counting
multiplicities).
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Now consider problem (5.1 ’), (5.2). A reasoning analogous to the one used in the
previous case shows that the -y_-spectral triple for W1 is now given by

-_= {(O,O),(AIM,(I--P)B),O),
where P is the spectral projection ofA corresponding to 3’+ and M Ker P.

THEOREM 5.2. Let T: M -- M and F: M -- C satisfy

(A-(I P)BF)[M= T, a(T)/+.

Then a solution to problem 5.1 ’), (5.2) is given by

WI(X)=I-F(X T)-I(I-pX)B,

W1 (h) -I I+ F(X-A Ig) -1 (I-- P)B,

W2(X) I+(C-F(I-P))(X-A)- B,

W2())_=I_[C,F_C](X AlImp -PBF])-1 PB ]0 (I-P)B

Proof Any -y+-minimal complement of r_ is of the form { (F, T), (0, 0), -I}
where F and T are as in the theorem. The rest of the proof is analogous to the proof of
Theorem 5.1.
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ON THE CONVERGENCE OF THE CYCLIC JACOBI METHOD FOR
PARALLEL BLOCK ORDERINGS*
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Abstract. Convergence of the cyclic Jacobi method for diagonalizing a symmetric matrix has never been
conclusively settled. Forsythe and Henrici Trans. Amer. Math. Soc., 94 (1960), pp. 1-23 proved convergence
for a cyclic by rows ordering. Here orderings are investigated that can be obtained from the cyclic by rows
ordering through convergence preserving combinatorial transformations. First the class of "cyclic wavefront"
orderings is introduced and it is shown that the class consists of exactly those orderings that are "equivalent"
to the cyclic by rows ordering. It is also shown that certain block Jacobi methods are cyclic wavefront orderings
when viewed as cyclic Jacobi methods. While discussing convergence proofs for parallel implementations of
Jacobi methods and block Jacobi methods, the notions of "weak equivalence" and "P-equivalence" of Jacobi
orderings is developed. Next the class of"P-wavefront" orderings is introduced that includes all ordefings related
to the cyclic by rows ordering through any known convergence preserving transformations. Finally, it is shown
that the "P-wavefront" orderings are characterized by simple properties that can be verified efficiently (in
polynomial time).

Key words. Jacobi method, parallel, singular value decomposition, eigenvalues, orderings
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1. Cyclic Jacobi methods. A Jacobi method for diagonalizing a symmetric n n
matrix A performs a sequence of similarity transformations

(1) Ak+=UkAkU, k=0, 1,2...

where Ao A and U, k 0, 1, is an orthogonal plane rotation. Let A [a) ].
The elements of U [uo] are defined as follows. For every k 0, 1, there is a pair
(i, j) i, j) with _-< < j _-< n, such that

(2) uq

and

if p q and p 4 i,j,

cos Ck if p and q i,

cos if p =j and q =j,

sin Cg if p and q =j,

-sin Cg if p =j and q i,

0 otherwise

(k)2a o(3) tan 2qk (k) _.(k)a ii ajj

The choice of Ck according to 3 assures that
(k+l)aj(? + a ij =0.

(Note that there are four values ofk that satisfy 3 ), and one ofthem always lies in the
interval r/ 4, r/ 4).) We say that Uk is a Jacobi rotation that annihilates (or rotates)
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(k)a ij Uk will be written as U(kij) or U(ij) to indicate this. We want Ak to converge to a
diagonal matrix X that contains the eigenvalues ofA on the diagonal. The closeness of
Ak to ; is measured by the quantity

(4) Sk I12,pq
Pq
l_p_n
l_q_n

If Sk " 0 as k -- for any A, we say that the Jacobi method converges.
The Jacobi method for computing the singular value decomposition of a matrix was

introduced by Kogbetliantz [9]. Here we will focus on the eigenvalue problem although
the discussion can be easily translated to the SVD setting.

There are various strategies for choosing the order in which the off-diagonal elements
are annihilated in a Jacobi method (i.e., the sequence of pairs (ik, jk), k 0, 1, ). In
the classical Jacobi method, we choose the element largest in magnitude as the next one
to be rotated. This guarantees convergence [16], but incurs the cost of searching the
matrix for the largest element before every rotation. Moreover, it is a highly sequential
algorithm.

In a cyclic Jacobi method, the N (n(n 1)/2) off-diagonal elements are rotated
in some predetermined order, each element being rotated exactly once in any "sweep"
ofN rotations. Convergence of any cyclic Jacobi method can be guaranteed by omitting
the annihilation of elements that are smaller than some threshold [16 ]. Although this
ensures convergence, the rate ofconvergence may be slow ifthe threshold is not decreased
repeatedly from an initially large value 13 ]. Further, choosing the thresholds efficiently
requires information about the entire matrix and is therefore to be avoided in a parallel
setting. Proving convergence for any cyclic ordering without using thresholds is more
difficult because it is possible for an element to be pushed around ahead ofthe sequence
of rotations and never be annihilated [6].

If we assume that each sweep starts with the (1, 2) element, there are

[n(n-1)/2-1]!

different cyclic orderings. However, ofthe possible orderings, some are equivalent, as dis-
cussed below.

Let To(A) be the transformation of A that occurs when the (i, j) element is ro-
tated, i.e.,

To(A)= u(iJ)AU(ij)T.

Consider the transformations T and Try, where i, j, r, s are distinct. It is easily
verified that because of the special structure of the matrices U;j) and Ur) (defined in
(2)), these two matrices commute, i.e.,

v(O) U(rs) U(rs) u(o).

Therefore, the transformations Tij and Trs also commute, i.e.,

ToTs(A)= TTo(A).

Commuting Rotations. In any cyclic Jacobi ordering O, the rotations of elements
(i, j) and (r, s) are said to commute if i, j, r, s are distinct and the rotation (i, j)
immediately precedes the rotation (p, q) in the ordering O.

Equivalent Orderings. Let TI and T2 each be a product ofNtransformations ofthe
form T0 representing a single sweep of the Jacobi method with two different cyclic or-
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derings O and 02 We say that O is equivalent to 02 if the transformations T can be
changed into T2 through a sequence oftranspositions ofcommuting rotations. Note that
for equivalent orderings,

T (A) T2(A) for any A,

i.e., equivalent orderings give the same matrices at the end ofthe sweep. Therefore if the
Jacobi method converges using ordering O, it also converges using O2.

Cyclic By Rows Ordering. The rotations are chosen according to the following rule.
The first rotation in the sweep is (1, 2). A rotation (p, q) is followed by

(p,q+ l) ifp<n-1, q<n,

(5) (p+l,p+2) ifp<n-1, q=n,

(1,2) ifp=n-1, q=n.

THEOREM (Forsythe and Henrici [5]). Let a sequence ofJacobi transformations
be applied to a symmetric matrix A. Further, let the angle ck be restricted asfollows:

(6) ck[a,b] and -<a<b<.
If the off-diagonal elements are annihilated using a cyclic by rows ordering, then this
Jacobi method converges.

That (6) is always realizable is clear from (3), since tan 2 takes all values in any
open interval of length r/ 2.

In this paper, we first identify the class of orderings that can be obtained from the
cyclic by rows ordering through a sequence of transpositions of commuting rotations.
The orderings so obtained will be equivalent to the row ordering. Therefore, they will
converge.

Cyclic Wavefront Orderings. In a cyclic ordering O of the pairs

{(i,j), <=i<j<-n},

let I( i, j) be the index at which the pair (i, j) occurs. If

(7) I(i,j- 1)<I(i,j)<I(i+ 1,j)

for all -< < j =< n, then O is called a cyclic wavefront ordering.
In other words, in a cyclic wavefront ordering the element immediately to the left

of (i, j) in the same row and that above (i, j) in the same column is rotated before it.
Also the element immediately to the fight of (i, j) in the same row and that below (i, j)
in the same column is rotated after it. Since this holds for all pairs i, j) as stated in (7),
we can easily show the following lemma.

LEMMA 1.1. In a cyclic wavefront ordering, for all <= < j <= n, and <- p <
q<=n,

(i) I(i,j)>=I(p,q) ifp<-iandq<=j,
(8)

(ii) I(i,j)<-_I(p,q) ifp>=iandq>=j.

This property of cyclic wavefront orderings is illustrated in Fig. 1. We see that in a
cyclic wavefront ordering, every element to the fight and below (i, j) is rotated after it,
and every element to the left and above (i, j) is rotated before it.

In 5 we will prove the following theorem regarding the class of cyclic wavefront
orderings.
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P3G. 1. Lemma 1.1.

before

after

x 1 2 3 4 x 1 2 4 7 x 1 2 3 5
x 5 6 7 x 3 5 8 x 4 6 7

x 8 9 x 6 9 x 8 9
x 10 x 10 x 10

3 X X

Cyclic by rows Cyclic by columns Antidiagonals

FIG. 2. Examples ofcyclic orderings.

THEOREM 2. A cyclic Jacobi ordering is equivalent to the cyclic by rows ordering if
and only if it is a cyclic wavefront ordering.

In Fig. 2 we illustrate some well-known cyclic orderings that fall in the class ofcyclic
wavefront orderings. The cyclic by rows ordering was defined in (5). The cyclic by columns
ordering was proved equivalent to the row ordering by Hansen [6 ]. The antidiagonals
ordering was used by Luk and Park 11 in their discussion of parallel Jacobi methods.
In 7 we will show that membership of a cyclic ordering in the class of wavefront
orderings can easily be established. In the next section we will introduce some more
cyclic wavefront orderings in the context of block Jacobi methods.

2. Block Jacobi methods. The motivation for developing the block algorithms is
that in almost every modern computer, computation is significantly cheaper than input!
output. Block algorithms for matrix problems typically work with blocks of data having
O(d2) elements, performing O(d3) work on the block before requiting another memory
access. The O(d) ratio of work to storage means that processors with an O(d) ratio of
computing speed to input/output bandwidth can be tolerated.

In the Jacobi methods discussed above, we can view the rotation of an off-diagonal
element (i, j) as solving a 2 2 eigenvalue problem:

Uji Ujj aji ajj / uji ujj 0 a’22
In a block Jacobi method we work with larger subproblems. Consider the matrix A as a
b b block matrix with bE blocks, each of d d size. If i, j) identifies an off-diagonal
block Ai2, we associate the submatrix

AiiP=
\Aji Aj2]
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with this block element. There are different ways in which we may "solve" this subproblem,
not all of which will assure convergence of the matrix as a whole to diagonal form. Here
we will consider solving the subproblem by one sweep ofJacobi rotations on some or all
elements of the matrix P. By accumulating the rotations in this sweep, we get a "block
rotation" that "solves" the subproblem:

(gig gijl(Aii Aij)(gii go)T IA}i A’ij)Uji Ujj ] Aji ajj Uji Ujj \A)i Ajj

This block rotation is then applied to the ith andjth block rows and columns, just as in
the scalar Jacobi methods.

The subproblems themselves may be chosen using various cyclic orderings. A se-
quence of subproblems that includes every block index { (i, j); =< < j -< b } will be
called a block sweep. We now describe a class ofblock Jacobi methods that are also cyclic
Jacobi methods. We will then show that these methods are cyclic wavefront methods.

Block Wavefront Jacobi. Let each block sweep be generated as follows.
(1) Let a subproblem (i,j) be solved by applying a sweep ofany cyclic wavefront

Jacobi process to the subproblem, but including only certain elements as
described below:

(9) 1) Ifj > + and < b 1, then the elements in Aij are included;
2) Ifj + and < b 1, then the elements in Ai and Ao are included;
3) If (i, j) (b 1, b), then the elements in the entire subproblem are

included.
(2) Let the subproblems be chosen using a cyclic wavefront ordering.

When the block ordering is a cyclic by rows ordering, with the subproblems them-
selves being solved using the cyclic by rows ordering, the subproblems chosen and the
elements included in their solution are shown in Fig. 3 (for the case b 3 and d 3).

THEOREM 3. The block wavefront Jacobi method converges to a diagonal matrix.

Proof. Note that if one block sweep ofthis method is viewed as a sequence of scalar
Jacobi rotations applied to the matrix as a whole, each element is rotated only once, so
block wavefront methods are a particular class of cyclic Jacobi methods. To prove con-
vergence, all that needs be shown is that this is indeed a cyclic wavefront Jacobi ordering.
Then convergence is assured by Theorem 2.

Consider three adjacent off-diagonal elements in the matrix as shown below. Let X,
Y, and Z be the elements (i, j 1), (i, j), and (i + 1, j), respectively. Let Y lie in block

3 4 5
7 8 9
10 11 12
x 22 23

x 27
X

13 14 15
16 17 18
19 20 21
24 25’ 26
28 29 30
31 32 33
"’x 34 35

x 36
X

FIG. 3. Block cyclic by rows.
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(l, m). Let h I(i, j 1), r I(i, j), and s I(i, j + 1) be times at which these
elements are annihilated in a particular block sweep. We have to show that h < r < s"

X(h) y(r)

Z(S).

Case 1. X, Y, Z all lie in the same block. Since a wavefront ordering is used on
the subproblem, h < r < s is guaranteed by (7).

Case 2. IfX lies in an adjacent block that is an off-diagonal block (l, m 1), then
since the subproblems are solved in a cyclic wavefront order, the block (l, m 1) is
solved before (l, m), so h < r holds.

Case 3. If Z lies in an adjacent, off-diagonal block (l + 1, m), then that block is
solved after (l, m), and s > r follows.

Case 4. If X lies in an adjacent diagonal block, then by (9)(1)2), the elements
in that block will be included in the wavefront process used on this subproblem
(m- 1, m),andsoh<r.

Case 5. Z lies in an adjacent diagonal block (m, m). If m 4: b, then by (9)(1)2),
the elements in that block will be rotated during the solution of subproblem
(m, m + 1). Since the subproblems are chosen in a wavefront order, (m, m + 1) is
solved after (m 1, m), therefore s > r. If m b, then by (9)(1) 3), Z will be rotated
during the solution ofthis block (b 1, b), and since a wavefront ordering is used on the
subproblem, s > r is guaranteed.

So we have shown that block wavefront Jacobi methods are cyclic wavefront orderings
and therefore converge. [2]

3. Parallel Jacobi methods. Jacobi methods may be ideally suited for parallel im-
plementation. In any cyclic Jacobi ordering O, the order in which commuting rotations
are performed does not affect the transformation T that represents one sweep of the
method. Commuting rotations can therefore be performed in parallel. Several parallel
Jacobi orderings have been proposed 10 ]. Luk and Park 11 demonstrate the convergence
of some of these methods. Here we will briefly review their arguments and formalize
some of the concepts involved. Consider the following example.

Antidiagonals Ordering. A rotation (p, q), =< p < q =< n, is followed by

(p+ 1,q- 1) if q-p> 2,
(1,p+ q) if q-p<=2,p+ q<=n,
(p+q+ l-n,n) if q-p<=2,n<p+q<2n -1,
(1,2) ifq= n and p=n- 1.

The antidiagonals ordering is shown in Fig. 4. It is easily verified that this is a cyclic
wavefront ordering. We can obtain a parallel antidiagonals ordering by performing the
commuting rotations that occur on each antidiagonal in parallel.

x 1 23 5 x 1 23 4
x 46 7 x 345

x 8 9 x 56
x 10 x 7

Antidiagonals Parallel antidiagonals

FIG. 4.
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In the parallel antidiagonals ordering for the n n case, all off-diagonal elements
are rotated in 2n 3 stages. The number of rotations performed in parallel at stage j is
[(j+ 1)/2Jforl =<j=<n- 1, and[n-(j+ 1)/2Jforn- <j=<2n-3. Toachieve
more parallelism at every stage, we need to extend the idea of equivalent orderings to
that of weakly equivalent orderings.

Shift-Equivalent Orderings. Let I(p, q) and I’(p, q) denote the times at which
(p, q) is rotated in orderings O and O’, respectively. O and O’ are shift-equivalent if

(10) I(p,q)=(I’(p,q)- +c)mod N+ for <=p<q-<n

where N n(n 1) / 2 and 0 =< c < N. We will say that O is obtained from O’ by a shift
of c. It is easily seen that this also means that O’ is obtained from O by a shift of-c.

Weakly Equivalent Orderings. Two orderings O and O’ are weakly equivalent
if either

(1) The ordering O is shift-equivalent to O" and O" is equivalent to O’, or
(2) If O and O" are weakly equivalent and O" and O’ are weakly equivalent.
We can express this in another way as follows. Let S(c) denote a shift by an amount

c. Let t; denote a transposition of two commuting rotations. Then if two orderings are
weakly equivalent, one can be obtained from the other by a transformation of the form

(11) S(c )tt2" S( c2)tt +

For example in Fig. 5, O’ is obtained from O by a shift of 2, and O" from O’ by the
transposition of a pair of commuting rotations. So O" is weakly equivalent to O.

LEMMA 3.1. IfO and O’ are two weakly equivalent orderings, and the cyclic Jacobi
method using O’ converges, then the cyclic Jacobi method using 0 converges.

Proof. We need only consider shift equivalent orderings. Let ordering O be obtained
from O’ by a shift of c. Let A be a given symmetric matrix. Let Ac be the matrix obtained
by applying the first c rotations from the sequence O to A. If the cyclic Jacobi method
using O’ converges then it converges for Ac. But applying Jacobi rotations to Ac using
ordering O’ generates the same sequence of matrices as applying Jacobi rotations to A
using ordering O. Since A is arbitrary, the cyclic Jacobi method using O converges, lq

Weakly Wavefront Orderings. An ordering O is a weakly wavefront ordering if it
is weakly equivalent to a wavefront ordering.

THEOREM 4. The class ofweakly wavefront orderings converges.
Proof. The proof is obtained by directly applying Theorem 2 and Lemma 3.1. U]

In 6 we will characterize weakly wavefront orderings by a simple property that
can be easily tested. We now show how to use this notion to develop convergent parallel
orderings.

The basic idea is due to Luk and Park [11]. Let O be the antidiagonals ordering.
For simplicity we will illustrate the argument for the case n 5. Consider the ordering
O’ that is obtained from O by a shift of 2, as shown in Fig. 5.

1 2 3 5 x 3 4 5 7 z 2 4 5 7
z 4 6 7 x 6 8 9 z 6 8 9

z 8 9 x 10 1 x 10 1
z 10 z 2 z 3

0 O’ 0"
FIG. 5.
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x 1 234
x 345

x 51
x 2

FIG. 6. Modulus ordering.

The ordering O" is obtained from O’ by transposing the commuting rotations
(1, 2) and (4, 5 ). Therefore O" is weakly equivalent to O by definition.

Now note that in the ordering O", in addition to the rotations on the antidiagonals,
the pairs of rotations (1, 2), (3, 5) and (1, 3), (4, 5) also commute. By performing
commuting rotations in parallel we obtain a parallel ordering in which two rotations are
performed in parallel at every stage. This ordering is shown in Fig. 6 and is called the
modulus ordering 11 ].

Modulus Ordering. If I(p, q) denotes the time at which (p, q) is rotated in the
modulus ordering, then

I(p,q)=((p+q-3) mod n) + 1.

In the modulus ordering, L n/2J rotations are performed in parallel at each stage.
The above arguments can be easily generalized in the n n case to show that the modulus
ordering is weakly equivalent to the antidiagonals ordering. Thus it is a weakly wavefront
ordering and converges due to Theorem 4.

4. Parallel block Jacobi methods. In this section we develop a class of provably
convergent parallel block Jacobi methods in which multiple subproblems can be solved
in parallel. Consider the following class of block Jacobi methods.

Block Weakly Wavefront Jacobi. Let each block sweep be generated in the following
manner:

The subproblems are chosen using a weakly wavefront ordering.
(2) Each subproblem is solved using one sweep of any cyclic wavefront Jacobi

process on particular elements of the subproblem, as in the definition of block
wavefront methods (9).

Remark. In the case when the subproblems are chosen using a modulus ordering,
we get a class of parallel block Jacobi methods.

THEOREM 5. Block weakly wavefront Jacobi methods converge to a diagonal matrix.
Proof. We will prove the theorem by showing the following lemma.
LEMMA 4.1. LetM andM2 be two block Jacobi methods that use orderings O and

02 to choose the subproblems. The ordering used within the subproblems as well as the
way the matrix is divided into blocks is the samefor both methods. Let M2 converge:

IfO is shift-equivalent to 0_, then M converges;
(2) IfO is equivalent to 02, then MI converges.
Proof. The proof for part (1) is similar to the proof of Lemma 3.1. Let O be

obtained from 02 by a shift of c. Let A be obtained from A by solving the first c sub-
problems of the sequence O. Then ifM converges, it converges for A. ButM applied
to A generates the same iterates as Ma applied to A. So M converges.

To show (2), we first note the following easily established fact. Let T tt.., t
and R rra.., r be defined by two sequences of Jacobi transformations. If tg and r
commute for all i, j, then TR RT.
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Define To. to be the sequence of Jacobi rotations used in the solution of the sub-
problem (i, j). If p, q, r, s are distinct integers, then the rotations in the solution of
(p, q) lie in the (p, q), (p, p) and (q, q) blocks. The rotations used in the solution of
(r, s) lie in the (r, s), (r, r) and (s, s) blocks of the matrix. By the above fact, the se-
quences Tpq Trs and Trs Tpq are equivalent. So, the subproblems (p, q) and (r, s) are
"independent," since the order in which they are solved does not change the effect of
one block sweep of the block Jacobi method.

Therefore, independent subproblems (p, q) and (r, s) can be transposed in the
ordering 02 without affecting convergence.

Since a weakly wavefront ordering is weakly equivalent to a wavefront ordering by
definition, the theorem follows.

5. Convergence of cyclic wavefront Jacobi. In this section we will prove Theorem
2. Let C be the cyclic by rows ordering. Let O be a cyclic wavefront ordering. We will
prove the "if" part of the theorem by induction on the length of the leading common
subsequence of O’ and C, where O’ is equivalent to CR. We will prove the "only if"
part by showing that (a) CR is wavefront, and (b) transpositions ofcommuting rotations
preserve the wavefront property.

It easily follows from Lemma 1.1 that every wavefront ordering starts with
the (1, 2) rotation. Suppose O (1, 2), (1, 3), (p, q), (x, y) where (1, 2),
(1, 3)...(p, q) is a leading subsequence of CR. We first consider the case when
(p, q + 1) follows (p, q) in CR.

LEMMA 5.1. IfO (1, 2), (1, 3), (p, q), (X, y), (X’, y’), (p, q + 1), is
a cyclic wavefront ordering, then neither p nor q + occurs as any ofthe indices in the
sequence x, y), x’, y’).

Proof. Let h I(p, q), s I(p, q + 1) in O. Suppose (m, n) is an element in the
sequence (x, y), (x’, y’), i.e., r I(m, n), and h < r < s. Referring to Fig. 7, only
the following situations can occur.

Case 1. (m, n) is (p, j) with j < q.
Case 2. (m, n) is (i, q + 1) with > p.
Case 3. (m, n) is (p, j) with j > q + 1.
Case 4. (m, n) is (i, p) with < p.
Case 5. (m, n) is (q + 1, j) with j > q + 1.
Case 6. (m, n) is (i, q + 1) with < p.

4

FIG. 7.

/(P,q)
(p, q + 1)
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We know that O is a cyclic wavefront ordering, so by Lemma 1.1 none of Cases
1-5 can occur. Case 6 cannot occur since i, q + 1) precedes (p, q) in CR and by assumption
(p, q) is the end of a leading common subsequence of O and CR.

We must now consider the case when (p, q) is followed by (p + 1, p + 2) in Cn,
i.e., when q n.

LEMMA 5.2. IfO (1, 2), (1, 3),’’’, (p, q), (x, y),’.., (x’, y’), (p + 1,
p + 2), is a cyclic wavefront ordering, then neither p + nor p + 2 occurs as any of
the indices in the sequence (x, y), (x’, y’).

Proof. Let h I(p, q) and s 1(19 + 1, p + 2) in O. Let (m, n) be in the sequence
(x, y), (x’, y’), i.e., if r I(m, n) then h < r < s. Referring to Fig. 8, we see that
there are the following cases.

Case 1. (m, n) (p + 1, j) with j > p + 2.
Case 2. (m, n) (p + 2, j) with j > p + 2.
Case 3. (m, n) (i, p + 2) with =< p.
Case 4. (m, n) (i, 19 + 1) with -< p.
Since O is a cyclic wavefront ordering, none of the above cases can occur by

Lemma 1.1. I--i

Thus by transposing (p, q + 1) or (p + 1, p + 2) with the elements (x, y),.., (x’, y’) in turn we arrive at an equivalent ordering O’ (1, 2), (1, 3),
(p, q), (p, q / 1), (x, y), (n 1, n) or O’= (1, 2)...(p, q), (p + 1, p + 2),
(x, y)...(n 1, n), which has a longer leading subsequence in common with Cn.
Furthermore, the trailing sequence of O’, (x, y), (n 1, n) is a proper subse-
quence of O, so it also satisfies the wavefront property (7). This allows us to continue
with this process of extending the leading common subsequence of O’ and CR until
O’ CR. We have therefore shown that if O is a cyclic wavefront ordering, it can be
obtained from the cyclic by rows ordering through a sequence of transpositions of com-
muting rotations.

To show the converse, let O (1, 2), (i, j), (r, s), (m, n), (p, q),
(n 1, n) be a wavefront ordering, and suppose that (r, s) and (m, n) commute. Then
O’= (1, 2), (i,j), (m, n), (r, s), (p, q), (n- 1, n)is also a cyclic wavefront
ordering. This is because the sequences (1, 2), (i,j) and (p, q), (n 1, n) are
subsequences of O and therefore satisfy the wavefront property. Further, the positions
of r, s) and m, n) relative to these sequences do not change when we go from O to O’.
Thus any ordering O’ obtained from a cyclic wavefront ordering O through a sequence

,///p + 1,p + 2)

//P, q)

(p+ 1,p+ 1)x’
(p+ 2,p+ 2)

=

FIG. 8.
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of transpositions of commuting rotations is also a cyclic wavefront ordering. From the
definition (7) and Lemma 1.1, CR is a wavefront ordering. Therefore the result is
proved.

6. Weakly wavefront orderings. The cyclic wavefront orderings are exactly the or-
derings equivalent to the cyclic by rows ordering, and they are characterized by a simple
property (7).

The weakly wavefront orderings have been introduced in 3 as those orderings that
are weakly equivalent to a wavefront ordering. In this section we will show that these
orderings are also easy to characterize.

(12)

Splitting. Consider two disjoint subsets X, Y of P { (i, j); -< < j _-< n )
such that X U Y P. If the subsets satisfy the following:

If (p, q) e X, then all (i, j), =< p and j _-< q are also in X.
(2) If (p, q) e Y, then all (i, j), >- p and j >_- q are also in Y.
Then the pair (X, Y) is called a splitting.

Restricting O to X or Y gives a partial ordering of the pairs { (i, j); _-< < j -< n ).
When we refer to the ordering X or Y under the ordering O, we mean the restriction
mentioned above. The set X, or Y, however, is just a set of pairs, independent of the
ordering.

(13)

Good Splitting. A splitting (X, Y) is called a good splitting of the ordering O if
the following conditions are satisfied:
( The orderings X and Y under O each satisfy the wavefront property (7)..
(2) For every (r, s) e Y and (i, j) e X such that I(i, j) < I(r, s), i, j, r, s are

distinct integers.
(3) The pair (1, 2) e X.

A splitting divides the ordering O into two subsets. The pairs to the left and above
any element ofX are also in subset X, and those to the fight and below any element of
Y are also in subset Y. A splitting is good if, first, the pairs in X satisfy the wavefront
property (7) among themselves and the same is true ofthe pairs in Y. Second, every pair
in Y has different indices than all those pairs in X that occur before it in the ordering O.

Figure 9 shows two orderings O and O’ and a splitting (X, Y) for each ordering.
The pairs in the set Y are shown enclosed in boxes. The splitting of O’ is not a good
splitting because the pair (3, 5) e Y does not commute with (2, 5) e X, which occurs
before it in O’, thus violating property 13 )(2), although 13 )( is satisfied. It is easily
verified that the splitting of O is a good splitting.

Note that any wavefront ordering has a trivial good splitting with X P and

( 1 3 ( 1 3 8 9
7 6

5
9
12

5
7 10 11
2"4’12’

13 14
15

0 O’

8 10
11 13
14 15

FIG. 9.
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Canonical Ordering. An ordering is canonical if I(1, 2) 1.
It is obvious that any ordering is shift equivalent, and therefore weakly equivalent,

to a canonical ordering. Also, each ordering is shift equivalent to a unique canonical
ordering, and so it makes sense to talk of the canonical form of an ordering. Further,
two orderings are weakly equivalent if and only if their canonical forms are weakly
equivalent. So, without loss of generality, we can restrict our attention to canonical
orderings. Note that every wavefront ordering is in canonical form.

We now show that the notion ofa good splitting allows us to characterize the weakly
wavefront orderings. In the next section we will give an efficient algorithm that checks
if an ordering has a good splitting.

THEOREM 6. A canonical ordering is a weakly wavefront ordering ifand only if it
has a good splitting.

Before we prove the theorem, we show that the definition of weak equivalence can
be reformulated in terms of transpositions of rotations, by also allowing certain trans-
positions other than those of commuting rotations.

The following notation will be used in the sequel. I(i, j) will refer to the position
of pair (i, j) in the ordering O, I’(i, j) to its position in ordering O’, etc.

Admissible Transpositions. The transposition oftwo rotations (i, j) and (r, s) will
be called admissible if i, j, r, s are distinct and I(i, j) I(r, s)l mod N.

Admissible transpositions allow the transposition of rotations involving distinct in-
dices ifthe rotations are either consecutive or are the first and last rotations in the ordering.

LEMMA 6.1. Let 0, 02, 03, 04 be orderings such that we have thefollowing:
02 is obtainedfrom O through a shift ofc.

(2) 03 is obtained from 02 through transposition of two commuting rotations
(p, q) and(r, s).

(3) O4 is obtainedfrom 03 by a shift of-c.
Then 04 can be obtainedfrom 01 through an admissible transposition of the rotations
(p, q) and (r, s).

Proof. Suppose I_(p, q) 12(r, s) and 13(r, s) I3(p, q) 1, since these are
commuting rotations in 02. Consider the case c > 0. The case c < 0 is similar.

If I2(p, q) 4 c, then I(p, q) I2(p, q) c and li(r, s) I2(r, s) c. So
I (p, q) I r, s) 1. Similarly, 14(p, q) 13 (p, q) c and 14 r, s) 13 r, s) c, so
14 (r, s) 14 (p, q) 1. Therefore (p, q) and (r, s) are commuting rotations in O, and
04 is obtained when they are transposed.

If I2(p,q)=c, then I(p,q)=N and I(r,s)= 1. Also, I4(p,q)= and
14(r, s) N. So (p, q) and (r, s) are the first and last rotations in O1 and their transposition
yields the ordering 04.

If c < 0, the argument is similar.
We can now reformulate the definition of weak equivalence in term of admissible

transpositions through the following lemma.
LEMMA 6.2. Iftwo orderings are weakly equivalent, one can be obtainedfrom the

other through a sequence ofadmissible transpositionsfollowed by a shift, i.e., through a
transformation oftheform
(14) aa2a3" "akS(c),

where ai denotes an admissible transposition.
Proof. A shift of c followed by a shift of -c is the identity transformation, so S(c

is equivalent to S(c )tS(-c)S(c) (where denotes a transposition of commuting ro-
tations). But by Lemma 6.1, this is equivalent to aS(c), (where a is an admissible
transposition). Using this, (11) can be shown to be equivalent to (14). V1
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Proof of Theorem 6. We will first prove the "only if" part of the argument. We
have to show that every canonical weakly wavefront ordering has a good splitting. From
Lemma 6.2 it follows that a weakly wavefront ordering can be obtained from a wavefront
ordering through a sequence of admissible transpositions followed by a shift. We have
already noted that a wavefront ordering has a trivial good splitting. Since shift equivalent
orderings have the same canonical form, all we need to show is that admissible trans-
positions preserve the property of possessing a good splitting.

Consider an ordering O’ obtained from a canonical ordering O by a single admissible
transposition. Let (X, Y) be a good splitting of O.

First consider the case when (1, 2) is not involved in the transposition. Then, the
transposition must be a transposition of commuting rotations (p, q) and (r, s) with
I(p, q) I(r, s) 1. Since transposing two adjacent rotations does not change the
relative position of any other pair in O with respect to the pairs (p, q) and (r, s), it is
easily verified that all the properties of a good splitting still hold, and (X, Y) is a good
splitting of O’ as well.

Now suppose (1, 2) is involved in the transposition. I(1, 2) since O is canon-
ical. There are only two possible admissible transpositions, (1, 2) with (p, q), where
I(p, q) N or I(p, q) 2. Consider I(p, q) N.

CLAIM 1. (p, q) e X.
Proof. Suppose (p, q) e Y. Then (p, q) (n 1, n) since Y satisfies the wavefront

property. Consider the pair (1, n). It cannot be in X since (1, n) and (n 1, n) do not
have disjoint indices, and (X, Y) was assumed to be a good splitting of O. It cannot be
in Y since (1, 2) and (1, n) do not have disjoint indices. Therefore (p, q)

In the ordering O’, I’(1, 2) N and I’(p, q) 1. Let O" be the canonical form of
O’, obtained after a shift by + 1. I"(1, 2) and I"(p, q) 2.

An example of each of the orderings O, O’, and O" is shown in Fig. 10.
CLAIM 2. For every i, j) such that >= p, j >= q and i, j) (p, q), i, j) Y.
Proof. Since (p, q) Xand I(p, q) N, if(i,j) X, it would violate the assumption

that ordering X satisfies the wavefront property. Fq

Now consider the splitting (X", Y") of O", where X" X { (p, q)} and Y"
YU {(p, q)} (as shown in Fig. 10). Any pair (i,j) (1, 2) or (p, q) was unaffected in
going from O to O’. Also, O" is just a shift of applied to O’. So,

(15) I"(i,j)=I(i,j)+ for(i,j)g(1,2)or(p,q).

The orderings X and Y satisfy the wavefront property since (X, Y) is a good splitting of
O. Therefore, by (15), all the pairs in X" besides (1, 2) satisfy the wavefront property
and all the pairs in Y" besides (p, q) satisfy the wavefront property. But I"(1, 2) 1, so
X" satisfies the wavefront property. Also I"(p, q) 2 and Claim 2 show that Y" satisfies
the wavefront property.

1 3 5 8 I0 15 3 5 8 I0 1 4 6
7 9 Ii 13 7 9 II 13 | 8 i0

12 14 15 12 14 1 | 13

0 O’ 0"

FIG. 10. Transposing (1, 2 and 3, 6), I(3, 6) N= 15.
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The remaining property of a good splitting (13)(2) is true for all pairs in Y. The
set X" is smaller than X, therefore (15) implies that (13 )(2) is true for all pairs in Y"
except (p, q). The only pair in X" that precedes (p, q) in O" is (1, 2). But (p, q) and
(1, 2) have distinct indices since they have been transposed. Therefore the ordering O"
satisfies (13). So (X", Y") is a good splitting of O".

Now consider the case when (1, 2) and (p, q), such that I(p, q) 2, are transposed.
CLAIM 3. (p, q) Y.
Proof. If (p, q) X, then because X satisfies the wavefront property, (p, q)

1, 3 ). (If r, s) (1, 3) 4 (p, q), then I(r, s) > I(p, q) 2 would violate the wavefront
property.) But 1, 2, p, q must be distinct if (1, 2) and (p, q) are to be transposed. Hence
(p,q) Y.

The ordering O’ is obtained by transposing (1, 2) and (p, q). In O’, I’(1, 2) 2
and I’(p, q)= 1. To get the canonical form O", we now have to shift by -1. In O",
I"(1, 2) and I"(p, q) N.

An example of each of the orderings O, O’, and 0" is shown in Fig. 11.
CLAIM 4. For every i, j) such that <- p, j <= q and i, j) :/: (p, q), (i, j) 6 X.
Proof. Since (p, q) Yand I(p, q) 2, if(i,j) Y, it would violate the assumption

that ordering Y satisfies the wavefront property.
Now consider the splitting (X", Y"), where X" X tO { (p, q)} and Y" Y

{ (p, q) }. By the same argument as used to obtain (15 ), we have

(16) I"(i,j)=I(i,j)- for(i,j)4:(1,2)or(p,q).

The orderings X and Y satisfy the wavefront property. So, by (16), all the pairs in
Y" satisfy the wavefront property and all the pairs in X" besides (p, q) and 1, 2) satisfy
the wavefront property. But I"( 1, 2) 1, I"(p, q) Nand Claim 4 show that X" satisfies
the wavefront property.

The remaining property of a good splitting (13 )(2) also follows for Y" since it was
true for Y, and the only pair added to X to get X" is the last one in the ordering O" and
so it cannot precede any pair in Y".

Thus we have shown that given a canonical ordering O with a good splitting, the
ordering O’ obtained from O by an admissible transposition has a canonical form O"
that also has a good splitting. So every canonical weakly wavefront ordering has a good
splitting.

Now to prove the "if" part of the theorem, we have to show that if a canonical
ordering has a good splitting, it is weakly equivalent to a wavefront ordering.

Consider a canonical ordering O and (X, Y) a good splitting of O. Let

X=(1,2), ,(p,q), Y=(r,s), ,(n- 1,n),

1 3 5 2 3 5 1 2 4 7
7 9 7 9 6 9 I0

12 12 ii 13
15

8 10 8 10
11 13 | 11 13
14 15 / 14 15

O O’ 0"

FIG. 11. Transposing 1, 2 and (4, 5 ), I(4, 5 2.
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1 3 5 8 10
7 9 11 13

12 14 15

6

Has good splitting

4 5
7

FIG. 12.

6
9
12

8
11
14

10
13
15
2
3

Has property P

where the pairs are arranged in order oftheir position in O. We will show how to transform
the ordering O by a sequence oftranspositions ofcommuting rotations so that Y satisfies
the property.

PROPERTY P. For every (i, j) e Y and (l, m) e X, the positions of these pairs in O
satisfy I( i, j) < I(l, m).

Suppose we have a maximal leading subsequence S of Y, (r, s), (f, g), that
satisfies P. Then if Y (r, s)...(f, g)(s, t)..., we know that there exists a pair
(a, b) e X, I(a, b) < I(s, t). Also I(a, b) I(s, t) 1, since otherwise property P
would not hold for the sequence S. But now we can transpose (a, b) and (s, t) in O,
because of the property (13 )(2). Eventually, we will have exhausted all (i, j) e X such
that I(i, j) < I(s, t). So the pair (s, t) can be added to S and S still satisfies P. Pro-
ceeding in this fashion, Y will eventually satisfy P. The situation is explained in Fig...2.
Note that (X, Y) is still a good splitting of the ordering obtained, since transpositions
of commuting rotations preserve this property.

Now that Y satisfies P, let I(1, 2) d. Consider a shift of ordering O by -d, to
obtain ordering O’.

CLAIM 5. O’ is a wavefront ordering.
Proof. Before the shift, for (i, j) e Y, -< I(i, j) =< d- follows from P, so after

the shift N- d + -<- I’(i, j) =< N. Also for (i, j) e X, before the shift, d =< I( i, j) =< N.
After the shift =< I’(i, j) =< N d. Therefore in O’, all the pairs in X occur before the
pairs in Y. Also note that since (X, Y) was a good splitting of O, the orderings X and Y
under O’ are still wavefront orderings.

Consider (i, j) in Y. Ifany neighboring element is in Y, then the wavefront property
(7) is satisfied. (By neighboring element we mean one of 1, j), + 1, j), i, j 1),
and (i, j + 1).) If it is in X, it must occur before (i, j) in O’ and it must be either

1, j) or i, j 1) by the definition ofa splitting. So the wavefront property is satisfied
for all pairs in O’ that are in Y.

Consider i, j) in X. If any neighboring element is in X, then the wavefront prop-
erty (7) is satisfied. If it is in Y, it must occur after (i, j) in O’ and it must be either

+ 1, j) or i, j + 1) by the definition ofa splitting. So the wavefront property is satisfied
for all pairs in 0’.

We have shown that O’ obtained from 0 by transpositions of commuting rotations
and shifts is a wavefront ordering if 0 has a good splitting. Hence the theorem is
proved. [:]

7. Verifying the weakly wavefront property. In this section we describe an algorithm
that checks if a given canonical ordering has a good splitting. We will also be able to
identify if the good splitting is the trivial one associated with a wavefront ordering, and
thus check for the wavefront property as well.
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The algorithm will go through the pairs in the order specified by the given ordering,
marking some pairs as it scans them, according to the following rule. The first pair is
marked. For other pairs, a pair is marked if its north and west neighbors have already
been marked. At the end of the pass, the marked and unmarked pairs form a splitting
of the ordering. A second pass is required to check if the splitting is a good splitting.

Let I be a matrix such that I(i, j) is the position of pair (i, j) in the ordering O.
We are also given a function next (i, j) that returns the pair following i, j) in the order-
ing O.

ALGORITHM GOOD SPLITTING.
For i,j [1, n] or =j, I(i,j) - O.
S -- empty list
(i,j) - (1, 2)
I( i, j) "-- O
forc= toN-

(i, j) next(i, j)
if/(/- 1,j) 0 and I(i,j- 1) 0

I( i, j) .- O
else

I( i, j) .-.- -1
endif

endfor

This completes the first pass ofthe algorithm. At this stage, we have identified a splitting
(X, Y) with X all those pairs marked with a 0 and Y all the pairs marked with a
-1. Further, we have constructed X by proceeding through the pairs in the order they
appear in O. So the partial ordering X satisfies the wavefront property (7). Now we do
another pass through the pairs to check the remaining properties of a good splitting.

(i,j) - (1, 2)
for c to N

if I(i, j) 0
append the indices (not the pair) i, j to the list S.

endif
if I( i, j) -1

{ Here we check for the remaining properties that Y must satisfy
if any of the following are true, return a NO:

I(i- 1,j)=-I or I(i,j- 1)=-1 {violates(13)(1)}
Sf) { i,j} 4: { violates(13)(2) }

endif
I( i, j) -- -2
endif

I(i, j) next(i, j)
endfor
return YES
end.

LEMMA 7.1. If (X, Y) is the splitting ofO identified by Algorithm Good Splitting,
then we have thefollowing:

(1) X satisfies the wavefront property (7).
(2) If (X, YI is any other splitting of0 in which XI satisfies (7), then X X.
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FIG. 13.

Proof. The ordering X satisfies (7) by construction since a pair is placed in X only
if its north and west neighbors occur before it in O. Let (i, j) X, but not in X. Therefore
when i, j) is encountered in the first pass of the algorithm, either i, j 1) or 1, j)
has not been marked, i.e., it occurs after (i, j) in O. This contradicts the assumption that
X, satisfies the wavefront property. So X,

_
X. Ul

LEMMA 7.2. A good splitting (X, Y) ofan ordering 0 is unique and satisfies property
(2) in Lemma 7.1.

Proof. Let (X, Y be another splitting in whichX satisfies the wavefront property.
Let S X fq Y. Since X, satisfies the wavefront property, the ordering S does too. Let
(p, q) S be the first according to ordering O. Clearly, (p, q) 4: (1, 2) since it is in Y.
Let (r, s) (p 1, q), or (p, q 1) (either will do, and at least one of them is always
defined). Since (p, q) is in X, by (12) the pair r, s) is also in X. Since X satisfies the
wavefront property, I(r, s) < I(p, q), so (r, s) t S. Therefore (r, s) X fq X.

Now, by (13)(2), (p, q) cannot share any indices with a pair in X that precedes it
in O. But (r, s) X contradicts this. Therefore S must be the empty set, so X X.

To show that a good splitting is unique, we now suppose that (X, Y,) is a good
splitting. Then sinceXsatisfies the wavefront property, we can reverse the above arguments
to show that X

___
X,. So (X, Y) (X, Y, ). V]

We have shown above that in good splitting (X, Y), X is the largest set that satisfies
the wavefront property. Further, Algorithm Good Splitting returns this unique splitting.
So, if the algorithm returns a YES, the splitting identified is a good splitting. If the
algorithm returns a NO, then we know that there is no good splitting. If in addition the
set X in the splitting is the entire set O, we know we have a wavefront ordering. An
example is shown in Fig. 13. The matrix I is shown initially, after the first pass and after
the second pass.

8. P-wavefront orderings. The weakly wavefront orderings identify a class of
provably convergent Jacobi orderings. But it is easy to construct convergent orderings
from weakly wavefront orderings by permuting the indices of the pairs 11 ].

Permutation Equivalent Orderings. Let O be any cyclic ordering and let II be a
permutation matrix. Ifwe permute the row and column indices in O according to II, we
get another ordering O’. (Alternatively, the matrix I’ that contains the positions of the
pairs in O’ is given by I’ IIrlII.) We will say that the ordering O’ is a permutation of
the ordering O, or that O is permutation equivalent to O’.

Performing a cyclic Jacobi method on a matrix A using ordering O’ is exactly the
same as using ordering O on IIrAII. Therefore, if O converges, so does O’. Also, since
every ordering weakly equivalent to a convergent ordering converges, we have the fol-
lowing enlarged class of provably convergent orderings.
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P-wavefront orderings. If O is weakly equivalent to O, and O is a permutation of
a weakly wavefront ordering 02, then O is a P-wavefront ordering.

THEOREM 7. All P-wavefront orderings converge.
Proof. A P-wavefront ordering is obtained from a weakly wavefront ordering through

convergence preserving transformations. So convergence follows from Theorem 4.
An example of permutation equivalence is shown in Fig. 14. The ordering O’ is

obtained from O by the permutation (12345) -- (12543).
P-wavefront orderings are important in practice. The Brent-Luk ordering [2] is

used in implementing the Jacobi method on a systolic array. Schreiber 14 describes an
implementation of a parallel block Jacobi method using this ordering to choose the
subproblems. Luk and Park 11 show that the Brent-Luk ordering is a permutation of
the weakly wavefront modulus ordering for odd values ofn, and is therefore a P-wavefront
ordering.

One way to test if an ordering O is a P-wavefront ordering is to run Algorithm Good
Splitting on every permutation of every ordering O that is weakly equivalent to O, i.e.,
an exponential number of orderings consider. However, we can improve this to a poly-
nomial time algorithm by reducing the number ofpermutations that need to be considered
to O(n’2).

LEMMA 8.1. If X, Y) is a good splitting ofan ordering 0 then the set

{(1,j); <j<-n}-X.

Proof. Suppose (1, k) E Y for some k > 2. Now, I(1, 2) and (1, 2) E X by
(13)(3) and (12). But this contradicts (13)(2). Hence (1, k)

We will associate an edge-weighted graph G with an ordering O as follows. G is the
complete graph on n vertices with edge (i, j) having I( i, j) (i.e., index of the pair (i, j)
in the ordering O) as weight. Permuting the vertices of the graph G gives a permutation
of the corresponding ordering O. We will label the vertices of G so that the resulting
ordering can have a good splitting.

Since I(1, 2) is required by (13), we must assign the labels and 2 to the ends
of the edge with weight 1. After having done this in one of the two possible ways, we
assign labels to the other vertices as follows. By Lemma 8.1, the pairs (edges) (1, k) are
all in the set X of any possible good splitting. By (13)(1) they must satisfy the wavefront
property. This means that we have only one way to label the remaining vertices, i.e., in
the order of the weights of the edges joining them to vertex 1. Thus, only the above two
permutations of the ordering O can be candidates for the good splitting property.

Now consider transposing two commuting rotations in ordering O. The correspond-
ing operation in the graph G is to exchange the weights of two disjoint edges, with the

I 15 8
9 11
12 14
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13
15
4
6

)
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FIG. 14. Permutation ofan ordering.
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weights being consecutive integers. Note that this will not affect the relative order of the
edges incident to vertex in the procedure described above. So the permutations produced
will be the same. Further, the good-splitting property is preserved under transpositions
ofcommuting rotations. We have shown that to verify if any permutation ofan ordering
equivalent to O has a good splitting, we need to check only two permutations of O for
the good splitting property.

However, ifwe consider an ordering shift equivalent to O, the permutations generated
in our procedure will change. So we need to check every shift of the ordering O as well.
But this is only N n(n 1)/2 orderings. Therefore, to check if an ordering O is a P-
wavefront ordering, we only need to check n(n 1) orderings for the good splitting
property using Algorithm Good Splitting. Since Algorithm Good Splitting takes at most
O(n2) time, we have shown that membership in the provably convergent class of P-
wavefront orderings can be checked in O(n4) time.

9. Other convergent orderings. The question arises whether the large class of or-
derings introduced here completely covers all known convergent cyclic Jacobi orderings.
Interestingly, the answer is no. Nazareth 12 proves the convergence ofa class oforderings.
Some of the orderings presented here, such as the block wavefront offerings, do not fall
in Nazareth’s class. The converse is also true. In Fig. 15 O is an ordering in Nazareth’s
class that is not a P-wavefront ordering. So this is a provably convergent ordering that
is not a permutation of a weakly wavefront ordering.

Finally, we mention again that there are orderings for which no proof ofconvergence
exists, and there is evidence to suggest that a counterexample to convergence may exist
[6]. The Brent-Luk ordering for even values of n is the best known example (refer to
Fig. 16 ). It is also easily seen that a whole class of orderings can be obtained that are not
provably convergent by considering orderings weakly equivalent to the Brent-Luk or-
dering (even n).

1 2
3

4 5
8 9
6 7

10

FIG. 15. An ordering in Nazareth’s class.

1 5
3

2
5
4
3

n = 5, Provably convergent

1 5
3

2 3
5 4
4 2
3 5

1

n = 6, No convergence proof

FIG. 16. Brent-Luk ordering.
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10. Summary and conclusions. In this paper we have introduced a class of P-wave-
front orderings. The cyclic Jacobi methods for the symmetric eigenvalue and SVD prob-
lems using orderings from this class converge without the need of thresholds. This class
is characterized by properties that are easy to test (polynomial time). We have also shown
that there are some parallel block Jacobi methods that fall in this class. However, there
are provably convergent orderings that are not P-wavefront orderings.

Can block methods that solve subproblems in other ways be proved convergent?
One important possibility is a parallel ordering ofJacobi rotations within the subproblem.
Alternatively, some method other than Jacobi such as QR, or a totally new method could
be used. In 1] and [15], parallel block Jacobi methods are described that involve com-
pletely diagonalizing the subproblem. However, no convergence proofs are available for
these methods. The methods described here perform only one Jacobi sweep on some
elements of the subproblem, which is cheaper than complete diagonalization. How the
method used to solve the subproblems affects the overall rate of convergence, in terms
of the number of block sweeps required to diagonalize the whole matrix, is not well
understood.

Regarding the SVD problem, it has recently been conjectured that preserving tri-
angular form of the matrix A during the Jacobi iterations can improve the rate of con-
vergence in certain situations 3 ], 8 ]. It has also been shown that the well-known rows
ordering preserves triangular form 8]. Since wavefront orderings are equivalent to the
cyclic by rows ordering, it follows that all wavefront orderings, including some parallel
orderings (for example, the parallel antidiagonals ordering), also preserve triangular form
and have the same good convergence properties.

A variant of the Jacobi method for the unsymmetric eigenvalue problem has been
proposed by Eberlein [4]. Haft [7] has proved convergence for a similar algorithm that
uses a cyclic by rows ordering. It is easy to verify that the results proved here can be used
to show convergence of the Eberlein algorithm using P-wavefront orderings.
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ON MAXIMIZING THE MINIMUM EIGENVALUE OF A LINEAR
COMBINATION OF SYMMETRIC MATRICES*
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Abstract. The problem considered is that of maximizing, with respect to the weights, the minimum ei-
genvalue ofa weighted sum ofsymmetric matrices when the Euclidean norm ofthe vector ofweights is constrained
to be unity. A procedure is given for determining the sign of the maximum of the minimum eigenvalue and
for approximating the optimal weights arbitrarily accurately when that sign is positive or zero. Linear algebra,
a conical hull representation ofthe set ofn n symmetric positive semidefinite matrices and convex programming
are employed.
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1. Introduction. Consider given n n symmetric real matrices H1, Ht, not
all zero, and the following problem:

(1. l) Find -maxa (#) and an associated maximizer/

where

(1.2) ,(t) Xmi #H

Here min (A) denotes the minimal (i.e., most negative) eigenvalue of symmetric A and
z {x z: xll }. Throughout, denotes 112 and n 2.

The initial motivation for this problem came from optimal output feedback [1 ]. In
that context, the operating cost for a system with an initial condition x0 e n and a
parameter vectorf e t can be written as xK(f)xo, where K(f)’ K(f) nxn. Given
a parameter vector f, it would be desirable to t to find a search direction # t such
that the cost is reduced for all initial conditions x0 e n by taking a suciently small
positive step w along # from f, i.e., such that xK(f)xo xK(f+ w#)xo 0 for all
x0 e , i.e., such that K(f) K(f+ w#) O. Whether such a # exists depends on the
solution of(1.1) when Hi OK(f)/0, because then, in terms ofa first-order expansion
ofK aboutf, a sufficient condition for there to be a # such that K(f) K(f+ w#) 0
is that there exists a u such that = ini > 0, i.e., is that there exists a u t such that
(#) > 0, for of (1.2), i.e., is that > 0 for of (1.1). If > 0 then a suitable search
direction is a for (1.1). Similarly, there is no # such that K(f) K(f+ w#) 0 for
some small positive w if < 0. Hence it is not necessa to compute a if < 0. The
situation when 0 depends on second-order effects. This has outlined the significance
of problem (1.1) in this control context.

It seems that solution of (1.1) is, in general, dicult. However it is clear that it is
sufficient, in the control context mentioned above, to be able to solve the following
subproblem:

(1.3) Find sign () and, if 0, find an associated maximizer where
sign () is if > 0, is 0 if 0 and is -1 if < 0.
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1988.
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This paper is mostly about the solution of problem (1.3).
The maximum in (1.1) exists because the constraint set B is compact and because

the function of (1.2) is continuous. In fact X is also concave and is not necessarily
differentiable everywhere. The nondifferentiability could be approached using Clarke’s
theory ofnonsmooth optimization 2 ], Fletcher’s results on positive semidefinite matrices
[3 ], and ideas from Overton [4] and Overton and Womersley [5]. However even if
were differentiable everywhere, the global optimality required for problems (1.1) and
(1.3) could not easily be achieved using standard techniques owing to the nonconvexity
ofBt. Overton 4 has given a second-order method for solving (1.1) without the constraint
e B1 but that does not provide information that is decisive in this context because

sup { (tz)- } is always nonnegative, since k(0) 0. An approach is used here that
is designed specifically for the constraint e ]t and that turns out to avoid all issues
associated with nondifferentiability.

Problem (1.3) is a fundamental problem of linear algebra and is of interest in its
own fight. A related problem that has been considered before is that ofdeciding whether
there is a linear combination of given symmetric matrices that is positive definite [6 ],
but a general solution is not given in [6 ]. In the above context, the related problem
reduces to that ofdeciding whether sign (,) 1. The results of or 4 could be applied
to solve that problem but cannot be used to decide whether 0 or < 0.

Actually, in the problem considered was that of minimizing the maximal eigen-
value of = #iHi with respect to e l instead of maximizing the minimal eigenvalue
(as in (1.1)). It is more convenient to consider here the formulation of (1.1)the only
consequence is that some results from need obvious sign changes that are included
here in quotations from [1 ].

In Appendix C of[l] a method was given for approximating as accurately as
desired if it turns out that > 0, but in general that method does not determine
sign (,) and certainly does not yield a if , 0. Hence the part of problem (1.3) that
does not appear to have been solved before is:

(1.4) Find sign )and if sign () 0, then find a corresponding.
The theory developed in 5 enables problem (1.4) to be solved without using any

iterations in some cases, but in general it seems that an iterative algorithm is needed. A
consequence is that it is not generally possible to determine whether sign () is exactly
zero using a finite amount ofcomputational effort. In practice it would usually be adequate
to solve the following approximation problem"

(1.5) For a prespecified i > 0, iterate until it is possible to decide whether , > 0 or
to decide whether < 0 or to find a e B that approximates a in that
x() [, , ,].

The main purpose of this paper is to study problems (1.3)-(1.4) and to develop a
procedure (Procedure 5.1) that solves the following problem, using only algebra and
convex programming"

(1.6) Solve problem (1.4) when that can be done using finite work, else solve
approximation problem 1.5 ).

In 2, relations are obtained between ,,/, the origin, and a convex set II derived
from the H. Those relations extend the results of[ and contribute to the understanding
ofproblem 1. l) and ofproblems 1.3)-(1.4). The study in 3 ofa conical-hull description
of the set S_ of real, symmetric, positive semidefinite, n n matrices yields results that
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play a vital role in 5. In 4, a new convex programming algorithm (Algorithm 4.1) is
presented for approximating, with prespecified precision, the minimal value of c from
R such that, for a specified vector h, ah belongs to a given convex compact set. That
algorithrn is needed in 5, where a procedure is developed for solving problem (1.6).
Section 6 contains numerical results for some examples.

The proofs for results in 2-5 that are nontrivial or are not presented in those
sections are given in Appendices A-D, respectively.

The set of nonnegative real numbers is denoted by R_ and the set of strictly positive
real numbers by >. The sets z and < are defined similarly.

The line { ax + (1 a)y: a [0, 1] } between points x and y in " will sometimes
be written as Ix, y].

For a nonzero vector x from Rn, the normalized vector xllxll - is denoted by
The interior of a set S is written as int (S), the boundary as OS, the convex hull as

conv (S), and the conical hull (i.e., as" a _, s S} as cone (S). The set MS denotes
{ Ms" s S }, where M is a matrix of order compatible with S, and x + S denotes the
set { x + s" s S }. The set of points in S that are closest, in the Euclidean sense, to a
point x is denoted minpoints [x, S] when there could be several closest points and
minpoint [x, S] when the closest point is definitely unique. The corresponding
minimal distance is often called mindist [x, S]. When S has the form MF for a set F,
the set of points in F that minimize x- Mf with respect to f from F is written
minpointsF [x, MF], and argF minzMF V(Z) denotes the set ofpoints in Fthat minimize
v(Mf) with respect to f from F. The above notation regarding closest points will only
be used when closest points exist.

The hyperplane H with normal r/that supports a set S c It" at a point y refers to
the set H { x e n: rt’x ’y } where y e arg max { r/’z" z e S}. That point y is sometimes
called a contact point for the hyperplane and the set.

The range of a matrix M is written as R [M], its null space as N[M], its Frobenius
norm as MII, and M denotes the pseudoinverse ofM.

The orthogonal complement of, for example, R[M] is written as +/-R[M].

2. Some relationships between eigenvalue maximization and a convex set specified
by the given symmetric matrices. For the matrices Hi of problem (1.1), consider the
function p: Rt defined by

(2.1) p(x) [x’Hx x’Hzx. .x’Htx]’

and the associated convex compact set

(2.2) II =conv [p(8")] cRt.

Now

k(/) kmi Id,ini minx’ lin x
"= xBn

min ’p(x) min z’r min ’Tr
X B p([B n) . II

so there is the following connection between II and k(u).
LEMMA 2.1o (#) min { t’r: r e II }.
That connection enables the following relationships between t, ,, the origin, and

II to be established.
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THEOREM 2.1. (i) < 0 ifand only ifO int (II). If 0 int (II), then a z that
maximizes ) on B is -((r)),for any r minpoints [0, OH], and -I111,

(ii) , 0 ifand only ifO OH. If 0 OH, then a that maximizes ) on B is
-((Ix)) for any t that is the normal to a hyperplane that supports II at O.

(iii) > 0 ifand only ifO II. If 0 II, then there is a unique that maximizes
X on 1, given by z ((r)), where minpoint [0, II], and IIll. rn

Theorem 2.1 reveals the close connection between sign () and whether 0 II, 0
OH, or 0 int (II). Part (iii) was stated and proved in Appendix C of[l] but will be
proved here in Appendix A, together with the rest of Theorem 2.1, for completeness.

Problem (1.3) is concerned with the determination of whether sign (X) >= 0 and
with the computation of a maximizing t if sign (,) >= 0. By Theorem 2.1, sign (,) >= 0
if and only if 0 g int (II). Owing to the way II is defined it does not seem to be a simple
matter to determine whether 0 int (II). At least conceptually, it is possible to compute
r minpoint [0, I-I], which, since I1’11 0 if and only if 0 II, reveals some useful
information about the location of the origin with respect to II. If 4:0 then it is clear
that 0 g 11 and, by Theorem 2.1 (iii), ((-)). However, if - 0 then that could occur
either because 0 int (II) or because 0 0II and there is no obvious way to decide which
is true. Furthermore, even if0 OH so that 0, a t is required to complete the solution
of problem (1.3). Theorem 2.1 (ii) reveals that then t2 can be obtained from the normal
to any hyperplane that supports II at 0, but it is not clear how such a normal can be
computed.

In practice, usually it is not possible to compute exactly. However, it is shown in
Appendix C of[1 that - can be approximated arbitrarily accurately using an imple-
mentable iterative algorithm for minimizing r on II. The algorithm generates a sequence- II convergent to - and operates by computing supporting hyperplanes for II that
have particular normals. That turns out to be quite easy to do even though the definition
of II in (2.2) does not seem to render computation with II attractive. Unfortunately,
numerical evaluation of a sequence rj. - r generally does not enable us to decide, using
finite work, whether r is nonzero or zero. Consequently, in general it is not practicable
to decide whether 0 II so that it is not possible to evaluate sign (,).

Therefore, in connection with problem (1.3), there is a requirement for a general
method for determining sign (,). If sign (,) > 0, then the algorithm in Appendix C of
1] can be used to find -, and hence (by Theorem 2.1 (iii))/2, to any prespecified accu-

racy. If sign () 0, then some method for finding a corresponding is needed. This
has explained in more detail the motivation for problem (1.4) given in 1. The deter-
mination of sign () and of a global maximizer/ if sign () 0 are considered in 5.

It is fortunate that the motivation for this work did not require the determination
of a global minimizer/ when 0 int (II) because Theorem 2.1 (i) suggests that the
determination of/ and , are difficult problems in that case since then minimization of
IIrl] on OH is a nonconvex optimization problem with, possibly, many local minima that
are not global minima. It can actually be shown that if r* is a local minimizer of IIrll
on OH then -((r* )) is a local maximizer of h on z. The existence of at least one global
minimizer follows from the fact that OH is compact because it is the boundary of a
compact set.

Theorem 2.1 exploits the convexity of II, which is defined to be the convex hull of
the set p(B"). Brickman [7] has shown that p(n) is convex for the case with l 2 and
n > 2 and is not necessarily convex for n 2 or for l ->_ 3. Taussky [6, 1] has stated
that in the case l 2 and n > 2, if [x’Hx x’Hzx 0] [x 0], then there are
and t2 such that t Hi h-/xzH2 > 0 but the relationships between , and II of Theorem
2.1 seem to be new.
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3. A conical hull characterization of the set of symmetric positive semidefinite ma-
trices. Let

sn= {AEgnn. A’=A },
S_ {A E"x". A’=A >-O }.

The characterization given here ofthe convex cone S of n n symmetric positive
semidefinite matrices is one of those mentioned in 8 ]. It is based on the fact that any
symmetric positive semidefinite matrix A nxn may be represented as A aB2 for
some a e

_
and some symmetric B nxn with 11BJI 1. So

(3.1) S =cone ({ B2"Be U})
where

(3.2) U {B-Sn: IIBI[ 1}.
It will often turn out to be more convenient to work with vectors characterizing

positive semidefinite matrices than with the matrices themselves. The machinery for
doing that is introduced next.

For C m,, let vec C] be the following vector containing all the entries of C:

vec [C] C1"2" "Cm*]

where ci. denotes row of C.
Consider the linear subspace vec[Sn] { vec [A] "A a } c7.

n2 of all vectors
vec [A] associated with symmetric A. It has dimension r n(n + 1)/2. Suppose
w2, Wr is an orthonormal basis-set for vec [sn]. For example, suitable wi for n 2
might be wl [1 0 0 0]’, w2 [0 2 -1/2 2 -1/2 0]’, w [0 0 0 1]’. Consequently,

(3.3) W-- w w2 Wr] .[] n2

is a basis-matrix for vec [an] and

(3.4) W’W=Ir, R[W’]=Ir, R[W]=vec[S"],

(3.5) WW’ projects n2 orthogonally onto vec [sn].

For symmetric A, let ve--6 [A denote the vector of coordinates of vec [A with re-
spect to the basis-set wl, w2, "’, wr, i.e., with respect to the columns of W. Then, in
view of 3.3 )-(3.4)

(3.6) vec [a] W [A]En2 vec [A W’ vec [A .
The function V6-6-1" r _. Sn will be useful later.

Many of the calculations in this paper will be carried out using the vector vec [A
instead ofA itself. Clearly,

{A sn } {-6 [A V6-6 [S] }
where

vec [S] {ve-6 [A].A sn> }.

So, in view of (3.1) and (3.6)

vec [sn] cone {ve-6 [B2] B U})= cone { W’ vec [B2] Be U} ).
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Therefore it is not surprising that V6-6 sn> may be represented as the conical hull of the
convex set r w’ cony {vec [B2] B e U}). That characterization is summarized
below in Theorem 3.1, where some properties of F are given that will be useful later.

THEOREM 3.1. Let

(3.7)

Then

r= W’$2crfor 2 conv vec [B2]"B U} ).

(i) ge-d [S] cone [F];
(ii) I’ is a convex compact subset of r;
(iii) For g gq andM q r: minx tr g’x Xmi [Z

W’ vec vv’] argr minxMr g’x andMW’ vec vv’] arg minxtr g’x. Here

(3.8) Z= [vec -1 [if] + vec-1 []’]/2e,""for WM’g

and v is a normalized eigenvector ofZ corresponding to the minimal eigenvalue,
kmin [Z], ofZ.

Furthermore, it will turn out to be very useful that there are sets I’ and F that
have a simple structure and are super- and subsets of F, respectively.

THEOREM 3.2. For F of (3.7)

(3.9)

(3.10) n-/2<= I111--< l, vyr.

Here

(3.11) r n-l+M, I’2=n-l,+M2

where

(3.12)

(3.13)

(3.14)

(3.15)

vec [In] W’ vec [In] and I. is the n n identity matrix,

M N (r- ) and has orthonormal columns that span the orthogonal com-
plement, with respect to R r, of the linear subspace spanned by the vector

of (3.12),

1 {xlr- 1. Ilxll-<(1- n-1)l/2 },, {xe N’-’. xll--< n-l}.

4. Finding the first point at which a line in a given direction intersects a given convex
compact set. The basic problem here is:

(4.1) Determine both A min a : ah MF} and an f F such that &h
Mr, assuming exists

where

(4.2) F is a convex compact subset of r; - F for some given " and some
given 4 e r; 214 Re r; h M4 4:0 and q, r, F, M are all given.

Hence the line L { ah" a e } intersects MF (since ’h M[ ’4q MF) and the
problem is to find &, the most negative a such that the point ah in the line L belongs to
the set MF, and to find a point f in F such that Mf &h. Clearly if & exists then g -<
’, since fh MF.
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Algorithm 4.1, stated later, solves the following approximation problem associated
with problem (4.1)"

(4.3) For any given ell el2, e2 > 0, determine the following"
(i) An approximation e to & such that I& ] < e I&] + el2;

(ii) An f F that satisfies both Mr- h =< (1 + e2) mindist h, MF] and
Mr- ?h =< h h

when it is assumed that

(4.4) exists and there is a hyperplane with normalized normal e Rq that satisfies

ffh < 0 and supports MF at &h;

(4.5) argF max { g’y" y MF} can be computed exactly, for all g

(4.6) MF contains a subset ,E ’h + { 0 e q: il011 k } for some known k e >.
Assumption (4.4) actually guarantees that Algorithm 4.1, with its stopping condition

omitted, generates a sequence ai convergent to & of (4.1). Assumption (4.5) ensures that
key calculations in the algorithm can be carried out. Assumption (4.6) is required only
to enable the construction ofa stopping condition for Algorithm 4.1 that guarantees that
the required approximations and f, of (4.3), are obtained at termination.

Algorithm 4.1 requires the calculation of an approximation xi to min-
point otih, MF] for each member of the sequence O/i computed by the algorithm.
For e2 e (0, 1), the approximation xi is required to be in the set e2-minpoint aih, MF]
of approximations to minpoint aih, MF]. That set of approximations is specified in
Definition 4.1 using the function r," q -- R defined in the following lemma, which
concerns it. In that lemma and in Definition 4.1, given later, an important consequence
of the hypothesis a < & is that (in view of (4.1)) ah qt MF. A graphical interpretation of
z,(xi) is given in Fig. 4.1.

LEMMA 4.1. Suppose a < and x MF. Consider the hyperplane with normal ah
x that supports MF. Suppose (x) arg max { (ah x)’y" y MF}. Let r(x) be

the value of a corresponding to the point ah in the line L { ah" a } at which the
supporting hyperplane intersects L. Then

(4.7) If(ah-x)’h<O then r(x)=a+((ah-x)’(9,(x)-ah)/(ah-x)’h)<-&,

(4.8) (ah-g.)’h<Oanda<r(g)=a+(llg-ahll2/h’(g.-ah))<=

where minpoint [ah, MF]. []

The set e-minpoint [ah, MF] of approximations to minpoint [ah, MF] is defined
next. Points x in it approximate A, both in terms of their distance from MFand in terms
of r,(x) being near r,(:f,), as follows.

DEFINITION 4.1. Suppose a < &. Then

xe-minpoint ah,MF] iff

(i) x MF;
(ii) x ah =< (1 + e) mindist ah, MF] and
(iii) r(x) exists, r(x) <= & and [r() r(x)]
An algorithm for finding a point in e-minpoint ah, MF], Algorithm 4.2, is given

later. The algorithm for approximating & by solving problem (4.3) follows. In it, the
notation e :e (0, 1) means "choose e from the interval (0, 1)," etc.
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MF

K

FIG. 4

ALGORITHM 4.1.
0 Choose tolerance parameters (see Remark 4.1)
(4.9) el :e (0,c); e12 :e (0,); e2 :e (0,1);
I Initialization

3 :e (0,1);

:= 0; (the initial value of the iteration index)
(determine an initial approximation ao to & with ao < &)

(4.10) Yo :e arg max {(-h)’y: y MF};
(4.11) ao := y’oh

(select an initial upper-bound (associated with stopping condition (4.21)) for

k
(4.2) to’-- Ilhll’
II Determine Ol + from ai
(4.13) xi : e2-minpoint [aih,MF];
(4.14) Yi + :e arg max {(aih xi)’y: y MF};

(Yi + 1- aih)’(aih- xi)
(4.15) ai + ai + (1 -e3)

h’(aih xi)
III Decide whether to stop iterating

(compute an upper-bound
if { Xi h --< k
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then
k

(4.16) /+ ’- ’-Ilhl---T
else

(4.17) ffi’= cos- ( k )[[xi- hll
(for k of (4.6));

if cos (Oi) <= cos (ki)
then

k
(4.18) /+ 1"= --Ilhl--T

else
k

(4.19) /3i+ ’- cos(,- O,)llhll
endif

endif;

(4.20)

o:=cos-,( (h-xyh) )h- xll hll

(compute the least upper-bound for & that has been found so far)
/3i+1 := min {/,/+ l};
(decide whether or not to stop iterating)

(4.21) if 1/i+1 oti+l < climax { Ici+l,I/3i+ll } / e2
then ci+ l;f:e e2-minpointsF [?h,MF]; stop;

i:=i+ 1;gotolI.

Remark 4.1 (Tolerance parameters in Algorithm 4.1). In (4.9), el and e12 are
the relative and absolute tolerances associated with the determination of & (recall
problem (4.3)), and e2 is the tolerance allowed in the approximation xi to
minpoint ah, MF] (recall Definition 4.1).

The purpose of e3 is to ensure that, for c +1 of (4.15 ), ai / lh never quite belongs to
MF (i.e., to ensure that O + < t) because / lh MF is a precondition for Algorithm
4.2 for the determination ofan x/ e e2-minpoint a/ lh, MF], that is needed in (4.13
during the next iteration. The value of e3 used for the numerical examples reported in
6 was 0.05. Algorithm 4.2 is stated later. [21

Some important properties of Algorithm 4.1 are given next.
THEOREM 4.1. For Algorithm 4.1 with stopping condition (4.21) omitted, so that it

iterates indefinitely,

(4.22) Olin& withci<ai+l<& Vi>--O, i& with&<=13i Vi2_O,

(4.23) (&- ot)-< [1 +(1- e2)(1- ea)r/hllhll-ll(&- ao).

With stopping condition (4.21) included, the algorithm stops after a finite number of
iterations with

(4.24) <& and la-al <ellltl q-el2,

(4.25) f:e2-minpointsF h,MF] (in that Mfe2-minpoints h,MF]).

Remark 4.2 (Geometric motivationfor Algorithm 4.1). The discussion here makes
the results of Theorem 4.1 seem plausiblemthe full proof is given in Appendix C. The
basic mechanism by which Algorithm 4.1 determines
can be understood geometrically from Fig. 4.1. That property ofthe sequence a suggests
strongly that ai actually converges to &, as claimed in (4.22). The value of/i + computed
in Algorithm 4.1 will be shown, in the proof of Theorem 4.1, to be the value of a
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corresponding to the point in the line { ah" a e } at which that line first enters the set
Ki cony (xi I.J E), for E of(4.6). Hence, in Fig. 4.1, the value of/i+ corresponds to
the point shown. Figure 4.1 suggests that i/ >-- &, for all i. Since ai -- &, it seems, from
Fig. 4.1, that/3. / -- &. Then, in view of (4.20),/3i &, as claimed in (4.22). The upper-
and lower-bounds on & provided by ai and/3i, and the fact that they both converge to
&, enable the stopping condition of (4.21) to terminate the algorithm at an for which
ai / is within a prespecified distance of &. Since the final value ai / is called in Algo-
rithm 4.1, this makes post-condition (4.24) seem reasonable. The definition offin (4.21
leads immediately to (4.25).

Remark 4.3 (Algorithm 4.1 andproblem (4.3)). In view ofTheorem 4.1, Algorithm
4.1 solves approximation problem (4.3).

From (4.24), it is clear that, by suitable choice ofe and e2, an approximation
to & of any required accuracy can be obtained. In (4.23), r/is the normalized normal of
assumption (4.4) so r/’h < 0. Consequently, it is clear from (4.23) that the smaller is
(i.e., the more accurately each xi is required to approximate -i), the more rapidly will
ai be guaranteed to approach as increases.

The subproblems of determining an xi e e2-minpoint aih, MF] (which is needed
in step (4.13 of Algorithm 4.1) and of finding an f e e2-minpointsF h, MF] (needed
in step (4.21)), can be solved by adapting an existing proximal point algorithm for
approximating the point in a closed convex set that is nearest to the origin. In order to
be able to guarantee termination with an f e e2-minpoint[ah, MF] and an f
minpointsF ah, MF], it is necessary to include a suitable stopping condition in the
proximal point algorithm. Such a stopping condition is given in the following proximal
point algorithm.

ALGORITHM 4.2.

I Initialization
(choose an initial approximation f0 to a point in e2-minpointsF[ah, MF])

(4.26) f0 :e F (e.g.,f0 ’b for of(4.2));
(compute the associated approximation Xo to a point in e2-minpoint
ah, MF])

(4.27) x0 := Mfo;
i’= 0;

II Compute terms necessaryfor updating f and xi
(4.28) ti :e argF minyMF(Xi ah)’y; Yi Mti;

III Decide when to stop iterating

(4.29) zi := ah + ( (yi-ah)’(xi-ah) }x-h = (x h);

(4.30) if [[z/- hll 0 or Ilzi- -hll > []xi- chll then go to IV;

I[xi ah[l" Vi"-COS-
h’(zi ah)
h z- h

(4.32)
(4.33)
(4.34)

(4.35)

If

x hll ( + =)llzi olhll and x hll Ch h
(ah xi)’h < 0 and cos (X Pi) > 0

(1- e2)llxi- ah < h [ ah xi )’ yi ah]--
L .l"T)" COS X -[- P

then f := j; 7"= xi; stop;
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IV Update fi and xi
(4.36) f+’= minpointt,/,l [ch, [f, t]]; xi+ Mr+ ; + 1; go to II.

Remark 4.4 (Algorithm 4.2 and existing proximal point algorithms). The above
algorithm is essentially the Gilbert proximal point algorithm 9 with a suitable stopping
condition, which is the only novel feature. In practice, it would probably be better to use
in step IV the update for f corresponding to that of Algorithm 2.4.8 in [10 ], which
according to the evidence in [10], should yield much faster convergence. For the sake
of brevity, that update has not been presented here, although it was used in the program
which generated the numerical results of 6. [3

THEOREM 4.2. Suppose ah MF and e2 (0, 1).
Consider Algorithm 4.2 with any updatefor f in step IV (such as that shown) that,

ifstopping condition (4.32) were omittedfrom the algorithm, would give f F, for all i,
and would give xi -- minpoint [ah, ME] with IIx- hll + [l= hll.

Then Algorithm 4.2 terminates in a finite number of iterations with e2-min-
point ah, MF] andf e2-minpointsF ah, MF]. t-l

5. On the eigenvalue maximization problem. The problem studied first here is that
of (1.4)" the determination of sign () and of a if , 0.

Recall that the results of Theorem 2.1 reveal that sign (,)= if 0 II, 0
if 0 0ii, =-1 if 0 int (II). One way to attempt to find sign () would be to
take any nonzero point in II, e.g., p(z) for any z such that not all the scalars z’Hiz
are zero, and then to consider the line { ap(z)’c R }. Then the value of &
min { c R: cp(z) II } would reveal that 0 Il if it turned out that & >= 0 and would
reveal that 0 011 if & 0. Provided a hyperplane supporting Il at &p(z) has normal
r/satisfying ’p(z) < 0, Algorithm 4.1 (with q r, M Iq, F II, h p(z)) could
be used to generate a sequence O/i "-- . However, a " and a k > 0 such that ’h +
{ 0 u: II011 --< k } c II do not seem to be available, so it is not clear that Assumption
(4.6) regarding Algorithm 4.1 can be satisfied. Consequently the stopping condition for
that algorithm cannot be implemented and it does not seem obvious how to decide when
to stop iterating in such a way as to guarantee that an approximation to & ofprespecified
accuracy will be obtained. Consequently, a different approach to the determination of
sign () will be developed here.

In the context ofproblem 1.4), the following theorem and remark reveal that there
is no loss of generality in assuming that the symmetric matrices H, , Ht are linearly
independent.

THEOREM 5.1. Suppose H, H2, Ht are linearly dependent and span the sub-
space 2/g’. Suppose that H, H2, "", HT are linearly independent symmetric matrices
that also span

Let Y() kmin Y = i/i), max { X()" 8 } and let maximize Y()
on BT. Then

(i) ( > 0) (, > 0);
(ii) ( 0) ( 0, a/ that maximizes X on Bt is

such that = tiHi = iti, and = H 0for all such it);
(iii) ( < 0) ( 0, a/ that maximizes on Bt is

such that = L_t.tiHi 0, and Y= tini 0 for all such
Hence if , > 0 then > 0 and if X -< 0 then , 0 and/ may be found in the

way specified in the appropriate part ofTheorem 5.1. Therefore the solution ofproblem
(1.4) for linearly dependent Hi can be obtained by finding sign (,) for appropriate lin-
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early independent i and by finding the associated if 0. Hence in the context of
problem 1.4), there is no loss of generality in studying the case when the Hi are linearly
independent.

The determination of and when the Hi are linearly independent will be consid-
ered next.

Clearly, , > 0 if there is att e t such that = ttiHi I, i.e., after taking the
vec (recall 3) of each side of the above equation, if Z = i vec [Hi] [I] for
some e , i.e., ifHu for some e t, where Hand are those of 5.1)-(5.2) below,
i.e., if d 0, for d of (5.3), where

(5.1) H [ [H] [H2]’’ " [nl]]6Urxl,

(5.2) t= vec [I] e,

(5.3) d=Dr,
(5.4) D It-- HHtrX r.

Summarizing" > 0 if d 0. This result can be generalized somewhat.
THEOREM 5.2. If IId[I < () 1, then > 0 and H* O. Furthermore,

((Hi)) is an approximation to in that

X > x()> 1-Ildll
Itn*

Example 2 (Example 3 in 6 shows that d < () is not a necessa condition
for > () 0, so the sucient condition of Theorem 5.2 for > () 0 is not necesm.

Theorem 5.2 reveals that sign () if d < so problem (1.4) has been solved
in that case. The following analysis will enable problem 1.4), or approximation problem
(1.5), to be solved when dl[ 1.

Recall from Theorem 3.1 (i) that S cone (F). Now

Xmin iHi

if and only if-8 is the most negative real number a such that E = H + aI S,
i.e., such that [E= ziHi + aln] [S] cone (F), i.e., (after making use of
5.1)-( 5.2 )) such that Hz + at e cone F ). The reason for stating the condition in terms
of- being the most negative number a such that Hz + a cone (F) rather than saying
that is the most positive number a such that Hg at e cone (F) is that the former
choice renders consequential optimization problems easier to interet geometrically.
Hence we might expect there to be a connection, which will be given in Theorem 5.3
later, between and the number & defined below.

DEFINITION 5.1. Let & be the most negative real number a for which there is a
t such that Hu + a F. Let ua be a # t associated with & in that Hu +

In view of Definition 5.1, if & exists it is the most negative a such that

(5.5) min min I1- [H+] 0.

For each 7 F, the minimizing g is clearly Hf[7 a]. Hence, for d of (5.3) and D of
(5.4), condition (5.5) is equivalent to the condition

(5.6) min O dll 0,
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min x-d 0.
xe Dr

Consequently, if & exists then

and a #a is given by

& min { a: adz DI’}

(5.9)

where

(5.10) 3’ e argr minpoints & d, DP].

The useful connection between and & mentioned earlier is among the following
properties concerning d and

THEOREM 5.3. Suppose that HI, , Hi are linearly independent and that R[H],
i.e., that d 4 O. Then

(i) DF is compact; & exists; I&l --< dll-; ifH’t 0 then & n -1 else & <=/7-1;
(ii) IfH’ 4: O, then d R DM] (for M of Theorem 3.2 );
(iii) sign (,) -sign &);
(iv) ( < 0) (/z 4:0 and -n/Z&lln[I >_- X >_- X(<<u>>) > 0);
(v) (&=0)(=0, ga4:0anda
(vi) (3 > 0) (, < 0).
From part (iii), sign () can be determined from sign (&). Hence the solution of

problem 1.4 can be determined by evaluating sign and, from part (v), by evaluating
#a if sign (&) 0.

By Theorem 5.3(i), & n -1 ifH’ 0. So, from Theorem 5.3(iii), sign () -1
in that case. Of course, in general H’t 4: 0. Then the determination of sign () is more
complicated. It turns out that, when d 4:0 and H’ 4: 0, specification (5.8) for & can
easily be transformed into a specification that is more convenient computationally, as
follows.

Suppose d 4:0 and H’ :P 0.
Theorem 3.2 reveals that

n-It + M,2c P on-It +M, on-It + R[M].

Premultiplying by D and using the result of Theorem 5.3(ii) that d R[DM] when
H’ 4: 0, we obtain

(5.11) n-ld+ DME2cDI’c n-ld+ DME1 cn-ld+ R[DM] cR[DM].

Now DM 4:0 when d 4:0 and H’t 4:0 since then, by Theorem 5.3(ii), 0 4: d e
R[DM]. Therefore the singular value decomposition ofDM can be written as

(5.12) DM P blockdiag { A, 0 } Q’ 6r (r 1) for 0 < J q q

for some q > 0, with q =< r, and where P rr and Q e (r-l)(r-l) are orthogonal
matrices.

Let

(5.13) T=blockdiag {A -1 /r q}p,[[rxr S=[iq O].qr
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Premultiply (5.11) by T and make use of 5.12 to give

n- Td+ [ IqO 00 ] Q’ {Xr- [[x][ _-<n -l}

(5.14) TDF

cn-lTd+[ IqO O] ..xl. -</1-n-l}cRq

where, since 0 q= d R[DM] and T is nonsingular,

(5.15) Td=[d]O O=b

Premultiply (5.15 and (5.14) by S of (5.13) to give, respectively,

(5.16) d STd STD,

(5.17) n-d+ {yRg: Ilyll <=n-}cSTDIn-d+ {Ya: [lyll -< 1/1-n -1 }g.

Since T of (5.13) is nonsingular, & of (5.8) is also given by

(5.18) =min { a,:aTdTDI’} =min { a:adSTDI’}
where the second equality is a consequence of the fact that, by (5.14)-(5.15 ),

(5.19) the last r- q entries of Td and of every vector in TDI’ are all zero.

This has proved the first two parts of the following theorem. Part (iii) is a straight
forward consequence of (5.17) and (5.18).

THEOREM 5.4. For linearly independent Hi when d =/= 0 and H’ =/= 0
(i) d q=Oand& min {a: ad STDF} fordof (5.15)andT, Sof (5.13);
(ii) n-ld + {y g: Ilyl[--< n- } cSTDI n-ld + {Y q: Ilyll--< /1-n-l};
(iii) a-, a + where a- n-I /i n-I /II d II, / n-I n-I /II d II;
(iv) STDF is a compact convex subset ofR and there exists a hyperplane that

supports STDI at &d and has a normalized normal 1 that satisfies
Theorem 5.4(iii) might enable sign (&) to be determined for it reveals that if a + <

0 then sign (&) and if a- > 0 then sign (&) 1. However in general the values of
a- and a / will not be sufficient to specify &. Then more information can be obtained
by considering the specification of & given by Theorem 5.4(i). Algorithm 4.1 can be
applied to approximate & to any required accuracy by approximating the solution of
min { a e : ad STDF}. The identifications ofthe terms h, F, M, and k in Algorithm
4.1 necessary to be able to do that are given in (5.20) below. The reasons the assumptions
for Algorithm 4.1 are then all satisfied will be explained next.

Assumption 4.2 is satisfied for the F, ’, , M, h, k of (5.20) because
(i) F F is a compact convex set (by Theorem 3.1 (ii));
(ii) ’ F since g’ n-l and, by Theorem 3.2, n-l F;

(iii) h M STD STd d =f 0 (by (5.16) and Theorem 5.4 (i)).
Assumption (4.4) is valid because & exists (by Theorem 5.3(i)) and because there is a
hyperplane with normalized normal n e R that satisfies n’d < 0 and supports STDI’ at
&d (by Theorem 5.4(iv)). Assumption (4.5) is valid, after making the identifications
of (5.20), since arge max { g’y" y MF} argr min { g)’y" y MF} and a point in
argr min { (-g)’y" y MF} can be found using Theorem 3.1 (iii). Finally, Theorem
5.4(ii) reveals that Assumption (4.6) is satisfied for " k n -1
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Stopping condition (4.21) ofAlgorithm 4.1 can easily be modified to (4.21 ’) below
to enable that algorithm to solve approximation problem (1.5). The key results are stated
in the following theorem, where d >- is assumed because the situation when d <

is covered adequately by Theorem 5.2.
THEOREM 5.5. Suppose the Hi are linearly independent, Ildll >-- and H’t 4: O.

Consider employing Algorithm 4.1 for approximating & min { c : cd STDI }
when its data F, , k, M, h, k are specified by

(5.20) F= I, = n-, k t, M=STDqr, h deq, k= n-where q, T, and S are from (5.12), (5.13), r 1/2 n(n + 1) (from 3) and where d is
j?om (5.16).

Choose 6 > and let e2 be as specified in (4.9) ofAlgorithm 4.1.
Suppose Algorithm 4.1’ is defined to be Algorithm 4.1 with termination condition

(4.21 replaced by

ifai + >- 0 or [3i + < 0 then stop;

a,+ ,’=-,,+ ,n,/=llHi + czi+, +(1 +z)(3,+ -cz,+ ,)II dll I1,11 HII.
(4.21’)

ifai + < 0 and[3i + > 0 and6 + 6 then :e e2-minpointsr O/i + d, DI’]

t ((Ht , ai + ] )); stop ;.

Then Algorithm 4.1’ will stop after afinite number ofiterations and, at termination,
approximation problem (1.5) will have been solved because

ifa+ >= 0 then , < 0; iff3+ < 0 then , > 0;
ifai+ < 0 and i+1 -- 0 and 6i+ <= 6 then X(t) [ 6, ]. E]

Remark 5.1 (Determination of in Theorem 5.5 and ofx in Algorithm 4.1). The
vector of (4.21 ’) in Theorem 5.5 can be determined by applying Algorithm 4.2 with
the following identifications: F I, " n -l, , M D, h d, k n-. Then it
turns out from the proof of Theorem 5.5 that to obtain X() [ 6, ], it is only
necessary to find a 3’ such that both IIDw a+ dll --< (1 -t- e2) mindist [ai+ d, DI’] and
lID3’ G+ dll =< IIS’d- G+ dll for a suitable ci+ 1. Consequently, stopping conditions
(4.34) and (4.35) could be omitted from Algorithm 4.2 when it is applied to compute
e e2-minpointsr Oi+ d, DI] in the modified stopping condition (4.21 ’) that is stated

in Theorem 5.5, possibly leading to termination after a smaller number ofiterations than
otherwise. Furthermore, in the operation of the main body of Algorithm 4.1 itself, using
the identifications of (5.20), the condition Ilxi ahll --< IIh hll in Definition 4.1 of
the set e-minlaoint ah, MF] is not necessary, so that condition could be removed from
stopping condition (4.33) of Algorithm 4.2 when Algorithm 4.2 is used to implement
step (4.13 of Algorithm 4.1. The requirements of Definition 4.1 were chosen to yield
the least complicated exposition.

Clearly the results ofthis section can be used together to solve problem (1.6), namely,
to solve problem (1.4) when that seems possible using finite work and to solve approx-
imation problem (1.5) otherwise. The procedure for doing that is summarized next.

PROCEDURE 5.1.
Suppose H, H2, "", Ht are linearly independent.
Compute d of 5.3 ). If d < 1, then (by Theorem 5.2), sign () and problem

(1.4) has been solved, so stop.
If d - 1, then compute H’t.
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If H’ 0 then & n -1 (by Theorem 5.3(i)) and sign (X) -1 (by Theorem
5.3(iii)) so stop since problem (1.4) has been solved.

Ifthis point is reached then H’ 4:0 so next compute a- and a / ofTheorem 5.4 (iii).
If a- > 0 then sign (&) +1 (by Theorem 5.4(iii)) and consequently sign (X)

-1 (by Theorem 5.3(iii)) so stop since problem (1.4) has been solved. Similarly, if
a / < 0 then sign (X) so stop since problem (1.4) has been solved.

However, if a- < 0 and a / > 0 then sign (&) cannot be determined from consid-
eration of a- and a + so apply Algorithm 4.1 to solve approximation problem (1.5),
using Theorem 5.5. ff]

6. Computed examples. When Procedure 5.1 was applied here, the value of for
Algorithm 4.1 was taken to be 0.5 as that seemed to yield a good compromise between
convergence rate, with respect to iterations, for Algorithm 4.1 and the number ofiterations
required by Algorithm 4.2 when called by Algorithm 4.1. The parameter 3 was taken to
be 0.05. The value 10 -3 was found to be adequate for the examples considered
because stopping condition (4.21 ’) of Theorem 5.5 then gave very nearly optimal s
(e.g., see Example 3 below).

Example 1. Here

Hi= -2 0
H2=

4

In this case, with n 2, it was possible to plot the set II of 2 and it turned out
that 0 int (II) and that a # (minimizing I111 on orI) is approximately [0.54 0.84]’ so
that/ is approximately [-0.49 -0.87 ]’ and gives , as approximately -0.43. Of course,
this technique would not be practical when n > 3 since such plotting would not be
feasible.

Application of Procedure 5.1 gave d 1.33 (so Theorem 5.2 provides no infor-
mation regarding sign ()), and gave a- 0.314 (consequently for this problem >
0), which reveals that < 0, which is consistent with the above results obtained from
consideration of II. [2]

Example 2. Here

Hi= 0 0 H2= 0 0 0
0 0 0 2 0

Application of Procedure 5.1 gave d]l 1.04 (so Theorem 5.2 provides no infor-
mation regarding sign (,)) and a--0.291, a+ 0.008 (which do not specify
sign ()) so then Algorithm 4.1’ was applied and gave the following results:

0 -0.274 7.84 10-2

-5.31 10-2 -1.203 10-2 0.355

Iteration stopped because /1 was negative indicating that & < 0 and hence that , > 0.
Therefore the method of Appendix C of[1 was actually applied to approximate/ and,, giving [0.9747 0.2237]’ and 0.1146. This has demonstrated the utility of
Procedure 5.1 for a case when > 0. Note that Algorithm 4.1’ decided that sign (,)

after only one iteration.
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Example 3. In this case n 7 and 4 with

2 -1 -1 0 0
-1 0 0 -2 0

Hl=blockdiag -1 0 0 0 0 ,0_2
-2 0 0 -3
0 0 -3 0

H2 diag {0, 10, 5,4, 3,0,0 },

f 14H3 blockdiag 05 5,
-2

f I ,H4=blockdiag 05x5,
0

where 0ixj denotes the null matrix from N ixj

-211
This example has 0 and is therefore suitable for testing Procedure 5.1 for that

case. The reason , 0 is explained next.
It can be checked easily that kmi [3H3 -1- 4H4] 0 with equality holding only

when g3 -5#4 and 4 0. Consequently, owing to the block-diagonal structure of, = t.tiHi, < O. By running Procedure 5.1 on H1 and H2 alone, it was found that
max { kmi (/21HI -[-/.t2H2): E B2 } 0.958. Hence, again owing to the block-diagonal
structure of /5__ gilli, for the above problem with all five matrices Hi, O.

Application of Procedure 5.1 gave dll 1.63 (so Theorem 5.2 provides no infor-
mation regarding sign()) and a -0.305 10 -3, ot + 0.0738 (which do not
specify sign ()) so then Algorithm 4.1’ was applied and gave the following results:

O/i 5i i

0 -2.33 10-1 7.38 10-2

2 -9.93 10-3 3.41 10-3 1.84
4 -6.07 10-5 5.62 10-5 0.214
6 -1.52 10-7 2.40 10-7 5.54 10-5

at which point the algorithm stopped because 0/6 < 0,/6 -- 0 and i - 0.001. The
value of obtained was (5.81 10 -1, 8.14 10 -1, 7.23 10 -7, 1.45 10 -7).
Since 0 in this case, Theorem 5.1 claims that h() should belong to [-i, 0]
[-.001, 0 ]. It is clear that a much better approximation to 0 than that was achieved
since in fact h() -1.24 10 -17. This has illustrated the usefulness of Procedure 5.1
for a case with 0. ff]

These examples have demonstrated the value ofthe results and algorithms that have
been presented in this paper.

Appendix A. Proofs for 2. The proof of Theorem 2.1 is facilitated by the next
result.

LEMMA A1. If 0 int (II) and r minimizes I[rl[ on OH, then

(A1) max { ’:II} I1112.
Proof. Since 0 e int (II), 11 > 0. For proof by contradiction, suppose

(A2) There exists a e II with ’ > 112,
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Consider

(A3) r* :=-a(-)

for some a R> that is chosen so that

(A4) ’II and 0< [1’*[[ < 11’[[,

which, in view of (A2) and the convexity of II, can be done.
Let

(A5) r r*m[ r* ]- 0II

where m: t --* R is the Minkowski functional for H, defined by

(A6) re[z] inf { reR>: r-z II}.
Since 0 int (II) and II is compact, it follows [11, Lemma 5.12.1 that

0<m[z]< o VzR- {0},
(A7)

int(II)={z:m(z)<l}, II={zl:m(z) <- 1}.
Now " minimizes I111 on or so, by (A5)

IIr*m[r*]- >-- I111.
Hence, in view of (A4) and (A7),

(A8) 0 < m[ r* < 1.

Consider r# b + (1 b)r, where b a(m[r*] + a)-. Then r# e II because
b (0, 1) and , r II. Direct computation using (A3), (A5) reveals that r
where c (1 + a)(m[r*] + a)-. Hence, since r # II, c e II where, in view of(A8)
and the choice of a from R>, c > 1. Since 0II and 7r

# e II, it follows from (AT) that
m(-) and m(r#) =< 1. Therefore

>=m(r#)=m(cr)=cm(r)=c> 1,

which is a contradiction. Hence (A2) is false that, since 6 II, establishes (A1) and
thereby completes the proof.

Proofof Theorem 2.1. From Theorem 13.1 of 12

0eint (II)iff0 < max { ’r: reII}
0eIIiff0-< max { tt’r: re II},

By Lemma 2.1, max { tt’ r: r e II } X(- tt). Hence

(A9) 0 e int (H) iff < 0, 0 e H iff , =< 0.

This has proved the if and only if results of parts (i) and (iii). The rest of the proof
follows, below.

(i) Suppose that 0 e int (H) and - e minpoints [0, 0H]. Then I1 11 > 0 and, by
Lemma 2.1 and Lemma A

(A10) ,(-<<>>) min {-<<->>’r: reII} -max { <<’>>’r: reII}= -II<<>>ll <0.

It will be shown next that -<<>> maximizes X(#) on i t.
For any tt e Bt, #m[#] - 0II, where m is the Minkowski functional for H, of(A6).

Therefore, since minimizes ril on OH,

IIm[]-’ll >--I111
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Hence, since it follows from (A7) that m[z] > 0 for all B t, and since IIl[ for
,u. EB l,

(All) m[/]-’>= IIW’II vz.
Consequently, since OH {m " e },

X() min {/2r: r e II } min { ’r: r e OH } min { u’m -i. et }

=< #’(-z)m[-/] -1 =-m[-/]-’--<-I111 x(-<<>>) V/[

where the last inequality is from (A 11) and the last equality is from (A 10). This reveals
that -(()) maximizes X(z) on t, which completes the proof of part (i).

(ii) From (A9), [0 OH] if and only if [, 0]. Suppose 0 E OH. Then 0
and there is at least one hyperplane, with some nonzero normal t, which supports II
at 0 12, Cor. 11.6.1]. Consequently, max { z’Tr: 7r EII} z’0 so that, by Lemma 2.1,
X(-(())) 0. Since 0 in this case, -(()) maximizes X(z) on t; as claimed in
part (ii).

(iii) Since 77 minpoint [0, HI and II is convex, (r )’77 >_- 0, for all 7r e II.
Consequently, by Lemma 2.1,

(A12) X(((-))) min { (())"x: -xEII} 11,

where, since in this case 0 II, #[I > 0. Furthermore, since minimizes liar on H,

(A13) X(z)=min {’Tr:TreII} u’-< I111 I111 I111 x(<<#>>) va.
Hence , IIll and X(((r))) ,. Furthermore, since the second inequality in (A13)is
strict when/ and - are not collinear, - is the unique global maximizer of X() with
respect to # t, which completes the proof of Theorem 2.1.

Appendix B. Proofs for 3.
Proof of Theorem 3.1. Apart from part (ii), the results of Theorem 3.1 are an

immediate consequence of Theorem 2. of [8]. The proof of part (ii) follows.
Theorem 2.1 8 asserts that ft is a convex compact set. Therefore, since 1

I’ is convex and bounded and is closed if N[ W’] f3 0 +ft { 0 } where 0 +ft denotes the
recession cone of ft [12, Thm. 9.1]. Since ft is compact, its recession cone is just { 0 }
[12, Thm. 8.4] so N[W’] f3 0+2 {0}. Consequently, I’ is closed and is therefore a
convex compact set, as claimed.

Some well-known or easily proved facts are summarized first.
LEMMA B 1. (i) For any C Nm n and any A S

[ICl[ =< [ICl[ I[vec [C]l[, [IV- [A][I I[vec [A]II IIAII,

A trace [A 2 ], kmin (A)I =< A II.
(ii) For any A, B n

trace [AB vec [A ]’ vec B’].

Proofof Theorem 3.2. (a) Proof that I2 C Ia. For x e r2 c r, let X(x) denote the
associated matrix, i.e., let

(B1) X(x)---1 [x]Sn.
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Then

(B2)

[xer2]

[x-n-t=M2(by(3.11)]

x- n-11 n- from 3.15 ), since M has orthonormal columns)

[llX(x)-n-Ill<=n-l(by Lemma B1 (i), B1, and (3.12))]

[X(x)=n-In+ A for some Aesn with Ilzxll_-< n-
[X(x)’= S(x) >= 0 (since kmin A] __.

By Lemma B1 (ii), the fact that X(x)’ X(x), (B1), and by (3.6)

trace [X(x)] trace [InX(x)’] vec [In]’ vec [X(x)] vec [In]’W Vff6 [X(x)]
(B3)

vec [In]’Wx.

Clearly, vec [In] vec[Sn] so, by (3.5),

(B4) W W’ vec [I,] vec [I,].

So, from (B3)-(B4) and because [by (3.4)] W’W= Ir
(B5) trace [X(x)] =(WW’ vec [In])’Wx=(W vec [I,])’x= t’x [lll2n-=
where the fourth equality is a result ofx belonging to F2 of (3.11).

Hence, from (B2) and (B5)

[xr2]

[X(x)’=X(x)>=o and trace IX(x)] 1]

[X(x) B2 for some Be U of(3.2) (by Lemma B1 (i))]

[vec [X(x)] fl, for fl of(3.7)]

= [x=V [X(x)] W’ vec [X(x)]e W’fl= F(by (B1), (3.6), and (3.))]

SO I2 1, as claimed.
(b) Proofthat F F. It will be shown first that F n- + R M], forMof 3.13 ).
Now, since B2 is symmetric when B e U

vec [In]’ vec [B2] =trace [InB2] VB- U

where the first equality is from Lemma B (ii) and the second is from both Lemma B (i)
and definition (3.2) of U. So, since vec I ]II n,

0 vec [In]’ { vec [B2 -n

(W’ vec [I,])’W’(vec [B2 n- vec [In])

t’(W’ vec [B2] n-It) VBc= U

where the second equality is from (3.5) and the third is from (3.12). Hence, for all B
U, W’ vec [B2 n-t is orthogonal to and therefore belongs to R[M] forMofTheorem
3.2. Consequently, W’ vec [B2 n-t + R[M], for all B U. So, as f, of (3.7), is the
convex hull of { vec [B2] B U}, it follows that W’2 c n- + R[M]. Since I’ W’2,
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this reveals that

(a6) rn-’, +R[M],

as claimed earlier.
It will be shown next that actually I’ n-t + ME, for E of (3.14).
Since is a convex subset of" R, by the Caratheodory Representation Theorem

[12, Thrn. 17.1], every o e can be represented as

n2+

(BT) o O/i vec [B/2] where denotes
i=1

for some O/i e R_ with O/i and for some Bi U.
Put B,2- in the spectral form VAiV’ and let )‘ )‘1)‘2" ),n]’ where the )‘ are the eigen-

values of B. Then, since Bi e U of (3.2), trace [B,2. so )‘ Ill and consequently

(as) trace [B/4] =trace [A/] ),,2.= IlXll N_< Ilxll
where the penultimate inequality occurs since xll2 x[I, for all x 13, 2.1 ].

Suppose 3’ e I’ W’ft. Then 3" W’o for some o eft which can be represented
as in (B7) and

II- n-ltl[ w’0- n-1W’ vec [Inl

n- vec In
-II O/i{ vec [n]- n -1 vec [In] }11
--< 2; llvec IN,2-l- r/-1 vec [In]

(B9) O/illB2i-n-llnll

O/i/trace {(B2i-n-lln) 2 }

O/i /trace {B } n-1

<= , o/i]/1- n -I

/1-n -I

(from (3.12))

(from Lemma B (i))

(since ai 1)

(since O/i >-- 0)
(by Lemma B (i))

(by Lemma B (i))

(since Bie U)

(from B8

(since O/i 1).

Now (B6) reveals that 3" n-l Mx for some x e Rr-I and, from (B9) and the
orthonormality of the columns ofM,

Ilxll IIMxll I1- n-l,II =< /1 n -l.

Consequently, 3" n-It ME for r-l{x Ilxll < /1-n-l}, for all 3" e
F, i.e.,

pen-It+

as required.
(c) Proofof(3.10). In view of(3.9), (3.11) and the definitions of andMin (3.12)

and (3.13)

3" r] 3" n-l +Mx for some x with xll --< /1 n-II’rll- /lln-’ll 2 / Mxll =, where Ilxll--< }/1-n -I

=" [n -1/2= IIn-ltll =< I111--< 11,

which completes the proof of Theorem 3.2.
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Allendix C. Proofs for 4.
Proof ofLemma 4.1. The hyperplane with normal ah x that supports MF is

{ z gq: (ah x)’z (ah x)’;(x) }. Consequently, the point z( x)h in the line L is
also in the hypelane if and only if

(C1) (x)(h x)’h h x)’(x),

from which the formula for z of (4.7) follows. Since

;(x) arg max { (ah-x)’y: yMF}

and &h MF, (ah x)’;(x) (ah x)’h&. Hence, since it is assumed in Lemma 4.1
that (ah x)’h < 0, it follows from (C1) that

(C2) z(x)=
(ah-x)’(x) & VxeMF,
(ah-x)’h

which completes the proof of (4.7).
Since minimizes x ah[[ with respect to x MF,

(C3) (z-)’(-ah)O VzeMF.

So, because &h e MF, it follows that kh’( ah) ( ah), i.e.,

(C4) h’(-ah)

Now

(C5) ah # 0

since e MF and since ah a MF (because it is assumed in Lemma 4.1 that a < & and
because & min { a : ah MF} ). Subsequently, from (C4) and the assumption that

(C6) h’(- ah > 0,

which establishes the first result of (4.8).
From (C2), z() . In view of (C3), (()-)’(- ah) 0. A con-

sequence of fi() e arg max { (ah )’y" y MF} is that

(h )’;() (h )’.

Hence (;() )’( ah) 0. Therefore, from (4.7), (C5), and (C6)

r()=+
’(-a)

which completes the proof of Lemma 4.1.

Proofof Theorem 4.1. It will be shown first that

(C7) aO<al<"" <ai<ai+<""

Since &h MF, it follows from the definition of Yo in (4.10) that h’yo &h’h.
Consequently, and since e of (4.9) is in (0, 1), it follows from (4.11) that

(C8) a0 <

(which, incidentally, verifies the asseion made about a0 in the statement of Algo-
rithm 4.1).
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Suppose O/i < . A consequence of (4.7) in Lemma 4.1 and of formula (4.15) for
O/i+l is that

(C9) O/i+ O/i --e’3)[’l’ai(Xi)--o/i]
Since xi e e2-minpoint [aih, MF] and (1 e2) e (0, 1), it follows from Definition

4.1 (iii), 4.8 ), and from (4.7) that

Zai(Xi) O/i>= e2) rai()ai) O/i] > O, roi(Xi) .
So, from (C9), Lemma 4.1 and the fact that e3 6 (0, 1),

(C 10) O/i + O/i 2 )( e3) [’ri(--i) O/i] > 0,

and, from (C9) and (4.7) of Lemma 4.1,

(C11) O/i+ O/i + e3) 7"ai(Xi)-- O/i] "< "i’ai(Xi) -<- &.

Then (C7) follows from (C8), (C 10 ), and (C 11 ).
Convergence rate result (4.23) will be established next. From (4.8)

II.f,,- O/ihll Ilhll I1:,- O/ih[] I1,- O/ihll
(C12) "rai(.a)- O/i

h’(.ai- O/ih) Ilhll Ilhll
In view of assumption (4.4), MF is supported at &h by a hyperplane H with nor-

malized norm n satisfying ’h < 0. Hence

,- O/ihll mindist O/h,MF] >= mindist O/ih,H] O/i- & ]rt’h,

so, from (C12),

"l’oi(.oi) O/i >= O/i a n’hllhll-.
Consequently, from (C 10),

ci+ - ci>--(1- e2)(1-e3)n’hllhl]-[oi-&].

Subtracting each side from & we obtain

(&-O/,+)=<[1 +(I-e2)(1

Therefore

(C13) (&- c/)-_< [1 +(1- 2)(1 e3)n’hllhll -]*(&- c0),

which establishes (4.23).
Since n’h < 0 (from assumption (4.4)), (C 13) shows that if stopping condition

(4.21) in Algorithm 4.1 were omitted, so that the algorithm iterated indefinitely, then

(C14) O/i "/ .
Taking account of (C7), O/i & with O/i < O/i + < t for all >= 0, which has proved

the first part of (4.22).
To start proving that/i t, as required to complete the proof of (4.22), it will be

shown that/i+ of step III is an upper-bound for a.
Assumption (4.6) states that , c MF where E ’h + { 0 e u: II011 --< k }. Let

Ki {xi+a(-xi):a[O, 1],}.
Then Ki MF since xi MF from (4.13 )), MF and MF is convex.

Consider

(C15) i+ =min { O/:O/hKi}.
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Then, for >- 0

&=min { ae.l: ah_MF} =<min { aeR" ahe.Ki}

/+ =<min {a:ah,7_,} -k

since c Ki MF. Hence, from (4.12 and (C 15 ),

k
(C16) 0 g’-,,-_,,>=/3,+, >-& ’v’i->O.

The value of fli+l computed by step III of Algorithm 4.1 will next be shown to be
that of (C15) and therefore, in view of (C16), to be an upper bound for &.

Consider first the case when xi ,..,, i.e., when h xi < k. Then, since ,-" is
convex, Ki E so i/ of (C 15 is given by

/3/+ =min { aeg:ahe,.} -k

Therefore the value of i/ computed by step III (actually by (4.16 )) of Algorithm 4.1
is that of (C 15 when ’h x - k.

Now suppose ’h xi > k. Consider the situation represented in the linear subspace
spanned by x and h, as shown in Fig. 4.1. It can easily be checked that the formulae of
(4.17) specify Oi and ki. One case is that when the angle Oi, between h and -(x ’h),
and the angle ki are related by cos (Oi) =< cos (ki). By considering Fig. 4.1 for that case
it can be seen that then the value of i+1 obtained from (C15 is again i+1 "- kIlhll so the formula for/i+ given in (4.18) ofAlgorithm 4.1 is correct for the case when
cos (Oi) <= cos (i). The other case possible is when cos (0i) > cos (ki). Then the situation
is exactly that shown in Fig. 4.1. From Fig. 4.1, it is clear that (C 15 gives i +1

k/(cos (i 0)Ilhll ), which verifies (4.19) for that case.
Hence, in every case, the value ofi+1 computed by step III is that of (C 15 and is

therefore an upper bound for &.
Some more analysis is necessary before it can be shown that i &.
Recall that L { ah" a e R]. Clearly,

(C17)
0 =< mindist [xi,L] [[xi- S’hll 2_ [(xi-h)’h] 2

< IIx,-,hll 2 <( +e2)2ll,,-ihll2<[(1 +e2)(- c,) Ilhll 2

where the second inequality occurs because aih is in L but is not necessarily the nearest
point to xi in L, the third is a consequence of the fact that xi eE-minpoint aih, MF]
and Definition 4. l, and where the fourth inequality arises because &h belongs to MFand, minimizes x aih with respect to x e MF.

Making use of (C17) in the second inequality below, we have

Ilxi- ’hll 2- I](xi-aih)-(h-aih)l[ 2

(C8) -211x,- ihll (’- o/i)Ilhll + (t- ,)211 hll 2

>--2(1 + )(-c,)(’-c,)Ilhll +(- c,)-Ilhll z.
Since (from (C14)) a-- &, the last expression on the fight of (C18) converges to
("- )Zllhll = > 0 as . Hence there is an integer i such that

(Cl9) IIx,-thllZ>_- 1/2(t-a)Zllhll=>O Vi>-il
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where the strict equality is from (C16). Consequently, by dividing (C17) through by
I]xi- ’h]l 2 and by making use of(C19) and (C14)

0=<1-
[(xi-h)’h] 2 [(1 + e2)(t- ci) [Ih[I 2 --- 0.
Ilxi-hll21lhll z= []xi-h[I 2

So

I(xi-h)’hl
xi- h h

Hence, for 0 of (4.17 ),

(C20)

Now consider

(C21) /i+ ’-
Clearly,

Ilxi- hll <= Ilxi- ceihll + IIoih- &hll
where, from (C14), O/i and consequently, from (C17), I1Xi- ehll 0, Hence

(c22) xi- hll --- 0,

Furthermore,

II&h- ’hll- xi- &hll--< x- ’hll--< II&h- ’hll / xi- &hll,

So, from (C22) and since, from (C16 ), "- & > 0,

(C23) Ilxi- hll II&h- hll- (’-&) Ilhll,

Therefore, from (C21 and (C23)

In view of(4.17) and (C21),/3-/+ ’- k/(cos (@/) Ilhll) whenever Ilxi- ’hll > k.
So, since (by (C20)), Oi O,

(C25) if there exists an integer i2 such that Xi ’h[I > k for all >
then " k/(cos (i Oi)IIh[I) &.

It will be shown next that/3,. &, by making use of (C25).
From (4.20) and (C16),/i-- min {/0,/1, "",/} >- &, for all >= 0. Therefore

(C26) i + & if tip & for some p or if/i -- &.

In view of (C 16), there are two possible cases: (a) " & k/II h (b) "& > k IIh[I.
Consider case (a) first. Suppose there is a finite j so IIx. ’hll --< k or so both

x ’h > k and cos (0j) =< cos (ffj). Then either (4.16) or (4.18 sets /. / "k/llhll so, since ’- & k/llhll in case (a),/+ &. Therefore, from (C26),/i .
Suppose next that there is no finite j so x. hll --< k or so both xj ’hl[ > k and
cos (0) -< cos (ff). Then, for all i>0, ]lxi- ’hll > k and (4.19) sets i+1 ’-k/(cos (@i- Oi)llhl]). Therefore, from (C25), i " & and, from (C26), /i . Hence
for case (a): i "
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Now consider case (b). Then ’h &hi[ k + 6 for some 6 > 0 and

xi- h >-- h h xi- h >= k+ x,-h tl.
Hence, since (C22) reveals that x &h -- 0, there is a finite integer i3 such that

(C27) I[xi- fh[[ > k+ 1/26 Vi> i3.

Hence step III of Algorithm 4.1 executes (4.17) for all > i3 and, from (4.17),
cos (ffi) < k/(k + 1/26), for all >-_ i3. Consequently, since (by (C20)), 0-- 0, there is
an integer i4 > i3 such that cos (Oi) > cos (ffi) for all > i4. Therefore (4.19) sets i+1
f- k/(cos(Pi- 0,)llhll), for all > i4. Subsequently, from (C25) and (C27), /i
Therefore, by (C26),/3i & in case (b).

This has shown that/i and/3i whether case (a) or case (b) occurs, which
completes the proof of (4.22).

Since (4.22) reveals that O t I/ and i t/, it follows that & e (o/i+l, /i+ 1) and
/3i+1- ai/l "- 0. Hence stopping condition (4.21) will be satisfied for some finite
and, from (4.21), for that i, I& o/i+ 11 $11[ [ -t- 12. Also, from (4.22), ai+ <
So, for & andfof(4.21), < &, [& [ =< el ll&l + e12 andre e2-minpointsF
gh, MF], which establishes post-conditions (4.24)-(4.25) and completes the proof of
Theorem 4.1.

ProofofTheorem 4.2. Consider Algorithm 4.2 with stopping condition (4.32) omit-
ted. Some consequences of the convergence, assumed in the theorem, of xi to 2,
minpoint [ah, MF] will be established first.

Since f0, to e F and Xo, Yo MF, and since F and MF are convex, it follows from
(4.36) thatf e F and x MF. In the same way it can be seen that

(C28) J e F and X . MF, with xi Mfi, Vi >= O.

Since xi, 2, MF and ah MF,

(C29) [[xi-ah[[ >-_ [[2-ah[[ >0 Vi>_-O.

Since it follows from (4.28) that Yi arg min { (xi- ah)’y" y MF} and since

xi MF,

(C30) (xi-oth)’(yi-xi)<=O Vi>=0.

It will be shown next that, since X "
(C31) (xi- ah )’(yi- xi)’- O.

For otherwise there is a finite integer i and a 6 > such that

(C32) [(xi- ah)’(yi-xi)[ > 6 Vi> i,

which yields a contradiction, as follows.
Suppose v minimizes {xi -[- W[yi- Xi] ah[[ with respect to w

minimizes it on . In view of (C30), v >-_ O, so min { 1, v } and it is easy to
check that

{ x, / [y,- Xi } olh 2 < Xi olh = N vi >- l,

where min { 6, 62/D2 } and D is the diameter ofMF (the point about D being that

IlYi xill <= D). Therefore, since xi + [Yi xi] MF (because MF is convex,
[0, 1] and x, yi MF), I1 hll = -< { x / v[yi Xi] } h[I =<
for all > il, which contradicts the fact that xi -- . Hence (C32) is false, which veri-
fies (C31).
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From (4.29)

(Yi- Xi)’(xi- oth
Xi- Zi x,-h = (x,- h),

so, in view of (C29), (C31) and the assumption that xi

(C33) zi- xi-+ O, zi-.-.,.

Also, from (4.29) and (C30)-(C31) there is a finite integer i2 such that

(C34) IIz-hll [(xi-ah+[yi-xi])’(xi-ah)[<= IIx,-hll Vi>--.i2IIx,-hll

and

(c35)
lie,- hll 1.
IIx,-hll

Furthermore, there is a finite integer i3 such that (from (C29) and (C34), (C35))

(C36) 0< IIz,-hll--< IIx,-hll i>i3

(from (C31) and the fact that (Yi ah)’(xi ah) (Yi xi)’(xi ah) + x, hll 2)

(C37) (yi-ah)’(xi-ah)>O gi> i3

(since, from (4.8) of Lemma 4.1, (ah ,)’h < 0 and since xi ,)

(C38) (ah-xi)’h <O ’Vi> i3

and (from (C33) and (C38))

(C39) ah zi)’h < 0 Vi> i3.

Assume now that stopping condition (4.32) has been satisfied, so that, from (4.30),
IIz,- hll -< IIx, hll (since otherwise (4.32) could not have been reached) and
conditions (4.33)-(4.35 have been satisfied. It will be shown that then J e2-minpointse
[ah, MF] and xi e_-minpoint [ah, MF].

Clearly when conditions (4.33)-(4.35 are satisfied, it follows from (C29) and the
fact that e. (0, 1) that the fight-hand side of (4.35) is strictly positive. Therefore, in
view of(4.34), (Yi ah)’(xi ah) > 0, so, from (4.29) and the fact, from (C34), that
zi olh --< x h II,

(C40) zi- ah qgi(xi- ah) where i(0, 1].

It is easy to check that zi belongs to the hyperplane Hi with normal (ah xi) that
supports MF and has contact point Yi. Hence, by (C40), Hi also has normal ah
zi. Therefore

(C41) [[zi-ah[12<-(zi-oth)’(x-ah) VxMF, (zi-ah)’h>O

where the second part follows from the first part of (4.34).
Since e MF, it follows from (C41) that [[Z ah[[ 2 --< [[z ah[[ 1] ah[[, so

Ilzi-hll -< I1-hll =< Ilxi-hll.
Consequently, x ah --< (1 + =) mindist ah, MF] if
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Hence, since (4.32) sets f f F and 5 x MF for the final i, 7 satisfies conditions
(i) and (ii) of Definition 4.2 for a point in e2-minpoint ah, MF] if stopping conditions
(4.33 )-(4.35 are satisfied. Next we will show that then 5 also satisfies condition (iii) of
Definition 4.1.

In view of (C41) and the fact that 112 ah <-- [Ixi ah I[,

(C42) .eX= {xeq: [lz-ah[12(zi-ah)’(x-ah)and l[x-ah[]2 [lx-ah[2}.
Since . e X, it follows from (4.8) of Lemma 4.1 that

(C43) z.(.) sup a +
xX,F, h’(x-ah)

where

(C44) F= {xU:(h-x)’h <0 }.
From (C29), ]lxi- hll O. By (4.33), Ilx- ahll (1 + ez)llzi- ah]l when

stopping conditions (4.33)-(4.35) are satisfied. So, when those conditions are satisfied,
zi ah 0 and q can be written as u R[K(zi ah))] R[KKzi ah))]. Con-
sequently,

(C45) x-h Y(x)((zi- h)) + X(x), VxXi,

(C46) h 6i ((zi- h)) + hi
where Y(x), 6i and Y(x), hi are ohogonal to zi h.

Then Xi of (C42) can be written as

(C47) xi={xa:(x)lzi-hl and(x)Z+llX(x)llllx-hll}.
In view of (C46) and the second pa of (C41)

(C48) 6i h’ ((zi- ah)) > O.

So, from (C47), x Xi Y(x) lid(x) )’ Wi for the set Wi shown in Fig. 4.2.
From (C45 )-(C46

(x- .h)’h X(x)i+(x)’h,X(x).- II(x) [Ihi
(C49)

(X(x)ll(x)ll)(i-Ilhill)’= Ilxi-.hll Ilhll cos(.,+x,) VxX

zi-h

[ (x)

FIG. 4.2
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for the angles gi and xi ofFig. 4.2. From (4.34), cos (ui + xi) > 0 when stopping conditions
(4.33)-(4.35) are satisfied. Hence, from (C49), then (x ah)’h > 0, for all x - Xi, so
(from (C44)) Xi fq Fi Xi. Then, from (C43 ),

x-h = x-h Ilx-h h
z,(:,) _-< sup a + sup a +

xcx, h’(x- ,h) x, Ilhil h’(x- ch)

x- ohll h x,)’ y ,h (x_-<a+ =a+ =a+
Ilhll cos (+ x) (1 -e2)(ah-xi)’h (1 -e2)

where the second inequality is from (C42), (C49), the penultimate equality is from
(4.35) and the final equality is from (4.7) and (4.34). Therefore

.(.) .(x,) _-< : .(.) ].

Furthermore, since, from (4.34), (ah xi)’h < 0 it follows from Lemma 4.1 that
,(xi) --< 5. Consequently, xi satisfies condition (iii) of Definition 4.1. Since it has been
shown already that xi satisfies conditions (i) and (ii) of that definition, it follows that
xi e2-minpoint [ah, MF] if stopping conditions (4.33)-(4.35) are satisfied. Conse-
quently, if the algorithm terminates, xi e2-minpoint [ ah, MF] and, from (C28),
f j e2-minpoints ah, MF]. Therefore the claim ofTheorem 4.2 has been verified
if termination occurs.

All that remains to be shown is that termination does actually occur.
Since ah q MF, .f, minimizes x ah on MF and c MF,

I1.- hll =< minx x- hll -I1 rh hll rh- hll < rh- hll.

Therefore, because it is being assumed that IIx hll I1 hll, the condition
xi- chll =< ’h ahll will be satisfied for all sufficiently large.

Furthermore, (C33) reveals that zi xi -- 0 so x ah --< (1 + =) z ah
will be satisfied for some finite i. Therefore condition (4.33) will be satisfied for some
finite i.

In view of (C38), (ah xi)’h < 0 for all > i3. From (4.31) and (C35), i "-* O.
Let cos () h’(g, ah)/ h I1. h ). From (4.8) and (C29), cos () > 0. Then
h’(zi ah)/ h z ah cos () since, from (C33), zi -" .o,. Hence, from (4.31),
cos (i) -- cos (). So, since i O,

h’(..- ah
(c50) cos (, + ,) --- cos () h II. h

> 0.

Therefore condition (4.34) will be satisfied for some finite i.
Finally, consider condition (4.35). By (C31), (C38) and the assumption that

Xi -- (ah-xi)’(yi-ah) I[xi-ahll-+(xi-ah)’(yi-xi) [[:f.- ah[[ a

ah xi)’h (xi- ah )’h (.f. ah )’h’
so, in view of (C50),

[.hl, [ ch x)’(y- ah ]oth xi)’h
COS Pi’-- Xi) -’

Thus the fight-hand side of (4.35)converges to I1 hll. Clearly the left-hand side of
(4.35) converges to (1 =) I1 hll. Since (1 e:) (0, 1), for some finite the left-
hand side is less than or equal to the fight-hand side, so that condition (4.35 is satisfied.
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Therefore stopping conditions (4.33)-(4.35) will all be satisfied after some finite
number ofiterations, which proves termination ofthe algorithm and completes the proof
of Theorem 4.2. V1

Appendix D. Proofs for 5. A fact that is used often in the following is the re-
sult that

[l(D 1) vec E IAini- kln H# ,
i=1

which is a consequence of (5.1)-(5.2).
Proof of Theorem 5.1. Let denote .= and Z denote = 1. Since the Hi are

taken to be linearly dependent, a z# e B can be determined such that Y (t#)iHi O.
Consequently, k(u#) 0, so

(D2) = max {X(#)’#e[t} >-_0.

(i) In this case, =() > 0. Since the span of the Hi is that of the/-/, there is
a e R so that Z H Z /. Therefore, X() Xmin (Z iH) Xmi, ( i)
,() > 0. Hence there is a e R’ such that X() > 0. Consequently, X > 0 when
X>0.

(ii) Here 0. Since 4:0 and the/i are linearly independent, ii 4:0 and
there is a nonzero #, / say, such that E fiHi , iti. Then, much as in part. (i),
k() () --0 so k(((/))) 0 and E ((f))iHi 4: O. Furthermore, since X 0
implies that kmi iIi) 0 for all Rz and since the spans of the Hi and i are the
same, kmi

_
]diHi) 0 for all t. Therefore =< 0. Hence, in view of (D2), 0.

Since k((())) 0, it follows that a/ is ((t)) and giv_es E fiHi 4: O.
_(iii) Here < 0. Therefore () < 0 for all t. The i are linearly independent

so iIi 4:0 for all 6 f. Since the spans of the Hi and of the i are the same, this
reveals that k(/) < 0 for all/ t such that Z #iH 4 O. However, k(##) 0 for the
vector # defined initially, for which Z (t#)iHi 0. Hence 0 and a/ is any # t
which gives Z #iHi O. I’1

Proofof Theorem 5.2. Let H* t. Then

(’ )X()-- ,min E iHi In >-
i=l

Z tini--In
i=1 i=l

where the first equality is from (1.2), the first two inequalities and the second equality
are from Lemma B ofAppendix B, the third equality is from (D and the last equality
is from 5.3 )-(5.4). Therefore

Suppose dl[ < () . Since, from (5.3), d HH*, it follows that dll I111
if H* 0. Now 11 > (because it has been assumed in that n >= 2) and we have
assumed here that d -< 1, so here H* 4: 0. Thus, 4: 0, because Ht , and, since
of Theorem 5.1 is given by (()) 6 B t, it follows that
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Proof of Theorem 5.3. (i) It is clear from Theorem 3.2 that n-it z F. Hence, in
view of (5.3),

n-ld=D[n-lt]zDF.

Therefore the line L { ad: a z R } intersects the set DF. Since r‘ is bounded [Theorem
3.1 (ii)], its recession cone 0 +F { 0 ) 12, Thm. 8.4 ]. Therefore, since F is closed
Theorem 3.1 (ii) ], DF is closed 12, Thm. 9.1 and is therefore compact. Consequently
L f’) DF is compact. Therefore, since L f’) DF { ad: ad z DF), there exists a most
negative value of a such that cd z DF, i.e., & of (5.8) exists.

Since D of (5.4) is an orthogonal projector and 113’ -< for all 3" z r‘ (by Theorem
3.2), D3"II -< for all 3" z r‘. Therefore D3" + dll > 0 whenever IIdll > 1, i.e.,
whenever I1 > dll-. So 93" + dll 0 implies that I1 --< rill-. From (5.8), &
is the most negative a z R such that D3" + dll 0 for some 3" z . Therefore I1 =<
d -, as claimed.

From Theorem 3.2, n-d + DM,7_,2 Dr’, so n-ld z Dr’. Hence

(D3) =min { ozlt: adzDr’} <- n -1

Throughout the rest of the proof of part (i), suppose H’t 0. Then z -R[H] so

(D4) R[H] c+/-R[ t] R[M],

as a result of the definition ofM in 3.1 3).
It will be shown next that d q R[DM], by contradiction.
Now (d z R[DM]) = (D z R[DM]) = (D( MO) 0 for some 0) ( MO z

N[D R HI c R[MI { by the projection property ofD and by (D4) } z R M] ).
But (t z R[M]) is false because, by (3.13), 0 z +/-R[M]. Hence d t R[DM], as
claimed earlier.

Next (adz Dr’) = (adz n-ld + R[DM] {by (3.9), (3.11)}) ({a n-l}dz
R[DM]) (a n- { since d qt R[DMI } ). Hence & n- when H’ 0.

Consequently, if H’t 0 then & n -1 else (by (D3)) & _-< n -1, which completes
the proof of part (i).

(ii) Consider x z N r. Decompose and x orthogonally as + and x
97 + 2 where , 2 z N[H’] and "i, 2 z R[H]. Since it is assumed in the statement of
Theorem 5.3 that q R[H],-i O. Furthermore, since the case with N[H’] is being
considered, 4: 0. Choose .g 7 and .g -[ 117112/1111 =]z. Then x z R[H] and x z
+/-R[t] { z r: z’t 0 }. Consequently, from the definition of M in Theorem 3.2,
x MO for some 0 z gr-l. For D of (5.4), N[D] R[H]. Therefore, since x z
R[H], it follows that D(t x) 0. Hence d Dt Dx DMO, i.e., d z R[DM], as
required.

(iii) This is an immediate consequence of parts (iv), (v), and (vi), which
will be proved next.

(iv)-(vi) From Definition 5.1, H# + &t z r’. Now

H#a+er 22 (#a)iHi+.l,,>=O= , (s)Hi>---.l,,
i=1 i=1

where the first implication is from (D l) and the fact that, in view of Theorem 3.1 (i),
x z r" implies that V6-6- (x) z S. Hence

(D5) X(#a) -> -.
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Now, provided tt # 0, ((gs)) e B and, from (D5),

Suppose & < 0. Then, by (D5), h(ga) > 0 so ga # 0 and consequently (D6) implies
most of part (iv), in particular that , > 0. The proof of the upper bound for X of part
(iv) follows.

Clearly, Z = Hi XI,, >= O, since , X(), so H ,t cone (I’) (by (D 1) and
Theorem 3.1 (i)). Hence

(D7) 0(H Xt) I’ for some 0 R_.

It follows from Theorem 3.2 that, for , I’, n -1/2 <= I111. Therefore, from (D7),

n-l
(D8) 0>= IIn-

Since it has been shown above that , > 0 in this case (for which & < 0), and since
2= ni- XL, >- O,

, tiHi >= Z tiHi-XI, >_-0, j=l,2,...,n.

This gives rise to the first inequality below, where the first equality is from (D 1) and
Lemma B 1, and the second equality is from (D 1) and Lemma B 1,

H- X, Z iHi- I,, <= Z iHi IIall =< all I111 nil.
i=1 i=1

So, from (D8),

O(n’/211HII) -’.
Since is the most negative number a such that H + at e F for some t e Rt, and

since, from (DT), H(0) + (-0,)t e F, it follows that & _-< -0,, i.e., that, since & < 0,, <- -&/O <- --&nl/2[]H[I. This has completed the proof of part (iv) by establishing the
upper bound on , given there.

Suppose next that & 0. Then

(D9) , IdiHi O, Vt.tl,
i=1

since otherwise

_q#t such that = l#iHi > 0
3 (t, a) < such that Z uiHi + aL O,
i.e., such that Hg + at cone (F), with Hg + at # 0 (since a< and
it is assumed that R H] in Theorem 5.3, which is being proved)

0, g, a > X X< such that 0(Hg + at since 0 $ , by
(3.10) of Theorem 3.2)
(U, a)tX< such that Hg + atF
<0,

which contradicts the assumption that & 0.
Now # # 0, because 0 $ I’, Hga + ht F and because & 0 here.
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In view of (D9), () =< 0 for all t R t, so =< 0. Since za 4 0, (D6) applies and,
because the case & 0 is being considered here, reveals that X(((ga))) 0, so
0 and ((ga)) maximizes on B, which completes the proof ofpa (v).

Now suppose > 0. Then

(DI0) Z inio
i=1

since otheise

3U t_ { 0 } such that Z = uiHi 0
](u,a)t- {0} Xz such that E=iHi+alnO,
i.e., such that Hg + a cone F], with H+a 0 (because H 0
(since g 0 and the columns ofH are linearly independent because
it has been assumed that the Hi are linearly independent) and since
it has been assumed in Theorem 5.3 that aR[H])
3(O,u,a)>X- { 0 } Xz such that O(Hu + a) F, since OaF
3(, a)et- {0} Xz such thatH + te F
&0,

which contradicts the assumption that & > 0.
From (D10), X() < 0 for all e t { 0). Hence < 0, which proves pa (vi)

and completes the proof of Theorem 5.3.
Proof of Theorem 5.4. Pas (i)-(iii) were established in the text preceding the

theorem. The proof ofpa (iv) follows.
By Theorem 5.3 (i), DF is compact so 0 +DF { 0 } 12, Thm. 8.4 ]. Hence STDF

is also compact. From pa (i), & is the most negative number a such that STDF.
Hence &d e OSTDF. Fuhermore, pa (ii) reveals that STDF has an interior. Therefore
there exists at least one nonsingular (i.e., not containing all of STDF) hypelane sup-
poing STDF and passing through &d [14, Cor. 3.4.12 ]. Let be its normal. Such a
nonsingular supposing hypelane does not contain any points in the interior of STDF
[14, Lemma 4.3.4]. Consequently, since n-d 6 int (STDF) (from pa (ii)),

(D n-d)’ < d)’n.

From pa (iii), & < n-. Therefore (Dll) reveals that d’ < 0, which completes the
proof of Theorem 5.4.

The proof of Theorem 5.5 will be facilitated by the following result.
LEMMA D1. Suppose d O, H’t O, and < &. Let e > and let e F with

IID dl (1 + ) mindist [ah, Dr] and ]]D dl] l]n-d- dll. Furthermore,
let H*[ at]. Then O, n- a > O and

+ (1 +)( ) d II HIIX(<<u>>) >
(n- .)11 n*,II:

ProofofLemma D 1. A lower bound on X() will be obtained first. In view of the
definitions of as H at] in Lemma D1, of d in (5.3) and ofD in (5.4),

H t D( at) D ad.

So, applying- throughout, remembering definition 5. l) of H,

Z uH=X-.ln-Z,
i=l
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where X, ve-6-1 3, ), zi WCd-1 (D3, a.d). Here, since 3, r, it follows from Theorem
3.1(i) that X, >_- 0. In addition, from Lemma Bl(i), [[Zi[[ =< [[Zi[[ lID3, ad[[.
Therefore

Z Idigi>-----( 0+ IIz, ll)I.>--(a+ IID’y-odll)I,,,
i=1

so a lower bound for X(tt) is given by

(D12) X(#)-->-(a + IID- dll)>---(c+( +)(&- )11 dll).
Here the last inequality occurs because it has been assumed in Lemma D1 that
D dll -< (1 / ) mindist lad, Dr’] and because

mindist [ad, Dr _-< (& a) IId 11,

since &d Dr and a < &. The above-mentioned lower bound on X(tt) is given by the
fight-hand side of (D 12).

Next a lower bound on []tt[[ will be established. In view ofTheorem 3.2, and because

(D13) 3, n-It + MO

for some 0 -1. Therefore, since it has been assumed in Lemma D that

and since d Dr,

D3, cdll --< n -ld- aa I[,

(D14) IID{(n-’-a)t+MO} <= llD{(n-’-a)t} ll.
Direct computation with (D14) { making use ofthe facts that t’M 0 (from 3.13 )),

that a < & (assumed in Lemma D1), that & < n -1 (from Theorem 5.4(iii), since it is
assumed here that H’t q: O) and that D h HH* } reveals that

(D15) t’HHtMO O.

Fuhermore, I]HH ] > 0 since N[HH] ZR[H] and since q ZR[H] because it is
assumed here that H’ 0, i.e., that N[H’] ZR[H]. Hence, because HHt is
a projector,

(D16) t’HHtt IIHHt,II > 0.

Now, from (D13) and the definition of as H*[- at], H HH*[-at]
HHt[(n- a)t + MO]. So, in view of(D15)-(D16),

(D17) t’H# (n-I a)[[ HHtt 2 > 0,

where n- a > 0 since the case a < is being considered and since N n- (by
Theorem 5.4 (iii)).

From (3.13), R[ t] @ R[M]. It follows that H# (()) + MO for some
N and some 0 Nr-. From (D17), (n -l a)[IHH**[[/[[,[[. Furthermore, since
dM 0 and since [1((,))[[ 1,

HH*tllHull <<>> (n -1 a)
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Consequently the required lower bound for [[u[I is provided by

(D 18) l[/ >

Therefore, from (D 12) and (D 18)

which completes the proof of Lemma D 1.
Proof of Theorem 5.5. Consider the application of Algorithm 4.1’ mentioned in

Theorem 5.5. Theorem 4.1 reveals that

(D19) Oli<l.[i Vi>=O, ai&, i,3.

Therefore, if & > 0 then O/i + 0 will occur after a finite number of iterations. If
& < 0 then/; / < 0 will occur after a finite number of iterations. If & 0 then, from
(D19), ai+l < 0 and/i+1 >= 0 for all >- 0 and, from (D19) and (4.21’) of Theorem
5.5, 6+ "- 0. Hence the condition O/i +1 < O, i+ " 0, (i + < ( will be satisfied eventually.
Thus Algorithm 4.1’, with stopping condition (4.21’) of Theorem 5.5 replacing
stopping condition (4.21), will stop after a finite number of iterations whatever is the
value of &.

If Algorithm 4.1’ stops owing to ai /1 >- 0, then it follows from (D 19) that & > 0
and consequently, from Theorem 5.3 (iii), it will be known that < 0. Similarly, if the
algorithm stops owing to/i+ < 0, then it will be known that , > 0, as claimed in
Theorem 5.5.

Consider now the situation when Algorithm 4.1’ stops with the situation

(D20) O/i +1 < 0, i+1 - 0, i +1 ("

Then it can be seen that

as follows.
In view of D19 and the situation being considered in (D20), Algorithm 4.1’ stops

with ai +1 < & and e2-minpointsr O/i +1, OI] Consequently, from Definition 4.1, it
also ends with IID@ -ag+ ld[[ -< (1 + e2) mindist [ai+ ld, Dr] and [IDv ai+ dll --<
Iln-d a+l dll Therefore, from Lemma D1, the vector H*[ ag+ ] in (4.21’) of
Theorem 5.5 is nonzero (so that of Theorem 5.5 is defined) and the first inequality of
(D21) is valid.

The second inequality occurs because
From Theorem 5.3(iv)-(vi) and (D19)-(D20), if

-o,,+ lnl/211HII and if& >= 0 then , -< 0. Hence, either way, the final inequality of(D21)
is satisfied.

From (D21), the definition of
[ i+ 1, ] with 6/ -> 0. Since the case when the algorithm stops with (D20) satisfied
is being considered, X((())) e [X i, ,], which completes the proof of Theorem
5.5.

Acknowledgments. The author thanks M. K. Mak for programming the algorithms
and for producing the numerical results of 6, and both M. K. Mak and I. M. Jaimoukha
for reducing the number of mistakes in the paper.
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PADI APPROXIMANTS TO MATRIX STIELTJES SERIES:
CONVERGENCE AND RELATED PROPERTIES*

SANKAR BASU

Abstract. Following earlier work on Pad6 approximants to matrix Stieltjes series and their network theoretic
relevance, it is shown that certain paradiagonal sequences of matrix Pad6 approximants to the series under
consideration always converge. Interpretations of this result in terms of representation of impedances of RC
distributed multiport networks are given. Matricial generalizations of the classical Hamburger and Stieltjes
moment problems are discussed in this context. Matrix polynomials of the second kind orthogonal on the real
line, which fall out as numerators of the matrix Pad6 approximants of certain orders, are singled out and their
properties are studied.

Key words Pad6 approximation, Stieltjes series, network theory

AMS(MOS) subject classification. 93

1. Introduction. Consider a formal power series as in (1.1), where

(1.1) T(s)= Tksk;
k=0

each Tk is a real symmetric matrix of size (p p). The rational matrix QL(s)P (s) (or
P] (s) OL S ), where QL s), O_L S and PM(s),/M(s are (p p polynomial matrices
of respective formal degrees L and M is said to be a fight matrix Pad approximant (or
left matrix Pad approximant) to T(s) if the first (L + M + 1) terms of the Maclaurin’s
series expansion of QL(s)P(s) or/] (s) (L(s)) matches with those of T(s) in 1.1 ).
In addition, the formal power series T(s) in (1.1) is said to be a matrix Stieltjes series
if for each n the block Hankel matrices Hn(T) and H,(T) as given in 1.2 are positive
definite and negative definite, respectively:

(1.2a) H,,(T)

To TI’"Tn
Tl T2

(1.2b) H,(T)

Note that for matrix Stieltjes series the fight and left matrix Pad6 approximants uniquely
exist and are necessarily identical [1], 3 ]. Thus, the term matrix Pad6 approximant
MPA of order L/M] will henceforth be used to denote L/M] (s) QL(s)P (s)
P] (s)OL(s). The fact that the paradiagonal sequences of MPAs of order [m 1/m]
and [m /m for m 1, 2, to a matrix Stieltjes series can be identified as the

Received by the editors March 2, 1988; accepted for publication (in revised form) November
29, 1988. A revised version of this work was prepared while the author was visiting the Laboratory for In-
formation and Decision Systems, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.

? Department ofElectrical Engineering and Computer Science, Stevens Institute ofTechnology, Hoboken,
New Jersey 07030. Present address, Laboratory for Information and Decision Systems, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139 (BASU@LIDS.MIT.edu).

The formal degree of a polynomial matrix is defined as the largest degree of its polynomial entries.
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impedances of admittances of multiport electrical networks containing two types of ele-
ments (e.g., RC or RL) has been established in [1] via utilization of recently developed
tools of matrix continued fraction expansion and the Cauchy index of a rational matrix.
Also, the Pad6 approximation problem can be cast in terms of the partial realization
problem as occurring in linear system theory 13 ], 19 ]. The positive definiteness of the
block Hankel matrices Hn(T) for all n then imply, in particular, that every point in the
partial realization data is a "jump point" with jump size equal to [13]. Thus, as has
been shown via the tools of matrix continued fraction expansion ], 15 ], as well as the
Cauchy index of a rational matrix [1 ], the positive definiteness of H,(T) and H(T)
can be viewed as the conditions which the partial realization data needs to satisfy so that
the realized transfer function matrix is an impedance or admittance of an RC multiport
(similar formulations for RL or LC impedances or admittances are also possible).

The question of convergence of the sequences [m /m or m /m 1],
m l, 2, of MPAs, when T(s) is a matrix Stieltjes series, however, has not been ad-
dressed in the literature. Although a discussion of this issue in the scalar (i.e., p 1)
case is available in 3 ], system theoretic interpretation of the results are not readily
available. In the present paper it is shown by exploiting the network theoretic interpre-
tations developed in that the sequences of m /m and m /m ], m
l, 2, .... MPAs to a matrix Stieltjes series do indeed converge uniformly in an open
(bounded) region of the complex s-plane excluding the negative real axis.

Furthermore, since the sequences of m /m and m /m MPAs can be
viewed as the successive convergents ofcertain special types ofmatrix continued fractions

], the convergence of the paradiagonal sequences of MPAs can also be interpreted as
the convergence property of the related matrix continued fraction expansions. Since the
continued fraction expansion just mentioned is, in fact, associated with a ladder realizable
RC multiport (cf. Fig. for p 1), we essentially have the result that the sequence of
RC multiport ladder impedances (or admittances) so derived from a matrix Stieltjes
series is always convergent (even if the formal power series T(s) in (1.1) is not). Thus,
this latter result can be interpreted in terms ofthe important fact that the matrix Stieltjes
series in (1. l), which may not necessarily converge (cf. [3] for examples in p case),
can be meaningfully used to represent a nonrational impedance or admittance matrix
associated with a multiport RC distributed transmission line [17 ].

Next it is shown that, as in the scalar case the positive definiteness of Hn(T) in
(1.2a) for all n guarantees the existence of a bounded nondecreasing real symmetric
matrix valued measure a(x), -oo < x < oo, such that each of the Tk’S in (1.2) can be

C1 C2 Cn+

R Rr.+

Impedance Zm (s) Pm(S)Q1+ (s)

C2 Cm

(.__

(b)

Impedance Zrn(S) Prn- (s)O (s)

FIG. 1. Z,+(s) > Z,,(s) iflms=O, Res>O.
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viewed as the kth order moment associated with or(x). This result provides a direct
matricial generalization of the classical Hamburger moment problem [6 ], [10]. If, in
addition to (1.2a), the negative definiteness of H,(T) in (1.2b) is also imposed, then
the support of or(x) is shown to be restricted to the semi-infinite interval 0 < x <
thus providing a solution to the matrix version of classical Stieltjes moment problem
[6], [10].

Furthermore, if the power series T(s) in (1.1) is assumed to converge in
a disc of radius R, then we show that the sequences of MPAs [m- 1/m](s) and
[m 1/m 1](s) indeed converge to T(s). An integral representation of T(s) in terms
ofthe matrix-valued measure r(x), which coincides with the Cauer’s representation 20
of RC (multiport) impedances, or in the scalar case with the closely related class of
classical Stieltjes functions [3], is also derived in this context.

On the other hand, the "denominator" polynomial matrices associated with MPAs
of order [m l/m] and [m 1/m 1] have been shown in [1] to form sequences of
polynomial matrices orthogonal on the real line. Various properties ofthese polynomials
such as the three-term recurrence relation followed by them, properties of location their
zeros and their relationship to the matricial Gauss quadrature formula were also derived
in ]. In this paper it is shown that while in the orthogonality ofthe matrix polynomials
was viewed in terms of certain vector space representations, by using the measure g(x)
the orthogonality relationship can be seen more transparently in terms ofan inner product
in standard form.

More importantly, this approach also establishes the interesting fact that
the sequences of "numerator" polynomial matrices of the [m-1/m](s) and
m /m (s) sequences ofMPAs also satisfy certain orthogonality properties similar

to those satisfied by the "denominators" of the paradiagonal sequences of MPAs in
question. From a system theoretic standpoint this result is to be expected in view of the
fact that the property of RC, RL, or LC impedance (or admittance) realizability remain
invariant under the operation ofinversion ofthe rational matrix concerned. The sequence
ofmatrix orthogonal polynomials corresponding to the "numerator" sequences ofMPAs
are thus also found to provide matricial generalization of the orthogonal polynomials of
the second kind discussed in the classical literature [6], [9].

In the rest ofthis section related previous research on specific aspects ofthe problem
considered in the present paper will be briefly reviewed and comparisons to our approach
to the problem will be made. The study of matrix Pad approximants, their relationships
to continued fractions, various moment problems, and issues ofconvergence were initiated
in [23 ], [24]. Both convergence of sequences of Pad6 type approximants to Stieltjes
series [22] as well as the related moment problems [25] have been discussed in the
mathematical literature in an (infinite-dimensional) operator theoretic setting by assuming
that the T’s in (1.1) are not just matrices but infinite-dimensional operators in Hilbert
space. Convergence ofPad approximants to a formal power series ofthe matrix Stieltjes
type has been previously considered in [21].

This paper deviates from those mentioned above in the following respects. First,
our proofs are simpler, more elegant, and make use of elementary tools from linear
algebra and complex function theory. This is so because we make full use of the finite-
dimensional (i.e., matrix) nature of the problem considered. In fact, although the major
results on the moment problems in [25] is known to be in error [26] in the infinite-
dimensional case, a correct elementary discussion for the finite-dimensional problem is
not known.

The convergence proof of[21 starts from a slightly different (albeit equivalent)
definition of matrix Stieltjes series, where T’s are assumed to be the moments associated
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with a nondecreasing symmetric matrix-valued measure at the very outset. This already
amounts to assuming a solution to the corresponding moment problem referred to above,
that is worked out in the present framework in 3 of our paper. Furthermore, although
the final results in 21 hold only for the finite-dimensional ease, their proofs hinge on
powerful operator theoretic results (e.g., Naimakar’s theorem linking method ofmoments
for self-adjoint operators in Hilbert space). While our definition of matrix Stieltjes series
is via the algebraic constraints imposed on the sign definiteness of Hn(T) and H,(T),
our proof is more direct, elementary and does not make use of a solution to the moment
problem at all.

Finally, the most contrasting aspect ofthe present contribution is that our discussions
including the details of proofs are guided throughout by system theoretic intuitionman
approach not adopted by earlier authors in the area.

2. Convergence proof of sequences of MPAs to matrix Stieltjes series. The
major content of this section is the proof of the fact that the [m- 1/m](s) and
[m 1/m ](s) sequences of MPAs converge uniformly to an analytic function in
the domain D(A), where D(A) is any bounded domain of the complex plane at least at
a distance A away from the negative real axis: -D =< Re s _-< 0, Im s 0. The strategy
of our proof is to first show that the required convergence is attained for all fixed real
positive values ors. This is achieved by establishing certain monotonicity and boundedness
properties of the approximants that result as consequences of the RC realizability of
[m-1/m](s) and [m-1/m-1](s), as shown in [1]. Uniform convergence in
D(A) is then proved by essentially exploiting standard arguments on convergence con-
tinuation [5 ]. A mathematically equivalent procedure has been pursued in [3] for the
scalar (p 1) case without the use of network theoretic arguments.

The following notations will be used in the rest of the paper. IfA is a real symmetric
positive-definite matrix, then we will write A > 0. Also, the notations A > B and A >= B
will be taken to mean that the real symmetric matrix A B is positive definite or non-
negative definite, respectively. Obvious variations of this notation with the symbols >
and >- replaced by < and -< will also be used.

We first need the following theorem.
THEOREM 2.1. The sequences of rn / rn s and rn / rn s approxi-

mants to a matrix Stieltjes series each, respectively, form an increasing and decreasing
sequence ofsymmetric matrixfraction descriptions on the positive real axis, i.e.,for all
m 1, 2, 3, andfor all s with Re s > 0 and Im s 0 we have

(2.1) [m/m+ l](s)- [m- 1/m](s)>O,

(2.1 ’) [m/m](s)-[m- 1/m- 1](s)<0.

Proof. The proof relies on the result [1, p. 211] that [m 1/m] and [m 1/
m approximants to the matrix Stieltjes series (1.1) can be obtained by truncating
the matrix continued fraction expansion

T(s)(2.2) T(s)= B,+ -B2+"" Bk+ xk,s

where },k 0 for k odd and Xk for k even, the B;, 1, 2, are constant real
symmetric positive definite matrices and Tk(S) is a matrix Stieltjes series. In particular,
it is shown in [1] that for m 1, 2, (2.3) and (2.3’) hold true:

(2.3) [m-1/ml(s)=[B+[B2+ + B2m
S
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(2.3’) [m- 1/m- 1](s)= B + 92 + + [B2m- I] -1

We shall prove (2.1) only; the proof for (2.1 ’) is analogous. Note first that due to (2.3),
the approximant of order [m/rn + 1] can be written as in (2.4):

Ira ll(s)-- B+ -B+
s

(2.4)

+[B2m+[Bzm+ +[1Bzm+2]-l]-l]-l]-l]
Obviously, for Re s > 0 and Im s 0 we have Bi/s > 0 for all i. Since the sum as well
as inverse of real symmetric positive-definite matrices is also real symmetric positive
definite, we have B2m + + O2m + 2 / s -1] -1 > 0; consequently,

O2m/S+ [O2m+ + [O2m+2/s]-l] -1 > O2m/S

for Re s > 0 and Im s 0. By using the result that if A and B are two real symmetric
positive-definite matrices such that A > B, then A- < B- 2, p. 86 it then follows that

(2.5) B2m h- B2m + + B2m + < Bzm
s

Repeating the process of adding the matrices Bi/sx and subsequently consider-
ing the inverses of the resulting matrices in the left- and fight-hand sides of (2.5) for

2m 1, 2m 2, 1, where 0 when is odd and , when is even, it
follows from (2.3) and (2.4) that [m/m + 1](s) > [m 1/m](s) for Res > 0,
Ims= 0. E3

The physical implication ofthe above theorem is obviously clear in electrical network
theoretic terms, when the rn / rn (s) and rn / rn (s) approximants to a
Stieltjes series are interpreted as being the input impedance of RC ladder network, as
depicted for the scalar case p 1, in Figs. (a) and (b), respectively. The monotonicity
property of the sequences ofapproximants then trivially follow from the fact that for all
real and positive values of s, the input impedances can be computed by replacing the
capacitors by positive resistances.

The norm xll of a vector x will be defined as the well-known Euclidean norm,
whereas the norm II" of a matrix A will be defined as the spectral norm

IlAlla-- max [llAxll; xll 1].

We recall the following properties of the spectral norm ]1" of a matrix A.
PROPERTY 2.1 [4]. I[A is equal to the largest singular value ofA. In particular, if

A is real then IIAII ]/(m(AtA)), whereA is the transpose ofthe matrixA, andXm(AtA)
denotes the largest eigenvalue ofAA.

PROPERTY 2.2. For any real symmetric matrix A, [IAH I,m(A)[, where ,m(A)
is the eigenvalue ofA having largest absolute value. Thus, in particular,
where c is any real number.

Proof. The proof follows from the fact that k(AtA) X(A) XZ(A), where ,(A)
is an eigenvalue (necessarily real) ofA.

PROPERTY 2.3. IfA, B, C are real symmetric positive- nonnegative- definite ma-
trices such that A B + C, then IIAll > IIBII (IIAI[ >-- IlBII).

Proof. Since C is positive- (nonnegative-) definite from the Courant-Fisher
min-max theorem (e.g., [2, p. 73]) it follows that m(A)= m(B-k-C) 7> ,m(B) (or
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Xm(B h- C) >= Xm(B)). The result then follows from Property 2.2 via the observation
that eigenvalues ofA and B are positive (nonnegative).

PROPERTY 2.4. IfA and B are two real symmetric positive- nonnegative-) definite
matrices, and a and b are two real numbers such that 0 < a < and 0 < b < 1, then
IlaA / bnll < IIA / BII,

Proof. Since 0 < (1 a) < and 0 < (1 b) < 1, the matrices (1 a)A and
(1 b)B, and thus { (1 a)A + (1 b)B }, are real symmetric positive- (nonnega-
tive-) definite. Thus, IIA + B[I II(aA / bB)/ {(- a)A +(1 -b)B)II > IlaA / bBII
(or >_-IlaA + bBII, correspondingly). The last step follows by the use of Property
2.3 above.

COROLLARY 2.1.1. The MPAs to a matrix Stieltjes series satisfy
II[m l/m](s)ll, for m 1, 2, and II[m/m](s)ll < II[m 1/m 1](s)ll for
m 1, 2, 3, for all real positive values ors.

Proof. We first note that the MPAs to the matrix series of Stieltjes (1.1) are necessarily
symmetric rational matrices. To substantiate this, note that if QL(s)PTd (s) is a fight
MPA of order [L/M] to the series T(s), then P(s)Q(s)2 is also a left MPA of order
[L/M] to the matrix series Tt(s) T(s). The last equality follows from the fact that in
(1.1) T Ti for all 0, 1, 2, .... However, this proves that both fight and left ap-
proximants of order [L/M] to the series T(s) exist, and hence they must be equal [3 ],
i.e., Qi(s)P(s) P(s)Qt(s). Thus the approximant of order [L/M] is symmetric.
(Alternatively, this result also follows from the representations (2.3) and (2.3’) of the
sequences [m 1/m](s), m 1, 2,... and [m 1/m 1](s), m 1, 2,... of
approximants.) Also, it follows from Theorem 2.1 that if[m/m + 1](s) [m 1/m](s)
Pm(S) and [m 1/m 1](s) [m/m](s) Pm2(S), then for all real positive values

of s and for all m 1, 2, Pm(S) and Pm2(S) are real symmetric positive-definite
matrices. Since due to (2.3) and (2.4) the MPAs in the last two equalities are themselves
real symmetric positive definite for all real and positive values of s, the required result
follows from Property 2.3 of the spectral norm.

Next, we consider the matrix continued fraction expansions of the MPAs
m /m (s) and m /m (s) to the matrix Stieltjes series T(s). Since the
MPAs just mentioned are known to be the impedance matrices of electrical networks
consisting of positive resistors and capacitors only, the continued fraction expansions,
due to results discussed in ], can be expressed as the matrix partial fraction expansion:

(2.6) [m- 1/m](s)= , A,,+ "y.s

r’

.1 -------7-A(2.6’) [m 1/m 1](s) A)+
+’y.s

where in (2.6) and (2.6’), the constant matrices A,, A’, are all real symmetric nonnegative
definite, and the constants 3’, and 3", are real and positive. Note that in the scalar case
(i.e., ifp 1) (2.6) or (2.6’) can thus be interpreted as the input impedance of a circuit,
as shown in Fig. 2, where Ai Ri and i Rifi. Similar interpretations are possible for
p > 1. Expanding the fight-hand side of (2.6) and (2.6’) in a power series around s 0,
and recalling the fact that the first 2m terms of the expansion for [m /m (s) and the

Superscript denotes the transpose of a real matrix.
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Impedance Zm(S) =Pm (s)Q;.1 (s)

FIG. 2. Z,,(s) < R + R2 + + R,, if Im s 0, Re s > 0.

first (2m 1) terms in the expansion for [m 1/m l](s) must be identical with the
given power series T(s) in (1.1), it respectively follows that

(2.7) T= (--%)kA. for k=0, 1, ,2m- 1,

(2.7’a) To A’,,,
v=0

(2.7’b) Tk ’,(,,) kA fork= 1,2, ,2(m- 1).

We next state Theorem 2.2, which follows from the representations (2.6) and (2.6’)
associated with the MPAs of respective orders [m /m](s) and [m /m 1](s) to
a matrix Stieltjes series.

If only H,(T) (but not -H,(T)) is positive definite for all n, then representations
(2.6) and (2.6’), and thus (2.7) and (2.7’), still hold true. However, %’s may then assume
positive as well as negative real values.

THEOREM 2.2. For all s with Re s > 0 and Im s 0, the sequences of norms
m /m (s) and m /m (s) II, m 1, 2, of MPAs to a matrix

Stieltjes series each possesses a uniform upper bound.
Proof. Since % > 0 and ,’, > 0, we have I(1 + %s)-l < and I(1 + ",s)-I <

for all real and positive values of s. Therefore, it follows from (2.6), (2.6’), Property
2.4 of spectral norm I1" II, and the triangle inequality for the spectral norm 4 that (2.8)
and (2.8’), respectively, hold true for all real and positive values of s, and for each
m 1,2,

(2.8) II[m- 1/m](s)ll <= vl
II[m- l/m- l](s)II

Furthermore, by considering (2.7) and (2.7’) with k 0, it immediately follows from
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(2.8) and (2.8’) that for Re s > 0, Im s 0 and each rn 1, 2, (2.9) and (2.9’) in
the following hold:

(2.9) ]][m- 1/m](s)ll <-II T01l,

(2.9’) II[m- 1/m- l](s)II r011.

The fact that the sequences m /m (s) and m /m (s) for m 1,
2, ..., each have uniform upper bounds for real positive s has, therefore, been estab-
lished. V1

In the scalar case, i.e., ifp Theorem 2.2 admits an obvious physical interpretation
when [m /m](s) or [m /m 1] (s) is viewed as an impedance of the RC circuit,
as in Fig. 2 (for p 1), or equivalently, as in (2.6) or (2.6’). The uniform upper bound
on the approximants is then provided by the sum of all resistors in the network. Similar
interpretations are also possible when p > 1.

THEOREM 2.3. For all real positive value ofs, the sequences [m /m](s), m
1, 2, as well as [m 1/m 1] (s), m 1, 2, of MPAs to a matrix Stieltjes
series converge pointwise.

Proof. Since a (strictly) monotone (increasing or decreasing), bounded sequence
of real numbers necessarily converge, it follows from Corollary 2.1.1 and Theorem 2.2
that the sequences m /m (s) 1[, m 1, 2, and m /m (s) [1, m 1,
2, are convergent for all real positive values of s. The required result then follows by
noting [4] that convergence of the sequence of norms [m 1/m](s)[I, m 1, 2,
is a sufficient condition for the matrix sequence [m 1/m](s), m 1, 2,-.., to
converge. Similar arguments hold for rn / rn (s), rn 1, 2, V]

COROLLARY 2.3.1. For any i, j with <= i, j <= p andfor any real positive value of
s, the sequences rn / rn ]0(s) and rn / rn ]0(s) rn 1, 2, of(]th entries of
MPAs of respective orders m/ rn 1] and m 1/rn 1] to a matrix Stieltjes series
converge pointwise.

Our next objective is to enlarge the domain of convergence of the sequence of
approximants under consideration to a region D(A) larger than the positive real axis,
where D(A) is any bounded region of the complex plane, which is at least at a distance
A away from the negative real axis. The region D(A) is shown in Fig. 3.

We first need the following lemma.
LEMMA 2.4. Assuming that T(s) is a matrix Stieltjes series, ifAij), A(ij) are the

respective ijth elements ofthe matrices A,, A’,, and %, 3" are positive numbers as ap-
pearing in (2.6) and (2.6’), then thefollowing inequalities hold true:

(2.10a) Z A)I < /( T(ii)T(JJ)]
"0 0

(2.10b) E IAi)l’)’,--< /(T")TJ)),
u=l

(2.10’a) Z IA’()[ < /(T(")T(J)
v--O

(2 10’b) E IA’(iJ)]% < V(T(ii)T(jj))
’l "l

=0
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Proof. Only proofs for (2.10a) and (2.10b) will be given. Analogous proofs hold
for (2.10’a) and (2.10’b). Consider the case j first. Since the A are real symmetric
nonnegative-definite matrices, the diagonal elements A ;;) are necessarily nonnegative.
Furthermore, considering the iith elements of the matrices in (2.7) with k 0, and
k 1, we obtain, respectively, (2.11 a) and (2.11 b):

(2.1 la) ., Aii) , Aii)-- Z(oii),
u=l =1

(2.11b) E A") I% Z Aii)%, ITli) l.
=1 u=l

Next, when 4 j, the (2 2) principal minor ofA, obtained by considering the ith row
and jth column of A, are also nonnegative definite. Thus, it follows that [A 0) =<
((Aii)AJJ))) /z. The last inequality, along with an application of the well-known
Cauchy-Schwartz inequality, yields (2.12a) and 2.12b)"

(2.12a) 2; a;J)l <- Z V(A(")Ajj)) <- Aii) Ajj)

u=l u=l

(2.12b) V(A E A (ii),.y E AJJ)%Z AiJ) 13’. <= Z ii)A JJ)3’2
=1 u=l =1 =1

Using (2.7) with k 0 and k 1, it easily follows that the fight-hand sides of (2.12a)
and (2.12b), respectively, are equal to (( Toii) Tojj) ))1/2 and ((Tlii) Tljj)))I/2. The in-
equalities (2.10a) and (2.10b) are thus established.

THEOREM 2.5. Each element of the sequences of MPAs [m 1/m](s) and
[m 1/rn 1](s)for m 1, 2, to a matrix Stieltjes series is uniformly bounded
in D(A).
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Proof. We first prove the result for the region { s; Re s ->_ 0, s e D(A) }. Consider
the ijth element [m-1/m]0(s) and [m-1/m-1]0(s) of [m- 1/m](s) and
[m 1/m 1](s), respectively. From (2.6) and (2.6’), respectively, it follows that

(2.13) [m-1/m]o(s)=
+%s

(2.13) [m--1/m-1]0(s)=Ao +
+3,s

Clearly, since %, 3" > 0, we have for Re s _>- 0 and arbitrary Im s that ]1 + %sl -> 1,
I1 + 3",sl >-- for all . By making use of the last inequalities along with (2.13) and
(2.13’), (2.14) and (2.14’), respectively, are obtained via the use of triangle inequality:

(2.14) I[m- 1/m]o(s)l <u 0) (0)

l+%s IA < Z IA

(2.14’) I[m- l/m-l]o(s)l -< IA(o)I /
I1 /’r:sl

IA)I-- N IA;<>I.

It then follows from (2.14) and (2.14’), via the use of (2.10a) and (2.10’a) in Lemma
,-r( ii) ,r,(JJ) 1/22.4, that for Re s >- 0 and for each m 1,2,-.. I[m- 1/m]0(s)l -((1o o ))

and m /m ]0(s) =< (( T(oii) Toj:) )) 1/2. Thus the theorem has been proved, in
particular, for all s in { s; Re s >= 0, s e D(A) }.

In the following equations we consider values of s in the region { s; Re s < 0, s
D(A)}. Note first that since the identity Is1211 / -rsl 2 Ilmsl 2 (,lsl 2 / Res)2

holds for any real % we have I1 / "r,sl >= IIm sl/Isl < and I1 / "r’,sl - IIm sl/
sl < for each . Consequently, (2.15 and (2.15’) follow from (2.6) and (2.6’), re-

spectively, for each i, j 1, 2, ..., p:

(2.15) I[m- 1/mlo(s)l <,1 I1 +’r,sl
[At)I --< Isl IA)I IImsl,

(0)I[m- 1/m- 1]:(s)l--< IA0 I+= I1 +"r’,sl
(2.15’)

(
r,

--< Isl IN Ilmsl.
u=0

Again invoking (2.10a) and (2.10’a) of Lemma 2.4 along with (2.15 and (2.15 ’), re-
spectively, it follows that for all s with Re s < 0 we have that

(2.16) I[m-1/m]o(s)l < Isl/(Tto")7"t))/llmsl
(2.16’) I[m-l/m- 1]0(s)l =< Isll/(Zo")Zo))/llmsl.
If Rt< is the radius of a circle, which completely encloses D(A) in the
complex plane, then (2.16) and (2.16’) establish a uniform upper bound of
RM( T(oii) ,-r( ij) 1/2 /o )) A) for the sequences
rn 1, 2, in { s; Re s < 0, s D(A) }. IfM max (Rt/A, 1), then due to the result
proved in the last paragraph, M((T(oii)T(o))) l/ serves as a uniform upper bound on
each of the sequences rn / rn ]ij(s) and rn / rn ]0(s) I, rn 1, 2, in
D(A). The theorem is thus proved.



PADI APPROXIMATION 393

We are now in a position to prove the convergence of the sequences of rational
matrices [m l/m](s) and [m 1/m 1](s), m 1, 2,.-., by using standard
techniques from complex function theory 5 ]. The result is summarized in the following
theorem.

THEOREM 2.6. The sequences of MPAs oforder m /m (s), m 1, 2,
and m 1/m 1](s), rn l, 2, to a matrix Stieltjes series converge uniformly
in the region D(A) ofthe complex plane. Furthermore, the matrix-valuedfunctions G( s)
and G’(s), to which the two sequences, respectively, converge are both real symmetric
(i.e., ((s) G(f), (’(s) G’(f)) 3 and analytic in D(A).

Proof. The following discussion will be only in terms of the sequence

[m-1/m](s),

m 1, 2, .... Analogous arguments hold for the sequence [tn /tn 1](s), m l,
2, .... We shall establish the convergence of rn /m (s), m 1, 2, by showing
that the sequence of ijth elements [tn 1/m]ij(s), rn 1, 2, of [m 1/m](s)
converge.

Let D(A’) be a region similar to D(A) but slightly larger and containing the closure
ofD(A). Then since [m /rn]ij(s) is uniformly bounded in the closure ofD(A’), each
subsequence of[ rn /tn ]0(s) is normal in D(A’), and thus contains another subsequence
converging locally uniformly to some analytic function D(A’). Since all these limit func-
tions are the same on positive real axis, they are identical in D(A’) due to analytic
continuation. Hence, [m 1/m]ij(s) converges locally uniformly in D(A’) to a limit
function analytic on D(A’), and in particular converges uniformly on D(A).

Finally, since G(s) is holomorphic in D(A), which is symmetric with respect to the
real axis, and the property of realness of G(s) is inherited by the property of realness of
m /m]0(s) for real values of s, it follows from the well-known Schwartz reflection

principle that G(s) is real symmetric, i.e., G(s) G(). U]

Note that if T(s) is a Hamburger series, i.e., if only Hn(T) (but not -H,(T)) is
positive definite for arbitrary n, then property of uniform boundedness, as proved in
Theorems 2.5 and 2.6, still holds true when D(A) is replaced by the bounded, discon-
nected, two-component domain

Dt( A)= { s; llm sl > A, [sl<R<}.

Consequently, the first paragraph in the proof ofTheorem 2.6 applies, and we may assert
that there exists a subsequence of the sequence ofMPAs that converge uniformly every-
where in DI(A) tO a real symmetric function analytic in DI(A). However, since in this
case "r’s are not necessarily positive, Theorems 2.2 and 2.3 do not apply and consequently,
the pointwise convergence of the sequence of MPAs for real positive values of s cannot
be established.

3. Matricial Hamburger and Stieltjes moment problem and related results. In this
section we undertake the solution of the matricial version of the classical Hamburger or
Stieltjes moment problem. More specifically, the following result, stated in Theorem 3. l,
will be proved. An integral representation of the functions G(s) and G’(s) of Theorem
2.6, when the Stieltjes series (1. l) has a nonzero radius of convergence is also derived in
this connection.

The bar "-" denotes complex conjugate.
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We first need the following definition.
DEFINITION. A real symmetric matrix-valued function a(x) ofa real variable x will

be said to be nondecreasing (increasing) if the matrix a(x) a(x2) is nonnegative
(positive) definite, whenever x > x2.

THEOREM 3.1. (a) Ifthe block Hankel matrices Hn( T) in (1.2a) are positive definite
for all nonnegative integer values ofn, then there exists a nondecreasing matrix measure
a(x) such that the matricial Stieltjes integral representation (3.1) for T holds true:

(3.1) (--1)Tk x da(x), k=0, 1,2, ....
b Furthermore, ifin addition to the conditions stated in part a the block Hankel

matrices H’( T) in (1.2b) are negative definite for all nonnegative integer values of n,
i.e., if T( s) as in (1.1) is a matrix Stieltjes series then the lower limit ofthe integral in
(3.1) can be replaced by zero.

Note that the Riemann-Stieltjes integral over a matrix measure, as in (3.1), was
first introduced and their properties studied by Wiener and Masani in [7 in the context
of multivariate stochastic process.

Before embarking on a proof of Theorem 3.1, the matricial version of Gauss quad-
rature formula proved in [1, Thm. 3.3 will be recalled in a notation compatible with
the present discussion.

THEOREM 3.2 [1]. IfHn( T) is positive definite for all nonnegative integer values
of n, then for any fixed integer rn > O, there exist real symmetric nonnegative-definite
(p p) matrices A, and real numbers , each depending on rn 4, such that

(3.2) (--1)kTk , A.. fork=O, 1,... (2m-1)
v=l

where r mp. Furthermore, ifH’(T) is negative definite for all n, then the "y,’s are
necessarily positive.

Note that when both Hn(T) and H,(T)) are positive definite, (3.2) follows from
(2.6) and then by observing that the coefficient of sk in the power series expansion of
[m 1/m](s) around s 0 is Tk for k 0, 1, (2m 1), thus establishing the
matricial Gauss quadrature formula 3.2 via electrical network theoretic arguments (in
fact, (3.2) is identical to (2.7)). However, when only Hn(T) but not (-H,(T)) is posi-
tive definite, the network interpretations of rn / m](s) in (2.6) cannot be given and
a detailed proof of (3.2) as worked out in is called for.

DEFINITION [7]. A matrix-valued function a(x) will be said to be of bounded vari-
ation in a, b if Y k O’(Xv) ff(X.-- is bounded for any partition a x0 < x <
x b of the interval [a, b].

LEMMA 3.3. If a (X) is a nondecreasing real symmetric matrix-valuedfunction such
that M >- a(x) >= 0 for all x [a, b], then each element of a(x) is bounded for all
x [a, b]. Furthermore, or(x) as well as each of its entries are of bounded variation
in[a,b].

Proof. Let a<)(x) denote the ijth entry of the matrix a(x). Since M >= a(x) >- O,
it follows from Property 2.3 of the spectral norm that Ila(x) --< IIMll for all x [a, b].
If ej denotes the jth column of the (p p) identity matrix, then

0)(x)l = (x) e: --< (x) --< MI[.
i=l

To avoid clutter in notation this dependence is not reflected explicitly in (3.2).
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Consequently, I(J)(x)l < IIMII for all 1, 2, p. Since j is chosen arbitrarily,
each element of the matrix a(x) is bounded by MII. This result along with the nonde-
creasing character of a(x) implies that [7, Lemma 4.2(b)] the functions a(iJ)(x), 4: j
are each functions of bounded variation. However, for all j, a(J)(x) is nondecreasing
since a(x) is so, and furthermore 0 =< aJJ)(x) <= [IMI[ (the first inequality follows from
nonnegativeness of a(x)). Thus, a)(x) is also of bounded variation in [a, b]. Con-
sequently, each entry of a(x) is of bounded variation in [a, hi, which is a necessary and
sufficient condition for a(x) to be of bounded variation in [a, b] (cf. [7, Lemma
4.2(a)]). V1

Remark. We note that if a(x) is a real symmetric matrix-valued function of
bounded variation in [a, b l, then due to Lemma 4.2(a) of[7] a iJ)(x) is of bounded
variation for all i, j. Consequently, iff(x) is any continuous function in [a, b] then
faf(X) da(iJ)(x)exists [9] and, consequently, due to Lemma 4.8 of [7] the matricial

b
Riemann-Stieltjes integral fa f(x) da(x) also exists.

LEMMA 3.4. Ifa(X) is any real symmetric nondecreasing matrix-valuedfunction of
bounded variation in a, b ], then

(3.3) (x) da(x) >= g(x) da(x)

wheref(x) and g(x) are continuous scalarfunctions such thatf(x) >= g(x) >= O for all x
in the interval ofintegration.

Proof. Consider the function h(x) =f(x) g(x) defined in [a, b]. The existence
of the integrals in (3.3) and Of fa h(x) da(x) then immediately follow from the remark
preceding the present lemma. Furthermore, we also have

(3.4, fabh(x) da(x)=fabf(x)da(x)-fabg(x)da(x).
Sincef(x) >= g(x) >= O, the functionsf(x), g(x), and h(x) are all nonnegative in [a, b].
Consequently, due to the nondecreasing character of the matrix-valued measure a(x),
it trivially follows from the definition of the matricial Riemann-Stieltjes integrals that
each of the integrals in (3.4) is real symmetric nonnegative definite. The present lemma
then follows from Property 2.3 of spectral norm. C]

Our strategy for proof of Theorem 3.1 is, in fact, a matricial generalization of a
technique elaborated in [6 in the scalar context.

Proofof Theorem 3.1. Let "y -< 3’2 -< -< "yr be an ordering of the "y,’s in (3.2)
and consider the real symmetric nonnegative definite matrix-valued function am(X) de-
fined over -o < x < +oo as in (3.5)"

am(X)’-O for x <"y

A, for"yu=<x<"yu+
(3.5) ,=1

A forx >-"Yr.
u=l

Then the following properties of am(X) are clear.

(P1) am(X) is real symmetric nonnegative definite for all real x. Furthermore,
if xl > x2 then am(X) >= am(Xz), i.e., am(X) is a nondecreasing matrix-
valued function of x.
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(P2) From (3.2) with k 0 and (3.5) it follows that (To gin(x)) is real
symmetric nonnegative definite for all real x and for all m > 0.

(P3) Since due to (P1), (P2), and Lemma 3.3, a(x) is of bounded variation,
the matricial Riemann-Stieltjes integral f-oo Xk dam(X) exists elementwise

k9 and is equal to Z = 3’A, which, due to (3.2), is equal to (- 1)kTk
for k 0, 1, (2m 1).

It thus follows from (P1) and (P2) above and from Theorem A1 in the Appendix that
a subsequence amr(X); 1, 2, of the sequence am(X), m 1, 2, converges to
a real symmetric nonnegative-definite matrix-valued function r(x), which is also non-
decreasing. Therefore, it follows from (P3) above that

(3.6) (-1)T X&m,(X) for all m>-2(k+ 1).

The following considerations then hold for any choice of finite real numbers a, b
witha<-l, <bandm>_-k+ 1.

Thus, from (3.6) and the triangle inequality for spectral norm [4 ], we have

kTk Xk dtr(x) xk darer(x) Xk dtr(x)

(3.7) <- xk dam,(X) + xk &m,(X)-- Xk da(x)
a

However,

(3.8) _-<

k Xk demi(x)

f_’ xl k dcm,(X)

x2k + 2 dtrmr(X)Ial k+2

x2+ 2 damr(X)

I’a’k + 2 Z=/2

where in (3.8) the first equality follows from the fact that for x < 0, xk (--1)kl xlk; the
second equality from Property 2.2 of I1" with a l; whereas the first inequality follows
from the fact that if x -< a < then X2k+ 2/I a k+ 2 IX k . 0 in conjunction with
Lemma 3.4; the second inequality from Properties 2.2 and 2.3 of spectral norm I1" II; and
the last equality from (3.6) above as a consequence of the choice mi ->- k + 1. It can also
be shown in an analogous fashion that

(3.9)
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Thus, from (3.7) it is possible to assert that (3.10) in the following holds for a < -1,
<b, andmi>_-(k+ 1):

(3.10)

(- 1)kTk-- Xk dtr( x)

<= X! drmg(X)- x dr( x)

From Theorem A2 in the Appendix it follows that the first terms in the fight-hand side
of (3.10) goes to zero as mi-- . Thus, for all k 0, 1, 2,

(3.11) (- 1)krk xkdtr(X) <=llr2k+2ll(lal-(k+/

Furthermore, as a -- - and b -- , (3.11) yields II(-1)kz f-o xd’(x)ll 0,
thus [4] proving that (3.1) holds for all k 0, 1, 2, ....

Part (b) of the theorem follows by observing that in Theorem 3.2 if H,(T) is
negative definite for all n, then 3’’s are necessarily positive, which in turn implies that
tim(X), as defined in (3.5), and thus a(x), is zero for all negative x.

Note that if Uk (- 1)T and Hn(U) and H,(U) are the Hankel matrices obtained
by replacing the Tk’s in (1.2a), (1.2b) by the corresponding Ug’s, then it follows via
straightforward algebraic manipulation that Hn(T) > 0 ifand only ifHn(U) > 0, whereas
H,(T) < 0 if and only if H,(U) > 0. The solutions to matricial versions of Hamburger
and Stieltjes moment problems then follow in a more conventional form as stated in
[10] in the scalar case from this observation.

Note that the following result can be viewed as a matricial generalization of the
well-known scalar result 10 that the nondecreasing Stieltjes measure (x) must, in fact,
have infinitely many points of increase.

PROPERTY 3.5. For any nonzero (1 p) real constant vector v, thefunction vtr( x)v
ofx must have infinite number ofpoints ofincrease.

Proof. Assume that the result is false, i.e., there exists some v such that vtr(x)v can
be viewed as a linear combination of a finite number N of step functions, occurring at,
say, al, a2, aN. Consider the polynomial p(x), as in (3.12a). Then (3.12b) follows
from 3.1 and 1.2a):

N N

(3.12a) P(X) H (x-li) X alexk,
i=1 k=O

(3.12b) _Z pZ(x) dr(x)=AtNHN+ l( T)AN

where Av is the block row matrix (a0I, all, aNI) and I is the (p p) identity
matrix. Since not all ai’s are zero, AN is of rank p, thus implying, in view of positive
definiteness of HN+ 1(T), that

(3.13) pt p2(X) da(x) v> O.

However, by recalling the definition of Riemann-Stieltjes integrals over a matrix measure,
it follows from the fact that vta(x)v is a linear combination of step functions that the
left-hand side of (3.13 is exactly equal to zero, which is a contradiction, ff]
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We next assume that the matrix Stieltjes series T(s) in (1.1), which so far has been
considered only as a formal power series, to have a radius of convergence R. Then by
using the representation (3. l) we can further prove the following theorem.

THEOREM 3.6. If T(s) in (1.1) has a nonzero radius of convergence R and the
associated Hankel matrix H,(T) satisfies H,,(T) > 0 for all n, then

(i) r(x) constantfor xl > R-l;
(ii) for all s in sl < R we may write

f do’(x)= 1 dr(x),"(3.14) T(s)-- + sx -, -t- sx

(iii) The sequences of MPAs m 1/m s and[m- 1/m s m 1,
2, ..., converge uniformly to the expression (3.1 4). In particular, if T( s) is a matrix
Stieltjes series, then the limitfunctions G(s) and G’(s) ofTheorem 2.6 are both given by
(3.14);

(iv) If, in addition, H’(T) < 0for all n, i.e., T(s) is a matrix Stieltjes series, then
the lower limits in the integrals in (3.11) can be replaced by zero.

Note that in the last case (3.14) coincides with the integral representation of RC
impedances known as Cauer’s representation in classical network theory [20 ].

Proof of Theorem 3.6 uses Proposition 4.1, which, however, has been included in
4 for an improved categorization of results of similar nature.

Proof. (i) Let Pm(s) be the denominator polynomial matrix associated with the
fight MPA of order [m 1/m] to T(s), and Pm(S) be the corresponding "inverse"
polynomial matrix as defined in (4.1). Define rm via r, max (l&m l, Im I), where
tm and m are as described in Proposition 4.1, from which it also follows that rm+ <=
rm for all m 1, 2, .... Then [m 1/m](s) is analytic in Isl < rm and thus, its power
series expansion around s 0 converges in sl < rm. Furthermore, as m -- oo this latter
expansion coincides with T(s) in 1.1 ), which is assumed to have a radius ofconvergence
R. Consequently, R < rm and thus, Im < R-, I/ml < R-I for m 1, 2 Next,
since for any fixed m, the %’s in (2.6) are (a subset of) the zeros of det lm(S), the
latter conclusion yields that I=1 < R- for all u and m. Thus, it follows from (3.5)
that for all m, rm(X) constant if xl > R -’, which in turn imply that r(x) con-
stant if x > R-l.

(ii) The following considerations hold for real-valued s with sl < R. Define
4,(x) Y]=o (-sx) and k(x)= (1- Isxl) -l, Clearly, then for all x in -R-l-<

x -< R- we have In(X)l < (x) and 4)n(X) " (1 + sx) -1 as n -- oe. Furthermore,
since k(x) is continuous and r(x) is of bounded variation (cf. proof of Theorem 3.1) in
-R -1 =< x =< R- it follows from [7] that the matricial Riemann-Stieltjes integral of
k(x) with respect to dtr(x) over the interval -R -1 -< x =< R -1 exists. By applying the
dominated convergence theorem of the theory of functions of a real variable to the
sequences formed from the respective entries of matrices, it then follows that

49,(x) dr(x)--- (1 +sx)-1 dr(x)
R- R-I

as n--- o.

Thus, the proof of (3.14) for real values of s follows from (1.1) and 3.15 ), in which use
of(3.1) along with the fact that a(x) constant for Ixl > R- have been made:

(3.15) TkSk= (--SX) k dtr(x) n(X) dtr(x).
k=0 =0 R- R-
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The validity of (3.14) for complex values of s then follows from the principle of analytic
continuation by noting that both T(s) in 1.1 and the extreme fight-hand side of 3.14
are analytic in sl < R.

Part (iii) follows from the fact that the limit functions to which the sequences
m /m (s) and m /m (s) of MPAs converge and T(s) are each holomor-
phic in sl < R, in which they have identical power series expansion, namely, (1.1).

(iv) Finally, if T(s) is a matrix Stieltjes series, then all 3’,’s are positive; thus due
to (3.5), a(x) constant for x < 0. Consequently, the lower limit of the integrals in
(3.14) can be replaced by zero.

The following comment is in order with respect to item (iii) of the above theorem.
In the scalar case it has been shown that even ifR 0, the integral representation (3.14)
for the limit functions remains valid if the coefficients of the power series further satisfy
the so-called "Carleman criterion" 3 ]. An extension of this result in the matrix case is
not pursued here (see, e.g., [21] and references therein).

4. Matrix orthogonal polynomials of the second kind. The fact that the sequence
of inverse polynomial matrices, constituting the "denominators" of MPAs to a matrix
Stieltjes series form a sequence ofmatrix orthogonal polynomials has already been pointed
out in ]. However, in the orthogonality relation was viewed as an algebraic relation,
i.e., in terms oforthogonality ofvector spaces. Presently, it will be shown that this relation
can be interpreted as an orthogonality relation with respect to the matrix-valued measure
a(x) developed in the previous section. Certain other results as natural generalizations
of the scalar theory such as the orthogonal polynomials of the second kind and their
properties follow as consequences of this discussion.

Consider the set of "inverse" polynomial matrix tim(S), as in (4.1), where Pm(s) is
the "denominator" polynomial matrix associated with the [m 1/m](s) MPAs for
T(s), and H,(T) in 1.2a) for each n is positive definite (for the purpose of the present
section, no restriction is imposed on H,( T)):

(4.1) m(S) smem(S-1) for all m.

Then the following results hold true.
PROPOSITION 4.1. If &m and {m are, respectively, the largest and smallest zeros of

det tim(S), then &m +1 >= &m, m+ <---- mfOr all m 1, 2, ....
Proof. As shown in [1], the zeros of det tim(S) are the eigenvalues of the block

tridiagonal matrix in (4.2a), where Ck D-KkDk, Co DT1, Xk D-[ 1Dk, and
Dk’S are real symmetric positive definite, whereas the KkDk’s are real symmetric matrices:

(4.2a)

(4.2b)

T D1/2
DI/2,, K, D1 "’,

lrr

m-1
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Thus, the zeros of det/m(S) are also eigenvalues of the real symmetric block tridiagonal
matrix Zm- in (4.2b), where D/2 stands for the Hermitian square root of Dk. It then
follows from the Courant-Fisher theorem [2] that

(4.3a) &m max XtZm -1X’ Ill ),

(4.3b) &m + max {ytZmy; yll 1}
where x and y are column vectors of size mp and (m + 1)p, respectively. Since from
(4.2b) we have that

(4.4) Z=
D KmDm

it follows from (4.3a) that &m can also be considered as the maximum value of ytZmy
subject to the restriction that Y and that the last p elements of y are zero. Thus,
m+1 mo The result m +l m also follows from similar arguments ifm and ,+1

are expressed as the minimum values of the quadratic forms in (4.3). K]

Note that in the scalar case, i.e., if p- the above argument also leads to the
interlacing property of zeros of/m(S) det/m(S) and/m + (S) det/m + (S), whereas
in the matrix case interlacing properties of this type are not known to hold.

PROPOSITION 4.2. IfHn( T), as given in (1.2a), is positive definite for all n, then
the matrical Stieltjes integral

(4.5) Pt(x) aa(x)P,( x)

is positive definite when u v and is a zero matrix when t 4: v, where a(x) is the real
symmetric nondecreasing matrix-valuedfunction ofthe real variable x, as appearing in
Theorem 3.1.

pm) skProof. Let Pm(s) Z’=0 and consequently, Ibm(S) Z= (m)
0 Pm kSk, where

p(km)’s are real (p p) matrices. Also, note that since a(x) is real symmetric and P,(x)
as well as P,(x) are real-valued matrices for real x, it is enough to prove the result for
u >_- . The case of u < z then follows by considering the transpose of (4.5). It follows
via the use of (3.1) in a straightforward manner that

(4.6)

where H,(T) is as defined in (1.2a) and M, is defined as the p (u + 1)p matrix M,
[p,)t ip,)t Ip")tlI] t. However, it also follows from the normal equations (equa-
tion (3.1) in defining the fight MPAs that H,( T)M, 0101 01Dt, ]t, where
D, is a real symmetric positive-definite matrix of size (p p). Therefore, due to (4.6)
we have that f_ P(x) dr(x)P,(x) is equal to D, when u z and is equal to zero when
u 4: #. The proposition is thus proved.

PROPOSITION 4.3. IfP(s) is any (p p)polynomial matrix such that each of its
elements are ofdegree strictly less than m, then

(4.7a) f_’ P(x) dr(x)lm(X) O,

(4.7b) f_ l’tm(X) dr(x)P(x) O.
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Proof. Since implicit in the definition of fight MPA [1] is the fact that p(om)
Pm(O) I, i.e., m(X) is monic for all m, it follows that el(s) can be written as

et(s)= am-lm-l(S)+ am-2m-2(S)+ + aolho(S)
where ai’s are constant (p p) matrices. Then (4.7a) follows from Proposition 4.2.
Analogous arguments hold for (4.7b). [2]

Next, for all m 0, 1,... define the matrix polynomial Om-l(S) of degree
(m- 1) (where 15(s) is the inverse polynomial matrix corresponding to Pm(s), as
given in (4.1)) via the relation

(4.8) 0m-l(s) da(x)[(15m(S) lhm(X))/(S--X)]"

The following properties of (,,_ l(s) are then imminent.
PROPOSITION 4.4. For any m 1, 2, ifPm(s) is the denominator polynomial

matrix associated with the right MPA of order m 1/m] to the series T(s), which

satisfies the condition Hn(T) > 0 for all n, then Qm-l(s) defined via Qm-l(S)
sm-lOm- l(S-l) is, in fact, the numerator polynomial matrix ofthe right MPA oforder
[m 1/m] to T(s). Furthermore, the identity (4.9) holds truefor all m 1, 2,

(4.9) dcr(x)[(Sm(S)-X15m(X))/(s-x)] SOm- I(S).

(m) okProof. It follows from lm(S) Z’=0 Pm-ka and (4.8) that

__O m

_
(s) d(x) [(s-x)/(s-k)]pm--(

(4.10) k=O

_x k (k-I ) (m)
k-1

(ram)da(x) Z xisk-l-i Pm_k Z Tip ksk-1-i
=1 i=0 k=l i=0

where the last equality follows via the use of (3.1). Furthermore, we then also have

m k-
(m) k+i_ "l’hPj-h S(4.|1) Qm-l(S) --Sm-10m-l(S-1) ] li’Pm-kSm-

k= 1i=0 j=0 h=0

where the last equality follows by a straightforward rearrangement of the indices of the
double sum. Since from (4.11) it follows that Qm (s) T(s)em(s) o(s2m), i.e., the
coefficients of sk for k 0, 1, (2m 1) are all zero, the polynomial matrix Qm (s)
is indeed the "numerator" associated with the fight MPA of order m 1/m] corre-
sponding to the formal power series T(s).

By following a sequence of steps analogous to that used in the derivation of (4.11)
above, it can also be shown that

da(x)[(SPm(S) XPm(X))/(S X)] Tisk-ip (m)

(4.12) k=0i=0

(m) sm_jhPj-h
j=0 h=0

where the first equality follows from straightforward algebraic manipulation and a use
of (3.1), whereas the second equality involves a rearrangement of indices of the double
sum. The result in (4.9) then follows by noting that due to the normal equations
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defining the fight MPAs the term in (4.12) withj m is zero, i.e., Z’=o ThP(m)m-h =0
,’r’ (m) ,,m-j [-]and from (4.11) sO_m-l(S) T= Jh=0 lhlJj-h

Note that in view of the properties elaborated on in the following equation, the
sequence of matrix polynomials Om- (s), m 1, 2, ., can be regarded as the natural
generalization ofsequence of scalar polynomials ofthe second kind treated in the classical
literature 10 ].

The fact that the sequence of matrix polynomials/Sin(s), m 0, 1, 2 ..., satisfies
the recurrence relation (4.13) has been shown in [1 ], i.e., (4.13) holds for m 1, 2,

(4.13) Pro+ (S) Pm(S)(sI--Cm)--Pm-1 (S))km

where Cm and km are real (p p) matrices such that Cm DnlgmDm and km
Dnl_lDm with Dm for all m are real symmetric positive definite, and gmDm for all m are
real symmetric matrices.

PROPOSITION 4.5. The sequence ofpolynomials (m(S), m O, 1, 2,... satisfies
the same recurrence relations as Pm(S). More specifically,following three term recurrence
relation holds true:

(4.14) O_m+l(S)=Om(S)(sI--Cm)--Om-l(S))tm, m=0, 1, ...,
with O_-l(s) O, O_o(S) To, and Cm and )tm, as in the context of (4.13).

Proof. We substract (4.13) with s s from (4.13 with s x. By considering the
(left) Stieltjes integral ofthe resulting equation with respect to the matrix measure da(x),
the recurrence relation (4.14) follows by observing equations (4.8) and (4.9). Finally,
the facts that 0-(s) 0 and (0(s) To follow obviously from (4.8) and that/50(s)
is monic.

The following result shows that the zeros of (m-(s), enjoy properties similar to
those of the zeros of/Sin(s), as discussed in ].

PROPOSITION 4.6. IfHn( T) > 0for all n, then
(i) All zeros of det m-I(S) are real;
(ii) If j is a zero of det O_m(S) of multiplicity n, there exists a set of exactly n

linearly independent sets of (1 p)vectors { v), v, vj ) such that ljQm(i S) O,
i= 1, 2, n;

(iii) Any zero of det O_m-(s) cannot be ofmultiplicity larger than p;
(iv) Invariant factors in the Smith canonicalform for O.m-(S) cannot have zeros

ofmultiple order.
Since the proofofthe above proposition is essentially a consequence ofthe recurrence

relation (4.13 and follows in exactly the same way as that ofthe corresponding properties
of the sequence of matrix polynomials/Sin(s), as elaborated on in Theorem 3.1 and
Corollaries 3.1 and 3.2 of[1 ], it will be omitted for the sake of brevity.

The three-term recurrence relation (4.14) connecting successive members of the
"denominator" sequence of matrix polynomials, when coupled with the corresponding
recurrence relation for the "numerator" sequence (4.13 discussed in ], provides a fast
recursive algorithm for computing the paradiagonal sequence ofMPAs to a matrix Stieltjes
series. We note that similar recursion for the problem of computing matrix Pad6 ap-
proximants in general has been discussed in [14]. If, in addition to H,(T) > 0, we also
have H,(T) < 0 for all n, i.e., T(s) is a matrix Stieltjes series, then it follows from the
impedance or admittance interpretation of m /m (s) that zeros of det Om (s) are
also negative.
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5. Coaclusion. The present work can be viewed as a continuation of[l]. While
algebraic properties of the sequences of matrix Pad6 approximants of certain orders to
a matrix Stieltjes series were investigated in [1 ], the present work is concerned with the
relevant analytic and convergence properties of paradiagonal sequences of MPAs. Al-
though our exposition has been in terms of the sequences [m 1/m] and [re of
MPAs, in general it is possible to derive analogous results for any paradiagonal sequence
[m + j/m], j >_- -1. However, the network theoretic interpretations of the results are
then lost.

By using network theoretic interpretations ofPad6 approximants to a matrix Stieltjes
series of certain orders, it has been shown that the sequences of these MPAs always
converge uniformly in an open bounded region of the complex plane excluding the
negative real axis. Thus, a formal matrix Stieltjes series can be used to meaningfully
represent a class of RC-distributed multiports in terms of an equivalent circuit. This
result, which to the best ofour knowledge has not appeared anywhere, is indeed interesting
in view of the fact that the criteria for realizability of nonrational positive functions in
terms of interconnections of (infinite number of) conventional lumped elements is not
known 17 ].

Solutions to the matricial versions of classical Hamburger and Stieltjes moments
problems are obtained, and as a consequence ofthis discussion an integral representation
for the RC-distributed multiport impedance, which in fact is closely related to the Cauer’s
representation for RC-impedances, is obtained when the associated Stieltjes series is as-
sumed to be convergent in a disc of finite radius. This representation is also found to be
a direct matricial generalization of the well-known Stieltjes function in classical scalar
literature 10 ].

The sequence of "numerator" polynomial matrices of MPAs of certain orders to a
matrix Stieltjes series are shown to be a natural generalization of scalar orthogonal poly-
nomials of second kind, and their properties studied by making reference to the corre-
sponding results for "denominator" sequences, i.e., the matrix polynomials of the first
kind elaborated on in ]. Thus, the present discussions along with those in is believed
to provide a more complete theory of orthogonal polynomial matrices on the real line,
analogous to the theory of orthogonal polynomial matrices on the unit circle discussed
in 11 ], 12 ]. Finally, the relevance of orthogonal polynomials of the former kind in the
context of scattering theory is also noted in 18 ].

It must be noted that under the present framework all results of 2 and 3 (except
Property 3.5 ), including their proofs, remain valid if Hn(T) and -H,(T) in (1.2) are
assumed nonnegative definite. This is so primarily due to the fact that the MPAs oforder
[m 1/m] and [m/m] can still be interpreted as impedance, or admittance, matrices
ofRC networks, even under this broader assumption 15 (the "McMillan degree" which
is the number of capacitors in a minimal realization in such a case can be less than rap,
while under the restricted assumption adopted throughout this paper it is exactly rap;
but this is ofno consequence to our presentation). However, the orthogonality properties
of/rm(S) and _.m(S) discussed in 4, and Proposition 4.2 in particular, are affected ifthe
strict positive definiteness of Hn(T) and -H,(T) are relaxed.

From the standpoint ofapplications, it may be mentioned that although the present
work primarily deals with connections of Pad6 approximations to matrix Stieltjes series
and their interpretations in terms of distributed RC-multiport networks, in view of their
relationship with problems such as inverse scattering [18 ], AR modeling of stationary
stochastic processes 16 ], etc., the potential for utilizing the results developed here in
other areas of signal and system theory cannot be ruled out.
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Appendix. In this Appendix we prove the matricial version of two classical scalar
theorems known as Helly’s theorems 9 ]. We note that similar results have been derived
via alternate techniques in [8 in a different context.

THEOREM A1. Let am(X), m 1, 2, ..., be a sequence ofnondecreasing real sym-
metric nonnegative definite matrix-valuedfunctions definedfor real values ofx. Ifthere
exists a constant real symmetric nonnegative-definite matrix Mo such that Mo am(X)
is nonnegative definitefor real x andfor all m O, 1, ..., then there is a subsequence of
the sequence am(X), m 1, 2, which converges to a real symmetric nonnegative-
definite matrix-valuedfunction 0.(x), which is nondecreasing.

Proof. Let fm(X) Ilo.m(X) ll, where I1" denotes the spectral norm of a matrix.
Since am(X) is nondecreasing, ifxl > x2 then o.m(Xl) o.m(X2) is nonnegative definite.
Thus, due to nonnegative definiteness of am(X) and Property 2.3,
i.e., fm(Xl >-- fm(X2). Consequently, fm(X) is a nondecreasing scalar function of x.

Furthermore, since Mo o.m(X) is nonnegative definite, it follows from Property
2.3 that fm(X) Ilo’m(X)II =< MoII, for real x and all m. Thus, the scalar sequence fm(X),
m 1, 2, ..., is uniformly bounded. Therefore, by invoking a weak version of (scalar)
Helley’s theorem (see, e.g., [6]), it follows that a subsequence of the sequence fm(X)
Ilo’m(X) II, m 1, 2, ..-, converges to a bounded nondecreasing functionf(x). However,
since the convergence of the sequence of norms I1" of a matrix sequence implies the
convergence of the matrix sequence itself [4], it follows that the corresponding sub-
sequence of the sequence o.m(X), m 1, 2,..., converges to o.(x) with IIo-(x)[I
f(x). The rest of the desired properties of o.(x) follow from the corresponding prop-
erties of o.m(X).

THEOREM A2. Let o.m(X), m 1, 2, ..., be a sequence ofnondecreasing real sym-
metric nonnegative-definite matrix-valuedfunctions definedfor all x in the compact interval
a, b] of the real axis such that Mo >= o.m(X) for all m, where Mo is a constant real
symmetric nonnegative-define matrix. Let 0.(x) be the limit function to which the above
sequence convergesfor all x in [a, hi. Thenfor a continuous scalar-valuedfunction g(x)
defined over a, b ], A 1) holds true:

(A1) lim g(x) do.re(x) g(x)

Furthermore, an extension ofthe result holds when a -- -oe and b -- c as in the scalar
case 91.

Proof. First, since 0 -< O’m(X) --< M0 for all x [a, b] and for all m 1, 2, and
o.,,,(x) is nondecreasing, the matrix-valued functions o-re(x) as well as the scalar functions
o.(x), where o.(x) is the ijth element of o.(x), due to Lemma 3.3, are of bounded
variation in [a, b]. Consequently, o.(x) is also ofbounded variation in [a, b]. Since g(x)
is continuous in [a, b], it is uniformly continuous in [a, b]. Therefore, for any e > 0 it
is possible to consider a partition { xo, x, x } of[a, b] such that

(A2) [g(x’)-g(x")l <e forall x’,x"e[X_l,X], <=u<=k.

If ’. [x._ 1, x.], then by using mean value theorem of scalar Stieltjes integrals 9

(A3)
x

g(x) do.O)(x)--g(f)Ao.iJ)(x)=[g(’)--g()lAo.O)(x)
-1

for some ". [x.- 1, x.], where Ao.O)(x.) o.iJ)(x.) o.)(x._ 1), o.iJ)(x) being the ijth
element of the matrix o.(x). Note that the existence of the integrals in the left-hand
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side is guaranteed since (x) is a function of bounded variation (cf. remark preceding
Lemma 3.4).

Summing (A3) over we obtain via the use of triangle inequality

(A4)

b k

g(x) dr()(x)- , g( .) Ar(J)(x.)
k

k

g=l

where V < is the total variation of the function (iJ)(x) over the interval [a, b].
Proceeding similarly as above with fba g(x) dtrJ)(x) instead of fb g(x) dr(iJ)(x), it fol-
lows that

(A5) g(x) dr(J)(x)- , g( .) Ar(J)(x.) <eV
v=l

where AJ)(x.) J)(x.) --(m0)(X.-). Thus, from (A4), (A5), and triangle inequality,
it follows that

g(x) dr()(x)- g(x) dr()(x)
(A6)

k

=<2eV/ Ig(’)l IAa(0)(X)--/Xr(m/)(x)l.
=1

Since the second term in the fight-hand side of (A6) goes to zero as m - , we have
essentially proved that

g(x) dr((x) lim g(x) d(x).

Extension of the proofwhen a -- -oe and b oe is identical to the scalar case [9 and
is not repeated for brevity.
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Abstract. Let P be a symmetric set of ordered pairs of integers from to n, and define M+(P) to be the
closed cone of all positive semidefinite Hermitian matrices whose (i, j) entry is zero whenever q: j and (i, j)
is not in P. The extreme points ofM+(P) are considered. In some special cases, the maximum rank that such
an extreme point can have is calculated.
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1. Introduction. Let P be a symmetric set of ordered pairs of integers from to n
and define M+(P) to be the closed cone of all positive semidefinite Hermitian matrices
whose (i, j) entry is zero whenever 4: j and i, j) is not in P. Two cases will be considered:
(1) the matrices are over the field C of complex numbers; (2) the matrices are over the
real numbers R. Later, Pwill be naturally interpreted as an undirected graph with vertices

We say a matrix A in M+(P) is extremal ifA B + C for B, C M+(P) implies
that B and C are scalar multiples ofA. Let J+(P) c M+(P) be the set of matrices that
are extremal points ofM+ (P). We say that P has order k if k is the maximum of ranks
of matrices in the set J+(P). The problem of characterizing the orders of graphs P is
important in several areas.

For one thing, it is related to the "positive completion problem" [DG], [GJSW]
for matrices in the sense that we might think of the positive completion problem as a
strictly easier one. Thus progress on the order problem is probably essential to making
progress on the positive completion problem.

In this paper we put forward some general remarks and ideas that allow us to establish
orders of new classes of graphs.

This paper is built on [AHMR] and heavily uses (in Part I) some ideas from the
earlier paper M ].

The paper has three parts (in addition to the introduction and preliminaries sections).
The first two address the theme of the relationship of the order problem to techniques
of Gaussian elimination for sparse matrices that are traditional in numerical analysis.
This subject is devoted to doing the Cholesky decomposition LrDL of a sparse matrix
with the smallest number of algebraic operations. The fundamental problem is that for
a given sparse matrixMwhen we perform a Gaussian elimination step to make a particular
entry zero, usually several entries in Mthat are zero are made nonzero. This phenomenon
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is known as fill in, generally, and the amount of it is generally very dependent on the
order in which one performs Gaussian elimination on the matrix. A major branch of
sparse matrix analysis is devoted to how we perform Gaussian elimination on matrices
of a particular sparsity pattern so as to minimize fill-in (see P ], R], RT ], GL ).

In Part I we analyze a "divide-and-conquer" technique for the order problem and
positive completion problems. We show that if these problems can be solved for certain
submatrices of a given matrix, then they can be solved for the full matrix (provided that
the submatrices interact in a certain way). This is very similar to classical use of divide-
and-conquer methods in the Cholesky decomposition for the case where there is no
Gaussian elimination fill in. While our results are simple, the matrix theoretic content
as opposed to the graph theoretic content ofall clear results on the order problem [PPS ],
[M] are consequences of a few simple principles.

Use ofgraph theory techniques developed (by Rose) for the Cholesky decomposition
were introduced to the order problem by Grone et al. [GJSW]. Next Paulsen, Power,
and Smith PPS used Rose’s methods more directly to give a very elegant proof of the
[GJSW] theorem (that is close to the one we have here). They also found intriguing
connections with the completely positive maps that occur in operator theory.

While Part I analyzes the behavior oforder in situations that correspond to Gaussian
elimination having no fill-in, Part II begins to treat cases with fill-in. There is a natural
measure a(G) ofthe minimum amount of fill-in producible by Gaussian elimination on
a sparsity pattern G (see 5 ). We conjecture (for real matrices) that

order (G) _-< a(G) + 1.

In other words, that fill-in puts an upper bound on order. Indeed we suspect (on the
basis of numerous examples) that there is some relation between fill-in and order that
we have not yet uncovered. Section 5 gives conjectures and examples.

Part III goes in a different direction and merely computes the orders of several
special classes of graphs.

All graphs G in this paper are finite, undirected, simple (i.e., without multiple edges),
and without edges of the form (v, v), for a vertex v of G. The set of vertices of a graph
G is denoted V(G), and the set of edges is denoted E(G).

For a given nonempty set S c V(G), denote by G(S) the graph obtained from G
by deleting all the vertices not in S together with all adjoining edges. So, V(G(S)) S
and i, j) E(G(S)) if and only if 4: j, i, j) E(S) and i, j) E(G).

As a graph is obviously preserved under natural graph isomorphisms, the statements
and proofs will be given modulo graph isomorphisms.

The k-dimensional vector spaces Re and C over the field of reals and the field of
complexes, respectively, will be represented as spaces of column vectors with k compo-
nents, with the standard inner products in R and C.

2. Preliminaries. For the reader’s convenience we state here some results that will
be used frequently. All these results were obtained in [AHMR], and Theorem 2.1 in
[PPS] as well.

THEOREM 2.1. A graph G has order ifand only ifG is a chordal, or triangulated
graph, i.e.,for any cycle(v, 112), (112, 113), (11p- l, 11p), (11p, 111) E E(G), p >- 4 there
is a chord vi, v) E( G), where <= < j <= p and 2 <= j <-_ p 2.

The class of chordal graphs is an important class that appears in diverse problems
(see, e.g., [G] for more information about chordal graphs and the problems in which
they play a central role).
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THEOREM 2.2. Let G be a loop with n >= 3 vertices, i.e.,

E(G) ((v,, v2), (v2, v3), (1)n-1, l)n), (Un, I)1)>
for some ordering v, Vn ofthe vertices ofG. Then the order ofG (over R) is n 2.

Introduce the partial order -< on the set of all (finite, undirected, simple, without
edges of the form (v, v)) graphs G =< G2 if (and only if) G is isomorphic to G2(S) for
some set S V(G2).

THEOREM 2.3. IfG <-_ G2, then order (G) =< order (G2).
We remark that another natural partial order =<e on the set of graphs G1 -<e G2 if

and only if V(GI) V(G2) and E(G) E(G2) generally does not imply any regularity
between the orders. Indeed, let the graphs G1, G2, G3, be defined by

V(G) { 1,2, 3,4 }, i= 1,2,3,

E(G,) { (1,2), (2, 3), (3, 4) }, E( G_ E( G,) to (1, 4 ),

E( G3) E( G2)to(1, 3 ).

Then Gl =<e G2 <e G3 but

order (G1) order (G3) 1, order (G2) 2.

We shall often implicitly use the rather obvious fact that if Gl, Gp are the
connected components of G, then order (G) max order (Gi).

Part 1. Divide and Conquer Using Cut Sets and Cliques

3. Cut sets and cliques. A clique of a graph G is a subset S c V(G) such that every
pair i, j) with i, j e S, # j belongs to E(G). A cut set of G is a subset S c V(G) with
the property that the graph G(V(G)\S) is not connected.

In this section we study the orders of graphs in terms of cut sets and cliques.
THEOREM 3.1. Let S V( G) be a cut set, and assume that S is a clique. Then

(3.1) order G max (order G(SI tO S), order G(Sr tO S)),

where G(SI), G(Sr) are all the (nonempty) connected components ofG(V( G)\S).
This theorem appeared (at least implicitly) in [M]; we shall provide an indepen-

dent proof.
Proof. As the inequality >- in (3.1) follows from Theorem 2.3, we have only to

prove =<.
Without loss of generality we may assume r 2 (otherwise, use an easy induc-

tion on r). Reorder the vertices in G so that Sl { 1, p ) $2 {p + 1, q);
S {q + 1, ..., n}. Take MeM+(G)\ (0}. ThenMhas the form

M= 0 A2 Q2
Q, Q, Q

As M is positive definite,

range Q1 c range A 1.

So for some matrix Wwe have Q1 A W. Form the matrix

I 0 W]E= 0 I 0
0 0 I
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Then

A 0 0 ]M= E* 0 A2 Q2 E,
0 Q’ Q

where Q Q W*AW. Since S is a clique, the matrix

M= 0 A2 Q2
0 Q’ Q

belongs to M+(G). Write

Q’ Q j

where M/(G(S2 tO S)), and rank . =< order (G(S_ tO S)). Now

(3.2)

M=E* 0 0 0 E+ ,E* E
0 0 0

0 0
Q{ 0 QA1Q

The matrix

[AI .Q ]N=
Q{ QAQ

belongs to M+(G(S tO S)) and hence is the sum of matrices from M+(G(S tO S)) of
ranks =< order G(S tO S). Substituting this sum into (3.2), we represent M as a sum of
matrices from M/(G), the ranks of which do not exceed

max order G(S to S), order G(S 13 S)).

Some remarks concerning Theorem 3.1 are in order.
Remark 3.2. Ifwe relax the assumptions and requirements that S becomes a clique

after addition ofjust one edge, then the disparity between the fight- and left-hand sides
of (3.1) can be arbitrarily large, as the following example shows. Let G be the loop with
n vertices { 1, n } (so E(G) (1, 2), (2, 3), (n, 1) } ). Assuming, for instance,
that n is even, let S { 1, n/2 + }. Obviously, S will become a clique after addition of
one edge. However, by Theorem 2.2 we have (in the real case)

order G n- 2, order G(SI US) order G(S2US) n/2- 1/2,

where G(S) and G(S2) are the connected components of G(V(G)\S).
Remark 3.3. The following example shows that the fight-hand side in (3.1) cannot

be replaced by

(3.3) max (order G(Sl), order G(Sr)).

LetV(G)= {1,2,3,4,5};E(G)= {(1,2),(2,3),(3,4),(4,5),(5,2)};S= {2}.In
this example the left-hand side of (3.1) is at least 2 (use Theorem 2.1 to verify this),
while (3.3) is equal to by the same Theorem 2.1.
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The following particular case of Theorem 3.1 deserves special attention.
COROLLARY 3.4. Let u V( G) be such that the adjacent set

adj (u)= { ue V(G)I(u,)eE(G)
is a clique. Then

order G order G(V(G)\ { u } ).

For the proofjust observe that adj (u) is a cut set, and apply Theorem 3.1.
The condition of an adjacent set being a clique appears naturally in the analysis of

Gaussian elimination of sparse matrices (see R ], G ).
As applications of Theorem 3.1 we can compute orders of many classes of graphs.

Consider one such class as an example.
COROLLARY 3.5. Let G be a graph, and suppose V( G) S t.) Sp, where the

nonempty sets S have thefollowing properties:
(i) For every 4 j either Si S or Si S consists oftwo vertices u and

with u, ,) E( G);
(ii) Every edge in G belongs to some G(Si);
(iii) The induced graph defined by V(O) { 1, ..., p }, (i, j) E(r) S

Sj. 4: is a forest, i.e., has no loops.
Then

order(G)= max order(G(Si)).
l_i_p

Proof. Induction on the number p. We can assume that 0 has at least one edge
(otherwise, everything is trivial). Then 0 must have a pendant, i.e., a vertex with precisely
one adjacent edge. Say is a pendant, and 1, 2) E(0). The hypotheses ofthe corollary
easily imply that the intersection S f) $2 is a cut set (consisting of two vertices), which
is a clique. We are now done in view ofTheorem 3.1 and the induction hypothesis.

The following result gives an upper bound for orders of graphs containing cliques.
THEOREM 3.6. Let G be a graph with n vertices and let S V( G), S 4 V( G) be

such that G(S) is a clique. Then

(3.4) order (a) =< n SI.
Here SI is the cardinality ofthefinite set S.
Theorem 3.6 is contained in [M]. We shall include a proof anyway.
Proof. Let X M/(G) be of rank greater than n sI, Enumerate all the vertices

so that S {1, k). Then

range Xspan {e, e } 4: { 0 },
where e is the jth unit coordinate vector (with in the jth place and zeros elsewhere).
Pick x range X span {e, e}, x 4:{0 }, and put R xx*. Then R M+(G)
and range R range X. It is easy to see (for example, by writing the linear transformations
X and R in an orthonormal basis consisting of eigenvectors ofX) that X eR is positive
semidefinite for e > 0 sufficiently small. Now

x= 1/2(x-) + 1/2(x+ ),
which shows that Xis not extremal in M+(G) unless rankX 1. However, the possibility
that rank X is excluded because n > IS[. [2]

It is of interest to characterize those graphs for which equality holds in (3.4). Some
information along these lines will be given later (Theorem 7.1).
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X X

0

0

0 x, 0

FIG. 1.

We now indicate another sparsity pattern (see Fig. 1) whose graph contains a "lad-
der," as in Fig. 2, and a large loop. We are able, however, to use the divide-and-conquer
method to split the computation of order into two more canonical looking graphs. Thus
the problem is worth considerable study, and even some compromises are justified.

For large n, consider the tridiagonal pattern whose graph is the line from to n.
Fix a k, preferably close to n. Let G be the graph that includes the line from to n and
in addition whose edges include (1, k), (2, k + 1), (n k + 1, n). Thus we obtain
a pattern as indicated in Fig. 1. For n and k large, the matrix is still rather sparse and in
a sense is not "too far" from the pattern that yields the n-loop. A careful drawing of the
graph yields the shape in Fig. 2. (Note that we must assume k > n k + 1.)

We now approach the problem with an obvious compromise. We lose only one zero
in the matrix in Fig. if we join vertex k and vertex n k + with an edge. Call the
graph G modified by this addition (, and note that these two vertices form a cut set that
is a clique for (. This cut set splits t into two graphs:

(1) A loop with 2k n vertices;
(2) The ladder in Fig. 2 with k and n k + joined.

The loop is standard and has order 2k n 2. The graph in (2) is something like a
loop ofdouble thickness and analyzing it suggests an interesting line of questions. Perhaps
known methods for studying loops will generalize.

Finally, in the special case k n 1, we observe that G contains an (n 1)-loop
and hence in the real case has order at least n 3. Since G itself is not a loop, the order
of G is exactly n 3.

2 3 n-k n-k+1

FIG. 2.

n-k+2 k-1
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4. Completion problems. We study here implications ofthe "divide-and-conquer"
technique for various completion problems.

Let G be a graph with n vertices, and call its vertices { 1, 2, n}. A partial
Hermitian matrix subordinate to G is, by definition, an n n array ofcomplex numbers
and question marks such that the (i, j) entry is .9 if and only if q: j and i, j) is not in
E(G), and that is Hermitian symmetric in the usual sense: if (i, j) E(G) (so that the
(i, j) entry is a complex number ai), then the (j, i) entry is . We say that an n n
Hermitian matrix B is a completion of an n n partial Hermitian matrix A subordinate
to G if the i, j) entry ofB coincides with the (i, j) entry ofA whenever the latter is not
a question mark. In informal terms, B is obtained from A by replacing all ?’s by some
complex numbers in the Hermitian way. Various completion problems have been studied
in DG ], GJSW ], JR], EGL], PPS ]; see also H, Chap. 8 ].

We consider three classes of completion problems:
(1) For a given integer k, 0 -< k =< n, and a given partial Hermitian matrix A

subordinate to G, determine if A admits a completion with precisely k nonpositive ei-
genvalues (counted with multiplicities).

(2) Same as (!) with replacement of "nonpositive" by "negative."
(3) For a given partial Hermitian matrix A subordinate to G determine the com-

pletions B of A for which kmi (B) is maximal among all completions of A. Here kmi
(B) is the minimal eigenvalue of B.

Given a partial Hermitian matrix A subordinate to G, and a subgraph F (so
F -< G), the naturally defined restriction A IF is a partial Hermitian matrix subordinate
to F.

In the rest of this section G is assumed to be a graph with a cut set S that is a clique.
The connected components of G(F(G)\S) will be denoted G, G.

THEOREM 4.1. Let A be a partial Hermitian matrix subordinate to G. If each re-
striction A IV(Gj) to S admits a completion Bj, whose size is equal to the cardinality of
V(G) tO S, with precisely kj nonpositive eigenvalues (j 1, p), then A admits a
completion with precisely max

_ _
p kj nonpositive eigenvalues.

Proof. Order the n vertices of G so that

S={1,...,n}, G,={n+l,...,n2}..., Gp={np+l,’",n}.

Write

where Bj is n n. Since S is a clique, B is independent ofj. Consider the partial
Hermitian matrix

B B 2 Bz2 Bp2
B’2 BI3 .9 ....9
B’2 ? B23""" .9

The matrix/ is subordinate to the graph t obtained from G by adding all edges of the
type (q, q2), where (q, q2) is not in E(G) and

q,q2 - { 1, ,n,nj+ 1, ,n+
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for some =< j -< p (by definition, np/l n). We check easily that 0 is chordal. Now
application of Theorem in [JR] finishes the proof. (For the reader’s convenience, we
quote this theorem. Given a partial Hermitian matrix A subordinate to a chordal graph
G, there is a completion B ofA such that the number of nonpositive eigenvalues of B
coincides with the maximum number of nonpositive eigenvalues of any restriction A z,

where V is a clique of G.) [2]

Theorem 4.1 provides the best result in the following sense. IfA admits a completion
with precisely k0 nonpositive eigenvalues, and ko is maximal among all completions of
A, then no completion ofAI V(Gj) t_J S can have more than k0 nonpositive eigenvalues.
This follows from the interlacing inequalities between eigenvalues ofa Hermitian matrix
and eigenvalues of its principal submatrices.

The case when all kj are zero is of special interest.
COROLLARY 4.2. Let A be as in Theorem 4.1. If each restriction A IV(Gj) t.J S

admits a positive definite completion, then A itselfadmits a positive definite completion.
For the second class of completion problems we have the following result.
THEOREM 4.3. Let A be a partial Hermitian matrix subordinate to G. Ifeach re-

striction A IV(Gj) t.J S admits a nonsingular completion with precisely k negative eigen-
values, then A admits a nonsingular completion with precisely max1 _jzp kj negative
eigenvalues

Observe that nonsingularity is required in Theorem 4.3 (in contrast to Theorem 4.1).
The proof is the same as that of Theorem 4.1.
Note that, under the hypotheses of Theorem 4.3, the existence of a (not necessarily

nonsingular) completion of A with precisely max < <p k negative eigenvalues follows
from Theorem 4.1 (applied to A + el for a small positive e).

We now pass to the third class of completion problems.
THEOREM 4.4. Let A be as in Theorem 4.1. Let be the maximum ofkmin (nj)

taken over the set ofall completions B ofA V( G) t.J S. Then there is a completion B of
A for which

kmi (B) min { ,, . }.
Theorem 4.4 follows immediately from Corollary 4.2 by subtracting a suitable mul-

tiple of I from A.
Finally, we remark that all results of this section are true in the real case as well

(i.e., A is assumed to be real, and only real completions are allowed).

Part II. Gaussian Elimination Fill-In and the Order Problem

5. Gaussian elimination for sparse positive semidefinite matrices. Let G be an (un-
directed) connected graph. We say that ( is obtained by one-step elimination from G if
for some vertex v in G the graph ( is obtained by removing v and all its adjacent edges
and by adding edges (x, y) for all pairs of vertices x, y different from v in G such that
(x, v), (y, v) are edges in G but (x, y) is not. Thus, ( has one vertex less than G.

The one-step elimination procedure is the basic step in symmetric Gauss elimination
and has been studied extensively from the graph-theoretic point ofview (see R], RT ],
[G], [GL]).

For a given graph G, let c(G) min { total number of edges added to E(G) in
consecutive one-step eliminations starting with G and ending in a one-vertex graph },
the minimum being taken over all orderings of the vertices.

It follows from Theorem 2.1, combined with another characterization of chordal
graphs (see, e.g., [G]) that order (G) if and only if c(G) 0. Thus, it is of interest
to find the relations between order (G) and c(G). We have the following conjecture.
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CONJECTURE 5.1. There is a universal constant C such that

(5.1) order G -< a( G + C
in the real case, and

(5.2) order G -< 2a(G + C
in the complex case, for all graphs G.

The stronger conjecture is the following.
CONJECTURE 5.2. The inequalities (5.1) and (5.2) are valid with C 1.
We could not prove either conjecture. In this part we verify Conjecture 5.2 for some

graphs and prove that in some sense Conjecture 5.2 cannot be improved (Corollary 6.2).
Two simple remarks are in order.
Remark 5.3. Let G be a disjoint union of k copies of the graph Go. Then order G

order Go. However, a(G) ka(Go). This shows that there are no constants
C1, C2 with C > 0 such that

Ca(G) + C2 <- order G

for all graphs G.
Remark 5.4. Let G be the ladder graph with 2m vertices:

Then a(G) 2m (see R ). On the other hand, a repeated application of Theorem
3.1 (with the cut sets consisting oftwo vertices) shows that the order of G coincides with
the order of the four-vertex loop, which is two (over R as well as over C; see Theorem
7.1 in [AHMR]). This shows that the difference a(G) order (G) can be arbitrarily
large, even for connected graphs (the graph in Remark 5.1 was disconnected).

For a given graph G define (G) to be the minimal number of edges necessary to
add to G in order to obtain a chordal graph. It is not difficult to see that a(G) -/(G).
Indeed, the inequality (G) _-< a(G) is obvious. To prove the opposite, let t be the
chordal graph obtained from G by adding (G) new edges.

Let N" V(() -- { 1, n } be the enumeration of vertices given by a perfect
elimination scheme for t (see [R], [G], [GL] for a definition and properties of this
notion). Use the ordering Nto do consecutive one-step eliminations. Then it is necessary
to put 3(G) new edges in G in this procedure so a(G) =< 3(G).

PROPOSITION 5.5. IfG <-v G2, then a(G) <- a(G2).
Proof. Clearly, (G) -</(G2). Now use the fact that a(G)= (G) for

j= 1,2.
We can now prove the following.
THEOREM 5.6. If order (G) _-< 3, then

(5.3) order (G) =< a(G) +
in the real case.

Proof. If order (G)= 1, then, as we have observed already, a(G)= 0, and
(5.3) holds.

Assume order (G) 2. Then G is not chordal (Theorem 2.1) and hence a(G) >= 1;
so (5.3) holds again. Assume now order (G) 3.
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Then G contains (in the sense of =<u-partial order) a minimal graph Go of order
three. The list of all possible graphs Go (there are 16 of them) given by Theorem 8.2 in
[AHMR] shows that a(G0) >-- 2. By Proposition 5.3, a(G) >_- 2. V1

The argument used in the proof of Theorem 5.4 also gives the following statement.
As defined in [AHMR], a graph G is called a k-block if order (G) k and any graph
strictly -_<,-contained in G has order less than k. This notion depends on the choice of
the field (R or C).

THEOREM 5.7. Fix positive integers k and C. Then in the real case the inequality

order (G) -< a(G) + C

holdsfor all graphs G oforder k ifand only if it holdsfor all k-blocks.
An analogous statement is valid in the complex case concerning the inequality (5.2).
In connection with Theorem 5.5, observe that for every fixed k the number of k-

blocks is finite [AHMR, Cor. 4.4]). Thus, in principle we could decide if (5.1) or (5.2)
holds for all k-blocks using a finite procedure.

We conclude this section with a simple example.
Example 5.1. Let G be a loop with n vertices. Then it is easy to see that a(G)

n 3. Combining with Theorem 2.2, we see that (in the real case)

order (G) a(G) + 1.

6. Fully bilmrtite graphs. In this section we compute orders of a large class of fully
bipartite graphs, thereby giving another illustration of Conjecture 5.2 in the real, as well
as in the complex case.

The fully bipartite graph G(n, m) on n + m vertices is defined as follows (here m,
n are positive integers)"

V(G)= {1, ,m+n};

i, j) e E(G(m, n)) if and only if 4: j and precisely one of the indices and j is in
the set { 1, n (so that the other index is in the set { n + 1, m + n } ). We shall
assume n -< m, and (to avoid known cases) n >= 2. An easy inspection (see [R]) shows
that

n(n- 1)
(6.1) a(G) .

2

THEOREM 6.1. For special n and m as indicated, we have

n2-n n2-n+2
m if 4

<m<
2

n2-n+2
orderG(n,m)

n - n + 2
ifm >

2 2

in the real case, and

m
order G(n,m)=

n2-n+

if(n2-n)/3<m<=n2-n+ 1,

ifm>-n2-n+ 1.

Comparing with (6.1) we immediately get Corollary 6.2.
COROLLARY 6.2. In the real casefor m > n2 n )/4 we have

order G(n,m) <=a(G(n,m))+ 1,
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and equality holds for m (n 2 n + 2)/2. In the complex case for m > (n2 n)/3
we have

order G(n,m)<=2a(G(n,m))+ 1,

and equality holdsfor m n2 n + 1.
Thus, Corollary 6.2 confirms Conjecture 5.2 and shows that in a certain sense this

conjecture is best possible.
The rest of this section will be devoted to the proof of Theorem 6.1.
First, we need a simple lemma. For a real p p matrix A (a0), let

diag A (all, a22, app) TE Rp

be the diagonal part ofA.
LEMMA 6.3. Let n >- 2 be an integer, and let n _-< m _-< (n 2 n + 2)/2. Then there

exists a linearly independent orthogonal set Y(1), Y n in Rm such that the vectors
(the superscript "T" denotes transposition

diag (Y(i)Y(j)T+ Y(j)Y(i)r)ERm

span the linear space

F {(Xl, ,Xm)TRmlxl +"" +Xm-’0}.

Proof. The proof is by induction on n. The case n 2 is trivial. Pick m’ such that

n- <=m’<=((n 1)2-(n 1)+ 2)/2 and

m’>=m-(n-1), m’<=m-1.

Suppose vectors #(1), I7" (n 1) in Rre’with the desired properties are constructed
already. Then put

I7.(11) I7"(2)0
Y(m-m’)=Y(1)= 0 Y(2)= 0

#(m-m’)
0

0

Y(i)=[ #(i)]0 form-m’<i<n- 1;

where the numbers a l, -’-, am, satisfy the equation

-1

(.
(n" lIT/ apl 0

(l

Y(n)= am,
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The vectors Y(1), Y(n 1) are obviously linearly independent; Y(n) cannot be
in the linear span of Y(1), Y(n 1) because Y(n) 4:0 and

Y(n)2_span {Y(1), ,Y(n- 1)).

Next, recall the notion of a representation of the graph G(n, m) introduced (for
any undirected graph) and studied in [AHMR]. A function Y" { 1, n + m } Rk
is called a k-dimensional representation of G(n, m) if the following properties hold:

(i) The set Y(1), (n) is orthogonal, and the set (n + 1), (n + m)
is orthogonal (note that the vectors Y(j) need not be nonzero);

(ii) The vectors Y(1), Y(n + m) span Rk.
If Y is a k-dimensional representation of G(n, m), then the n n matrix At
[Y(1). Y(n)]r[Y(1) Y(n)] has rank k and belongs to M/(G(n, m)). The following
fact has been established in Corollary 3.2 of [AHMR].

PROPOSITION 6.4. The order ofG( n, m) in the real case coincides with the maximal
k, for which there is a k-dimensional representation Y of G(n, m) with the additional
property that

(6.2) dim span {Y(i)Y(j)r+ Y(j)Y(i) r}
_i4j_n

or
n+ <=i4j_n+m

A representation Y that satisfies (6.2) will be called extremal.
We now prove Theorem 6.1 in the real case. First, by putting

0
Y(i)= ithplace, i=l,...,n,

0

0

-1
-1

Y(n+ 1)= 0 Y(n+2)= 0

2
2

4
(n+3) -1 ,Y(n+4)= -1

0
0

..., Y(2n-1)

Y(j)=0 for2n<-j<=n+m

k2+k-2

2

2n-3
-1

we obtain an extremal n-dimensional representation of G(n, m). Thus, the order k of
G( n, m) is at least n. On the other hand, let Ybe a k-dimensional extremal representation
of G(n, m).
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The number of nonzero vectors in the set Y(1),..., Y(n) is at most
min (k, n) n; the number of nonzero vectors in the set Y(n + 1), Y(n + m) is
at most min (k, m). Comparing with (6.2), we obtain

k2+k-2 n(n-1)
(6.3)

2 2
min (k, m)(min (k,m)- 1)

This inequality implies easily that

(6.4) k<=(nZ-n-2)/2.

On the other hand, if m > (/7 2 n)/4, then k =< m. Indeed, assuming by contradiction
that k >- m + 1, we have with the help of (6.3)"

(m+ 1)2+(m+ 1)-2<=k2+k-2<=n2-n+m2-m,

which contradicts m > (n 2 n)/4.
Now consider the case when m (n 2 n + 2)/2. The function

Y’{I,... ,n+m}-.-Rm,
where Y(1), Y(n) is taken from Lemma 6.3 with m (n 2 n + 2)/2 and

0

(6.5) Y(n+ l)=
0

Y(n+2)= 0 Y(n+m)=

0

is an irreducible representation of G(n, (n 2 n + 2)/2, (n 2 n + 2)/2). Thus, k >_-
m. Together with (6.4) this shows

order G( n2-n+22 n2-n+2)2 n2-n+22
As by Theorem 2.3

order G(n,m)>=order G(n, n2-n+2)2
for all rn > (n 2 n + 2)/2, the inequality (6.4) shows also that

order G(n, m)
n2-n+2

for all rn >- ((n 2 n + 2)/2).
Now consider the case when m < ((n 2 n + 2) / 2).
To prove the theorem in the real case it remains for us to exhibit an irreducible m-

dimensional representation of G(n, rn). To this end we define Y(n + i) as in (6.5) for
1, rn, and Y(j) as in Lemma 6.3 for j 1, ..., n. This completes proof of

Theorem 6.1 in the real case.
The proof of Theorem 6.1 in the complex case proceeds along similar lines. First,

we prove Lemma 6.5.
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LEMMA 6.5. Let n >= 2 be an integer, and let n rn <- n 2 n + 1. Then there exists
a linearly independent orthogonal set Y(1), Y(n) in Cm such that the vectors

diag (Y(i)Y(j)*)ECm

span (over C) the linear space

F= (zl, ,Zm)TECmlzl +’’" + Zm=O ).

Proof. The proof proceeds by induction on n. Suppose first that n 2; so 2 _-<

rn -< 3. For rn 2, put

For m 3, put

][1]rl
Y(2)=Y()= . _

-i
Y(2)

1-i

Suppose the lemma is already proved with n replaced by n 1. Let m’ be such that

n- <-m’<=(n 1)2-(n 1)+

and

<=m-m’<=2n-2.

By the induction hypothesis, there exist I7"(1), (n 1) e Cm’ with properties as
in Lemma 6.5. Put

y(2) ;...;Y(p)= orY(p)=

depending on if rn m’ is even or odd; here p ((rn m’ + 1)/2). Put

I(oJ)
Y(j)

Y(n)

for p<j<=n- 1,
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(The vectors Y(1), Y(n) are m-dimensional.) The numbers al, am are deter-
mined to satisfy the equations

()*
?(2)* -1 +

-1+i

I?(p-1)* (a.l) -1+i

(p), x

(p+ ),
, 0.

l?(n: 1)* 6

where x + ifm m’ is even and x if m m’ is odd. The vectors Y(1),
Y(n) form a linearly independent and orthogonal set in Cm. Furthermore,

(6.6) diag (Y(n)Y(j)*)=(,, ,,, 1,-i,0, ,0)

forj 1, p 1, where and -i appear in the positions m’ + 2j and m’ + 2j,
respectively (the stars in the fight-hand side of (6.6) denote entries of no immediate
interest to us). Also,

diag (Y(n)Y(p) * (,, ,, 1,-i)

or (,, ,, 1), depending on if m m’ is even or odd. These equalities together with
the properties of I? (1), I? (n 1) (assumed by induction) show that

diag (Y(k)Y(j)*), k4:j, <=k,j<=n

span the subspace F.
The proof ofTheorem 6.1 is again based on the notion of a complex representation

of G(n, m) (this notion was introduced and studied in AHMR ). The definition of a
complex representation Y is the same as in the real case with the only modification that
Y: { 1, n + m } - Ck. The analogue ofProposition 6.4 runs as follows (see AHMR,
Cor. 3.2 ]).

PROPOSITION 6.6. The order of G(n, m) in the complex case coincides with the
maximal k, for which there is a complex k-dimensional representational Y ofG( n, m)
with

(6.7) dim span
_i4j_n

or
n+ _i4j_n+m

{Y(i)Y(j)*}=k2-1.

(The dimension here is the dimension ofa vector space over C.)
A complex representation Ywith the property (6.7) will be called extremal. Return

to the proof of Theorem 6.1 in the complex case. Let k be the order of G(n, m) over C.
As in the real case, there is an extremal n-dimensional complex representation of
G(n, m), so k >_- n. On the other hand, let Y be a k-dimensional (complex) extremal
representation of G(n, m). Arguing as in the proof of the real case and using Corollary
3.2 of [AHMR] again, we obtain

(6.8) k2- <=n(n- 1)+min (k, m)(min (k,m)- 1).

This inequality easily implies

k<-n2-n+ 1.
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Also, if m>(n2-n)/3, then k<=m (we prove this by contradiction assuming
k >= m + and using (6.8)). Now we finish the proof as in the real case using Lemma
6.5. V1

Part III. Graphs of Large Order

7. Graphs with largest order. Theorem 3.6 will be used to provide the following
description of graphs with the largest order (relative to the number of vertices).

THEOREM 7.1. The order of a graph G with exactly n vertices (where n >= 3) is

<=n 2. Moreover, in the real case when n >= 4, order G n 2 ifand only if G is a
loop (see Theorem 2.2 for the definition ofa loop).

Proof. The first statement is just a particular case of Theorem 3.6 (because we can
assume that G has at least one edge; otherwise, everything is trivial). Assuming the
matrices are over R, the "if" part of the second statement is just Theorem 2.2.

Now let A be an extremal element in M+ (G), and let rank A n 2 (we continue
to consider the real case). By Theorem 3.6, G has no 3-cliques, i.e., triangles. On the
other hand, Corollary 3.2 in [AHMR] shows that the number of edges in G is at
most n.

Next, we show that G does not have pendants, i.e., vertices with degree 1. Indeed,
assume that the first vertex has degree 1. Let A be an extremal matrix in M+(G) of rank
n 2. We can suppose that the first column of A is nonzero (otherwise, the first row
and first column ofA are zeros, and by deleting the first row and column we reduce the
problem to the case of (n 1) (n 1) matrices). Let a be the first column ofA. Put
R aa. Because the first vertex has degree 1, we have R M+(G). Then for small
e > 0 we have A eR M+(G) (cf. the proof of Theorem 3.6), and hence the equality

A=1/2(A-eR)+1/2(A+eR)

contradicts the extremality ofA (unless A is a scalar multiple ofR; however, this case is
excluded because rank A n 2 and n >= 4).

Furthermore, it is easy to see that G must be connected (because the order of a
disconnected graph is the maximum of the orders of its connected components). Using
the fact that the sum of the degrees of the vertices is twice the number of edges, and the
absence of pendants, we note that the degree of each vertex in G is precisely two, so G
must be a loop. ff]

8. Graphs with six vertices. As an application of Theorem 7.1 we can describe the
orders of all graphs with at most six vertices.

Only the real case will be considered in this section.
We shall exclude from consideration chordal graphs (as their order is ), disconnected

graphs (as their order is the maximum among the orders oftheir connected components
and loops (as their order is given by Theorem 2.2).

THEOREM 8.1. Let G be a connected nonchordal graph with at most six vertices and
that is not a loop. Then the order ofG is 2 except when G either <=,-contains a loop with

five vertices or G is one ofthefollowing six graphs:
(1) Thefully bipartite graph G( 3, 3 (see 6 ).
(2) The fully bipartite graph G( 3, 3 with precisely one edge added (the place of

the added edge is immaterial because ofgraph isomorphism).
3 G( 3, 3) with precisely one edge removed.

(4) G( 3, 3 with precisely one edge added and one edge removed, where the added
and the removed edges are adjacent to the same vertex;
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(5) V(G)={1,2,3,4,5,6};E(G)={(i,j)II<=i4=j<=6;1 < IJ-il <5}.
(6) The graph as in (5) with the edge (1, 6) added.
In all the exceptional cases the order ofG is 3.
Proof. By Theorem 7.1 the order of G is either 2 or 3. If G _-<,- contains a 5-1oo19,

then order (G) 3 by Theorems 2.3 and 2.2. Graphs (1)-(6) have order 3 by Theorem
8.2 of [AHMR (all ofthem are 3-blocks). Conversely, assume that G has order 3. Then
G must _,-eontain a 3-block. By Theorem 7.1 the only 3-block with five or fewer vertices
is the 5-loop, while Theorem 8.2 of [AHMR] provides a list of all 3-blocks with six
vertices, which are precisely the six graphs listed in the theorem.

Acknowledgment. We thank P. DeWilde for pointing out that the sparsity pattern
in Fig. and similar double-banded patterns occur frequently in VLSI circuit analysis.
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UPDATING THE TRIANGULAR FACTORIZATION OF A MATRIX*

J. L. NAZARETH,"

Abstract. When one column of a square nonsingular matrix, say B, is replaced by another, the Bartels-
Golub update of the LU factors of B forms a product form representation that is suitable for the efficient
solution of associated systems of linear equations. However, it does not update the factors so as to obtain (even
implicitly) the LU factors of the new matrix. In this note an exceedingly simple modification of the Bartels-
Golub technique that yields the true LU factors is described, and it is shown to be mathematically equivalent
to the update (specifically the partial pivoting version) recently proposed by Fletcher and Matthews [Math.
Programming, 30 (1984), pp. 267-284 ]. The other commonly used update, Forrest-Tomlin, is quite evidently
a mathematical variant of the Bartels-Golub technique, so this result enables a common ground for the three
major updating techniques of linear programming to be established.

Key words. LU factors, updating triangular factorization, Bartels-Golub update, Fletcher-Matthews update
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1. Introduction. Consider an n n nonsingular matrix B and its triangular fac-
torization in the form

1.1 PB LU,
where pO is a permutation matrix, L is a unit lower triangular matrix, and U is an
upper triangular matrix. When a single column of B is replaced, yielding a new non-
singular matrix, say B, the updating technique of Bartels and Golub may be used to
revise the factorization. It develops a productform representation that is suitable for the
efficient solution of associated systems of linear equations. However, it does not update
the factors in (1.1) so as to obtain (even implicitly) a new triangular factorization of
the form

(1.2) PB LU,

where again P is a permutation matrix, L is a unit lower triangular matrix, and U is an
upper triangular matrix.

In this note we show that an exceedingly simple modification of the Bartels-Golub
update does indeed yield the true LU factors. We use the well-known uniqueness property
of LU factorization to show mathematical equivalence to the recent updating technique
(specifically its partial pivoting version) proposed by Fletcher and Matthews 2 ]. The
other main update of linear programming is that of Forrest and Tomlin 3 ], which is
quite evidently a mathematical variant of Bartels-Golub updating. By establishing here
the connection between the Bartels-Golub and Fletcher-Matthews updates, we are there-
fore able to provide a common ground for the three main updating techniques of linear
programming.

2. Derivation of the update.
2.1. Background on the Bartels-Golub update. It is convenient to carry out the

development in terms ofa 4 4 matrix. The reader will then have no difficulty whatsoever
in extending the results to the more general case of an n n matrix. Without loss of
generality, we assume that the new matrix B is obtained by removing the first column
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of B, advancing subsequent columns by one position, and inserting the new replacing
column in the last position. (For descriptive purposes, we shall employ explicit inverses.
An actual computation should be organized differently, using backsubstitution.)

With the above assumptions, we see that (1.1) gives

(2.1) (L)-(PB) H),

where H) is an upper Hessenberg matrix, as depicted in Fig. 2.1. (For intermediate
matrices, we shall use parentheses around the superscript.) Since B is assumed to be
nonsingular, we have ho+) ,k 4: 0, _-< k =< n 1. In Bartels-Golub updating with partial
pivoting, elementary matrices are used to eliminate successive subdiagonal elements,
thereby yielding an upper triangular matrix. To establish our notation, let us consider
the first step that eliminates the element in position (2, 1) ofH), namely,

(2.2a) ) P, ,H),

(2.2b) )=I’),

where P, is an elementary permutation matrix, either the identity matrix (when
h) >_’1 h21 so that no interchange of rows is performed), or P,2, the elementary

permutation matrix that interchanges the first and second rows ofHt). I’l denotes an
elementary lower triangular matrix (also depicted in Fig. 2.1 ), with , -h 2tl),/h ). The
process can be continued in the obvious way to eliminate subsequent subdiagonal ele-
ments, and details may be found in Bartels and Golub [1].

Suppose that interchanges were permitted throughout the procedure but none were
actually needed to maintain stability (or, in the more general case, to reduce fill-in), i.e.,
Pk,k’ I, k 1, 2, 3. The Bartels-Golub update would then take the form

(2.2c) F3F2F(L)-(PB) U,

where U is upper triangular. This may be expressed as PB (LF-{ F U.
Noting that I’1, k- 1, 2, 3 is also lower triangular and using the definitions
L LFi- F I’ and P -= p0, we have the update ofthe (true) triangular factorization,
namely, (1.2). Clearly, the novelty of techniques that seek the true triangular factors
must arise when interchanges occur, i.e., when Pk,k’ I for some k.

Let us therefore return to (2.2a)-(2.2b) and now assume that an interchange was
performed, so P,l’ P,. The elimination step (2.2b) completes the first iteration of
Bartels-Golub updating, which proceeds to the processing ofthe second column of),
in order to eliminate the element in position 3, 2), and so on. In the modification now
to be described, (2.2b) still represents only an intermediate stage of this first iteration.

0 0 0 x x x x

LO x 0 0 HtO) x x x x Fx x 0 0 x x x
x x x 0 0 x x

M= x x 0 0 Ut 0 x 0 0 H)=
x x 0 0 0 0
x x x 0 0 0

FIG. 2.1

0 0 0 1-g 0 0
0 0 0
0 0 0

x x x x 10 x x x
0 x x x
0 0 x x
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2.2. A simple modification to obtain the true LU factors. So far there has been no
departure whatsoever from Bartels-Golub updating. Using (2.1), (2.2a)-(2.2b), and
the assumption that an interchange was performed, we have

(2.3) PB (LP,2P- )/().
Now consider the matrix

M()=_ LP,2 F-{

This is obviously lower triangular in all but the first two columns, as depicted in Fig.
2.1. The elements m ll and m I of the matrix M() are given by

(0) t (0)(’) lO:+lO (h(z’,)/hl’,))=(h(’),hl’,))=(h ),(2.4a) m 11

(1)1] (1) 1 (0) (0)(2.4b) m11)= 122 + 11(n21,
The final expressions in (2.4a)-(2.4b) use the fact that L is unit lower triangular and
P1,1’ P1,2 in (2.2a). Observe that m 111 0 implies that m (211) 4: 0, so clearly both elements
cannot be simultaneously zero. This observation, along with nonsingularity ofthe matrix
M(1), implies that we can perform the triangular factorization with partial row pivoting
restricted to the first two rows and ensure that the process does not break down in exact
arithmetic because of a zero pivot. This factorization ofM(1) is given by

(2.5) Pl,i/(1) L (1)

where Pl,i is either the identity matrix (when 11 >--]m(211)I so no row interchange is
performed) or the elementary permutation matrix PI,2 (when the first two rows are in-
terchanged). L(I) is unit lower triangular, U(1) is upper triangular of the form depicted
in Fig. 2. l, and obviously both matrices are nonsingular.

Therefore, from (2.3) and (2.5),

PB
(1)Define H(l) U(1)(1), and observe that H(1) is also upper Hessenberg with h2l 0.

This too is depicted in Fig. 2.1. Therefore

(2.6) PI,iPB L (l)H(l).

This completes the first cycle of the iterative procedure summarized by the example of
Fig. 2.1. The objective has been to obtain a factorization (2.6) that is of the required
form (1.2) insofar as the first column is concerned.

2.3. Completing the procedure. We can now repeat the above procedure for the
second column ofH(1) in a completely analogous manner, which we give for completeness:

(L(1))-lpl,iPB=H(1) (2)=pz,2,H(1) /(2)=F2/()

where P2,2, is either the identity matrix (in which case we may proceed to the next
iteration) or the elementary permutation matrix P2, that interchanges the second and
third rows ofH(1), and 1’2 is defined analogously to FV

PI,iPB (L (1)p2,2, I’1 )/(2) M(:)/(2),

with the definition M(2) L (1)p2,2,

Pl,iPB P2,;L ()(U(2)/(2)),

where P2,;M() L(2)U(2), with L(2) unit lower triangular and U(-) upper triangular.
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Therefore

p:z,;zPl,iPB L2)H),
(2)where H 2) u(Z)/_r(2) and h 32 0,

Finally, after one more such iteration,

(2.7) P,Pz,P,PB L)H),

where L) is unit lower triangular, and H ) is now upper triangular. With the definitions
P P,P,PI,P, L =- L), and U H), we have the required factorization (1.2).

The extension to the update of an n n matrix is straightforward.

3. Mathematical equivalence to the Fletcher-Matthews update with partial pivot-
ing. When B is nonsingular and P is prescribed, it is well known and easy to establish
that the LU factorization (1.2) is unique. Equivalence of the updating technique of 2
and the partial pivoting version ofthe Fletcher-Matthews update is a direct consequence.
All that must be established is that the permutation matrix P is the same in both cases.
Let us again consider the first iteration, with the argument at subsequent iterations being
completely analogous. Obviously the two updates do not differ when no interchange is
performed in (2.2a), so let us consider the second possibility discussed in 2.2. In this
case it follows from (2.4a)-(2.4b) that the comparison ofthe two elements that determines
the choice for Pl,i can be stated as

(0) (0) (0)(3.1) [hll > Ih21 -[-/lhll

This is precisely expression (2.19) in Fletcher and Matthews 2] with the appropriate
transposition of notation. Analogous arguments show that the tests determining P, and
P3, are identical, and hence the matrix P is the same in the two developments (see also
expression (2.16 in 2 ).

We again emphasize that we have been concerned in this short note with establishing
a mathematical relationship between the Bartels-Golub and Fletcher-Matthews updates.
Viewed from this perspective, the derivation and procedure given by Fletcher and Mat-
thews 2 can be seen to be a particular reformulation ofa simpler mathematical algorithm
that underlies it. The reformulation is designed to improve numerical characteristics, in
particular:

(1) To enhance efficiency by observing, at the first iteration, that (2.5) can be re-
formulated as PI,iLP, I’-{l(Ul)) -1 Ll), where (Ul))- is an elementary matrix of
the same form as Ul). The first two columns of L) are therefore linear combinations
of the first two columns ofL. Once Pl,l’ and P,i are chosen (for example, as discussed
in 2.1 and 2.2), then explicit expressions for these linear combinations can be easily
written down. Analogous statements hold at subsequent iterations.

(2) To enhance numerical stability through the use of other tactics (backed by
error analysis) to determine Pl,l’ and Pl,i (at the first iteration) again based on the

(0) t,(0)elements hll, ,,l, and l21. Analogous statements can be made at subsequent iter-
ations.

These two reformulations represent important contributions of Fletcher and Mat-
thews [2]. In particular, a judicious choice of pivot strategy in the factorization (2.5),
and more generally in

(3.2) P,,M() L()U(),

enables Fletcher and Matthews [2] to carry out the update so that it is generally well
behaved. Note, however, when partial pivoting is restricted at each step to rows k and
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k + 1, we cannot place an a priori bound on the size of elements of L(k), in contrast to
Bartels-Golub updating. To see this, let us return to the first iteration. The pivot choice
is restricted to m l) (l)and m21 in (2.5). Thus the elements of L(1) in positions (3, 1) and

(l) lit) (l)/ (1)(4, 1) are of the form m /m 3, 4 or m. m2, 3, 4, and they could be large.
We can, however, bound elements of L() by permitting partial pivoting in other rows
when factorizing M() in (3.2). The price we pay is that U() is no longer necessarily a
simple matrix with just one off-diagonal element, and there is an associated increase in
the cost offactorizingM() and forming H() U()/(). For example, at the first iteration,
suppose P,i were taken to be V,4. Then U(1) would be a full upper triangular matrix.
However, it will only be necessary to invoke this more general pivoting strategy under
extreme circumstances, and it is clear that many improved strategies are possible. These
permit some limited growth in elements, as used in various implementations of Bartels-
Golub updating (see, in particular, Reid [4]).

We may also note that our development falls within a more conventional framework
and permits more direct use of standard error analysis techniques following Wilkinson
5]. Although it is only speculation at this point, it may also be helpful when devising

extensions to preserve sparsity, in the hope ofmaking Fletcher-Matthews updating more
competitive for large-scale applications. This is currently an open question.

Acknowledgments. This paper grew out of a discussion between the author and Dr.
Michael Saunders, who should share credit for the main idea.
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MAJORIZATION AND SINGULAR VALUES II*

R. B. BAPAT

Abstract. Let B, Dj, Ej, j 1, 2, .., k, be n n complex matrices. It is shown that

where 5 is any vector with components (5

_
N 5, that weakly majorizes both the following vectors:

(EDjDT)’/2.(YEED ’/2 and (ZD*D)’/%IZE*E) ’/2.

Here (. denotes the vector of singular values arranged in nonincreasing order, "<w denotes weak major-
ization, and indicates Schur (entrywise) multiplication. The result unifies several known results concerning
majorization statements for singular values.

Key words, majorization, singular values, Schur product

AMS(MOS) subject classifications. 15A 18, 15A42

1. Introduction. LetM denote the space of n n complex matrices.
For any A M we denote by

o(A)_

_
o,(A)_O

the singular values ofA that by definition are the nonnegative square roots of the
values ofAA *. Also, we set

(A) ((A), ..., .(A))’
where denotes transpose.

IfA . M,, is a Hcrmitian matrix, then

X(A)..._X,,(A)

denotes the eigenvalues ofA and again we define

X(A) X (A ), ..., X,(A ))’.

If A ((aij)) and B ((b0)) are m n matrices, then their Schur product (also
known as the Hadamard product) is defined as A.B ((aobo)).

If x R, then xt

_ _
xt denotes the components of x arranged in nonin-

creasing order and we define

x =(xt,, ,xt,)’.
If x, y R, then x is said to be majorized by y, x -< y, if

m m

(1) , xtil - , Ytil, m= 1,2, ,n-
iffil iffil
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and

x= , y.
i=l i=l

If x, y R’, then x is said to be weakly majorized by y, x -< y, if the inequalities
(1) hold for m 1,2,...,n.

If a R’, then A(a) denotes the diagonal matrix

A()= "..
n

We can now state the main result of this paper.
THEOREM 1. Let B, Dj, Ej M, j 1, 2, ..., k. Then

(2) a( , DjBE:)

where is any vector which weakly majorizes both (E DD)/2o(, EE]) /2 and
( DD:)’/:oX(E E:E:) ’/.

In Theorem all the summations extend overj I, 2, ..., k and this convention
will be followed in the rest of the paper unless specified otherwise.

Before proving Theorem we note two of its main consequences.
We first show that the main result of 2 follows easily from Theorem 1.
THEOREM 2 [2, Thm. 2]. Let B, Dj, Ej M,, j 1, 2, ..., k. Then

or( Z DjBE’) "< o’(B)oS,

where i is a vector that weakly majorizes all the vectors"
x( EEy), and X(Z EE).

Proof If 6 satisfies the given hypothesis, then it weakly majorizes the vectors- { X( , DjD]’) + X( , EjE]’) } and - { X( , D]’Dj) + X( , E]’E) }

By the arithmetic mean-geometric mean inequality it follows that weakly major-
izes both

,(DjD)I/ZoX(EjE:) /2, and ,(DDj)/EoX(E:Ej) /2.

Now the result follows from Theorem 1.
In a recent paper, Ando, Horn, and Johnson [1 have given a basic majorization

inequality for singular values of a Schur product. The inequality unifies a number of
previously known results concerning eigenvalues and singular values of Schur products.
It turns out that the basic inequality of[1 is a special case of Theorem obtained by
restricting the matrices Dj, Ej to be diagonal. This is shown next.

We will need the following notation. If Z is an m n matrix, then c(Z)
c2(Z)

_ _
c,(Z)

_
0 will denote the Euclidean lengths of the columns of Z.

THEOREM 3 [1, Thm. 1]. Let m, n be positive integers, let q min { m, n }, and
let A, B be m n matrices. Then

k k., cri(A.B)_ ., ci(X)ci(r)ai(B), k= 1,2, ,q
i=1 i-1

for any r m matrix X and any r n matrix Y such that A X* Y.
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Proof. As in [1 we first note that the general (nonsquare) case of the theorem
follows from the case rn n by augmenting nonsquare matrices to square ones with
rectangular blocks of zeros. Thus, without loss of generality, we assume that rn n.

Define diagonal matrices

DJ=
dj,

Ej=
ej,

j=l 2,.-. r

by setting

Then it can be verified that

Also,

i=1,2, ,n, j=l,2,...,r.

and

AoB= DjBE]’.
j=l

Z DjD]’ Z D’Dj

Thus

X( Z DID]’)’/2ok( Z EjE:’),/2= X( Z D]’Dj)’/2oX( E?Ej)112

(c,(X)c,(Y), ,c,,(X)c.(Y))’

and the result follows from Theorem 1. l’q

For several further consequences of Theorems 2 and 3 we refer to and 2 ].

2. Proof of the main result. We first state several assertions that we need. Most of
these are either well known or are easy to prove. A reference is given in each case for
convenience.

The next result gives the familiar singular value decomposition of a matrix.
LEMMA 4 [3, p. 498 ]. Let A Mn. Then there exist n n unitary matrices U, V

such that

A UA(a(A))V*.

LEMMA 5 [3, p. 249, 243]. Let X, Y e M,. Then
(a) a(xr) "<w (X)o(r);
(b) a(X + Y) "<w a(X) + a(r).
LEMMA 6 1, p. 352 ]. Let X e Mn. Then the matrix

,r (X)I, X ]X* ,r(X)l,

is positive semidefinite.
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LEMMA 7 1, p. 351 ]. Suppose the matrix

Y* Z

is positive semidefinite. Then there exists a matrix W with try(W)

_
for all i, such that

Y XI/2wZI/2.
LEMMA 8 [3, p. 228 ]. Let A M. Then

(la, l, la..l)"<wa(h).

In particular tr A < Z 7- a(A)
We now proceed to give the proof ofthe main result. The proofbroadly follows the

same steps as those used by Ando, Horn, and Johnson to prove their main result.
However, there are several differences in the details of the proofs.

We first establish a result that is much weaker than (2).
LMMa 9. Let B, D, E M,, j 1, 2, ..., k and let be a vector that weakly

majorizes X( , DyD:’) l/2.X( Z EjE) /2. Then

a( ., DyBE?) "w a’ (B)i.

Proof By Lemma 6 the matrix

C= [ a(B)I"B*
is positive semidefinite, and hence so is the matrix

, [ Dy O ] c [ D, 0 ] [ a (B) ., DjDJ* ., DjBE, ]0 Ej 0 E? E EyB*D? a,(B) Z .E?
By Lemma 7 them exists We M, with a(W) l, l, 2, ..., n such that

E DyBE* a, (B)( E DyD?)’/ZW( E EYE]’),/z.
Now by Lemma 5 (a),

a( Z DyBE.?) "<w a, B) ,( Z DyD?) /2.a( W).,( ., EYE?),/2
< a, (B) X( Z DyD’)’/2.X ( Z EjE?)’/2,

since a(W)

_
1, 1, 2, ..., n.

Hence

a( Z DyBE’) "<wa (B)$

We now introduce notation. For any integer r,

_
r

_
n, Kr will denote the

n n matrix

L 0

The next step in the proof is to establish the result when B Kr for some r.
LEMMA 10. Let Dy, Eye M,,j 1, 2, ..., k; let be a vector satisfying the hypothesis

given in Theorem 1; and let r be an integer,

_
r

_
n. Then

(3)
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Proof. We first observe that if Dj, Ej are replaced by UDj, VEj, respectively, for
each j, where U, V are unitary matrices, then the eigenvalues of

Z DjD]’, , D]’Dj, , EjE’,

remain unchanged. Thus, using the singular value decomposition (Lemma 4), we assume,
without loss of generality, that

(4)

(5)

Let s be fixed,

_
s

_
n. By Lemma 9, we have

(i( Z DjKrE?) ffl(Kr)[i]
i=1 i=1

Also, in view of (4), we have

(6)

i=I

i=1 i=1

tr DjKE)K

tr DjKrE’K

tr KrETKsDj

tr K , ETKDj

i=I-- ’i(gr)ffi( Z E?KsDj)
i=i

(by Lemma 8)

; ’(Z
i=I

(by Lemma 5(a))

] t.
i=1

Combining (5) and (6), we have

ai( Z DjK,ET) -i=l

(by Lemma 9)

min (r,s)

i=1

and this establishes (3). U]

We can now complete the proof of the main result.
Proofof Theorem 1. Just as we remarked at the beginning of the proof of Lemma

10, the eigenvalues of Z DjD]’, etc. also remain unaffected if each D, Ej is replaced by
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Dj U, Ej V for some unitary matrices U, V. Therefore using the singular value decom-
position of B if necessary, we assume, without loss of generality, that

It is easily verified that

B A((B)).

B-- (o’,(B)-o’,+ (B))K,
r=l

where we set r,, + (B) 0. Thus

,DjBE (e,.(B)-o’,.+ ,(B)) ,DjKrE]’.

By Lemma 5 (b),

r(EDBE:)w {(r(B)-ar+ I(B)) EDjKrE)
r=l

(,(B)-r+,(B))(ZDsKE?),

since ,(B) , +I(B) 0, r 1, 2, n.
Now by Lemma 10

rl

(e(B)-+(B))(I1, ,lrl,O, ,0)’

This completes the roof of the theorem.

REFERENCES

T. ANDO, R. A. HORN, AND C. R. JOHNSON, The singular values ofa Hadamardproduct: A basic inequality,
Linear and Multilinear Algebra, 21 (1987), pp. 345-365.

2 R. B. BAPAT, Majorization and singular values, Linear and Multilinear Algebra, 21 (1987), pp. 211-214.
[3] A. W. MARSHALL AND I. OLKIN, Inequalities: Theory of Majorization and Its Applications, Academic

Press, New York, 1979.



SIAM J. MATRIX ANAL. APPL.
Vol. 10, No. 4, pp. 435-445, October 1989

(C) 1989 Society for Industrial and Applied Mathematics
OO2

G-INVARIANT HERMITIAN FORMS AND G-INVARIANT
ELLIPTICAL NORMS*

CHI-KWONG LI’f AND NAM-KIU TSING

Abstract. Let : be a finite-dimensional inner-product space over C or R, and let G be a subgroup of the
group of unitary operators on /’. The Hermitian forms and elliptical norms on 9" that are invariant under the
operators in G are studied. The results are then applied to matrix spaces to obtain characterizations ofHermitian
forms or elliptical norms that are invariant under unitary similarities, unitary equivalences, unitary congruences,
or unitary row equivalences.

Key words. G-invariant, Hermitian form, elliptical norm, unitary similarity, congruence

AMS(MOS) subject classifications. 15A60, 15A63, 20H20

1. Introduction. Let : be the complex field C or the real field R, and let :m n be
the linear space of all m n matrices over :. If A e :mn, we use A* to denote the
conjugate transpose of A (or simply the transpose A of A if : R). By a norm on
:m x n, we mean a function [1" :m -’ that satisfies the following"

(a) [JAil > 0 ifA 4: 0,
(b) cA [c[. [[A if c e :, and
(c) IIA / BII -< IlAll /
Denote by U,(:) the group of all n n unitary or orthogonal matrices according

to : (2 or : R. A norm 11" on :,x, is said to be unitary similarity invariant (u.s.i.)
if for any A e : x ,

(1.1) IIgAg*ll--Ilall forall

A norm [[. on :m x, is said to be unitarily invariant (u.i.) if for any A

(1.2) IISAVll-IIAII forall UeUm(:)and VeU,(:).

A norm on a linear space tr is elliptical if it is induced by an inner product. Several
authors [1 ], [5], [6 have used special methods to study structures of elliptical norms
that satisfy 1.1 or (1.2). In this note, we use group representation theory to develop
general techniques that solve a more general class of problems. To describe the theory,
let be a linear space over : equipped with an inner product (., ). (If V" is F" or
:mx, we let (., ) be the standard inner product on V’.) Suppose G is a subgroup of
the group of unitary operators on /’. We say that a norm 11" on is G-invariant if for
any v /,

g(v) v for all g G.

Evidently, if we let : and let G be the collection of all the unitary operators
T: :nx -- :x defined by

T(A)= UAU* forall A-IFn n
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where U e Un(:), then G-invariant means unitary similarity invariant. Similarly, if we
let /" =m n and let G be the collection of all the unitary operators T :m n "* :m
defined by

T(A UAV for all A em n

where U Um(g:) and V e U(:), then G-invariant means unitarily invariant.
Recall that a Hermitian (or symmetric if : R)form on /" is a function

H: g" " -- : that satisfies the following:

H(y,x) if:=C,
(a) H(x,y)=

H(y,x) if:=R,

(b) H(x+y,z)=H(x,z)+H(y,z), and

(c) H(cx, y)=c.H(x,y)

for all x, y, z / and c e :. IfH further satisfies

(d) H(x, x) >= 0 with equality if and only if x 0,

then H is an inner product on . The purpose ofthis note is to characterize G-invariant
elliptical norms and G-invariant Hermitianforms on , i.e., Hermitian forms H on
that for any x, y e / satisfy

(1.3) H(x,y)=H(g(x),g(y)) forall geG.

Using group representation theory, we prove our basic theorems in 3. The results are
then specialized to different matrix spaces and different subgroups of unitary operators
in 4. Using our technique, we not only give alternative proofs of old results, such as
characterizing u.s.i, elliptical norms or u.i. elliptical norms, but we also determine the
structures of the elliptical norms that are

(i) Unitary congruence invariant (u.c.i.), i.e., norms I1" that for any A C,x,
satisfy

(1.4) IIUAU’II Ilall forall UG--Un(C)"

(ii) Unitary row equivalence invariant (u.r.e.i.), i.e., norms I1" that for any
A =m x n satisfy

(.5) [IUhll IIAII forall U.Um(g:).

2. Preliminaries. Let / and G be a vector space and a group, respectively, as
described in 1. For any subset S of / we use sp S to denote the linear span of
S. Define

G(S) {g(s):gG,sS}.

A subspace of /" is called G-invariant if G() c W’. If, in addition, is nonzero
and does not contain any proper nonzero G-invariant subspaces, then is called
G-irreducible.

Regarding G as the image of a unitary representation of certain group, we have the
following well-known results in group representation theory (e.g., see [4, 019. 112-129]).

THEOREM 2.1. The vector space can be decomposed into a direct sum

where W/, tk are mutually orthogonal G-irreducible subspaces.
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THEOREM 2.2 (Schur’s lemma). Let tr andf2 be G-irreducible subspaces of V.
Suppose L" r _. "#/’2 is linear and satisfies

gL Lg for all ge G.

Then L is either zero or is invertible.
We need the following characterization ofG-irreducible subspaces in our discussion.
THEOREM 2.3. Let " be a nonzero subspace of "’. Then is G-irreducible if

and only if

sp G(x) for all nonzero x

3. G-invariant Hermitian forms and G-invariant elliptical norms. It is well known
that every Hermitian form H on corresponds to a unique Hermitian operator h on
"f such that

H(x, y) ( h(x), y) forall x, y"t/’.

Writing / as in Theorem 2.1, we have the following characterization of G-invariant
Hermitian forms.

THEOREM 3.1. Let 1/’ #k, where /’, tZk are mutually or-
thogonal G-irreducible subspaces, and let H /" -- : be a function. Then H is a
G-invariant Hermitian form ifand only if there exist a, ak R and linear maps
hij Y/’i I/’j for all N < j

_
k, such that

(3.1) gho hog for all ge G,

and

k

(3.2) H(x, y) , a,(x, y) + ,
i-- i<jk

for all x x + + Xk, Y y + + Yk e " where xi, Yi t/ifor 1, k.
Proof. Suppose H satisfies (3.2), where all ho <-_ < j <-_ k) satisfy (3.1). Then

by direct checking, we see that H is a G-invariant Hermitian form.
Conversely, suppose H is a G-invariant Hermitian form on tr. From the decom-

position of r tr (R) (R) /’k, where, ..., k are mutually orthogonal, H
can be decomposed into Hermitian forms Hi on t/i (i 1, ..., k) and linear maps
ho li -- /’j (

_
< j <= k) such that

k

(3.3) H(x, y) Z Hi(xi, yi) + Z
iffi i<jk

( ko( xi), yj) + (xl, ko( yi) ) )

for all x x + + Xk, y y + + Yk "/" where xi, Yi e //i for 1, ..-, k.
Let hi" gi -- fi be the Hermitian operator associated with Hi, let ai be the largest
eigenvalue of hi, and let xi e i be a corresponding unit eigenvector. Then for all
g e G, since g is unitary, g(xi) is also a unit vector. As i and H are G-invariant,
by (3.3),

( hi(g(xi)),g(xi) ) Hi(g(xi),g(xi)) H(g(xi),g(xi))

H(xi,xi)= (hi(xi),xi) ai.
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Thus g(xi) is also a unit eigenvector of hi corresponding to the eigenvalue ai. As a result,
we have G(xi) c E(ai), where E(ai) denotes the eigenspace of hi in "i corresponding
to the eigenvalue ai. Since ri is G-irreducible, we have

/i sp G(xi)cE(ai)ct/’i.

This implies E(ai) 1/i; i.e., hi(x) aix for all x ri. Hence

ni(xi,Yi) ai(xi,Yi) for all xi,Yi/’i

Now let xi e ’i and yj /j, where -< < j =< k. Since ri, /, and H are
G-invariant, by 3.3 ), we have

(g*hog(xi),y (hog(xi),g(yj) H(g(xi),g(y))

H(xi,y)=(ho(xi),y
for all g e G. Since xi e ri and yj e r are arbitrary, we have

g*hig hi for all ge G.

Hence

hog gho for all g G.

Using techniques similar to those employed in the proof of Theorem 3.1, we may
characterize the linear maps T" / -- r that satisfy

gT= Tg for all ge G.

In particular, if F C and r is G-irreducible, then T is a scalar map by Theorem 2.2.
Applying this result, we can readily get the conclusions about the maps hi in Theorem
3.1 when F C. Our proof is valid, however, for F R as well. Moreover, we may use
Theorem 2.2 to get more information on the linear maps hij described in the statement
of Theorem 3.1.

Since a norm on r is G-invariant and elliptical if and only if it is induced by a
positive-definite G-invariant Hermitian form, we may use Theorem 3.1 to get a char-
acterization of G-invariant elliptical norms on

4. Applications to matrix spaces. In the following examples of matrix spaces, we
apply the results in the preceding sections to characterize the Hermitian forms and elliptical
norms that are G-invariant for various subgroups G of unitary operators.

4.1. Unitary similarity invariant. Let / be Fn x n and let G be the collection of all
the unitary operators T" Fn -- F x defined by

T(A)= UAU* forall 4-Fnn
where U e U(F). As mentioned in 1, the G-invariant concept reduces to the unitary
similarity invariant (u.s.i.) concept. We consider two cases.

Case 1. F C. Let

and

//2 {AeCnx’tr A=0}.
Then C n 1/1 (R) /2 and A A + A2, where

A =(tr A)I/n6#’, A2 =A-(tr
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for all A e Cx n. Note that #’1 and "2 are mutually orthogonal, /’1 is G-irreducible,
and ’2 is G-invariant. By a result of Tam [10 ],

sp { UAU*. U U.(C) } =r
for any nonzero A #2. Hence2 is also G-irreducible by Theorem 2.3. Since dim
is always less than dim #r2, any linear map from // to #2 cannot be invertible. As a
result, we have the following theorem.

THEOREM 4.1.1. (a) Let H" Cnx n X Cnx n C be afunction. Then H is a Hermitian
form satisfying

(4.1) H( UAU*, UBU* )= H(A,B)

for all U Un(C) and all A, B Cn x ifand only ifthere exist a, [3 such that

H(A,B)=a(tr A)(tr B*)+/ tr (AB*)

for all A, B .
(b) Let [[’[l’Cnxn-- R be a function. Then [[.[1 is an elliptical norm on

C x satisfying

UAU* [1A

for all U Un(C andA Cn ifand only ifthere exist a, {3 R such that na + [3 > O,
> O, and

IlAll2=altrAl-+Btr(AA *) forallACn,.

Proof. (a) From the discussion preceding the statement of the theorem, and by
Theorems 3.1 and 2.2, we see that H is a Hermitian form satisfying (4.1) for all
U U(C) and A, B Cn n (i.e., is G-invariant) if and only if there exist a, b R such
that for all A, B 12 x n,

H(A,B)= a((tr A)I/n,(tr B)I/n)+ b(A (tr A)I/n,B-(tr B)I/n)
(a- b)(tr A)(tr B*)/n + b(tr (AB*)).

Taking a (a b)/n and B b, we get the result.
(b) As mentioned in 3, II" is a G-invariant elliptical norm if and only if

it is induced by some positive-definite G-invariant Hermitian form H. In the proof
of (a), H is positive definite if and only if a and b are positive. This is equivalent to
na +/3 > 0 and/3 > 0, because a (a b)/n and/3 b.

We remark that Theorem 4.1.1 has also been obtained by Bhatia and Holbrook
[1, Cor. 2.3].

Case 2. : R. In this case, we have

where

and

n n "1 ()’2 ()3

t/ {A -nxn’At= -A },

"At=A tr A =0 }a/3 {AsN

Every A e Nx n can be written as A A + A. + A3, where

A =(tr A)I/nWI, A2=(A-At)/2#_,
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and

A3=(A +At)/2-(tr A)I/n-"tg’3.

Clearly, tr, /U2, and 3 are mutually orthogonal and G-invariant. That is
G-irreducible is obvious. For any nonzero A, B #2, we can find U, V Un(R) such that

UAUt= Y () () Ym () X, VBVt= Z () () Zm ()S

where m is the largest integer less than (n + )/2,

Yi and Zi
-a -b 0

are such that A and B have singular values a, a, az, a, and b, b, b, b,
respectively, and X is void if n is even and is (0) if n is odd (see 3, 4.4 ). Therefore if
T" x x is defined by

T(C) VtUCU V for all Cen X n,

then

( T(A),B ( UAUt, VBVt)
2(ab + a2b2 + + ambm)> O.

This implies that the orthogonal complement of G(A) in "2 is the zero space. Hence
sp G(A) tr2. Since A (4:0) in "2 is arbitrary, by Theorem 2.3, //’2 is G-irreducible.

Now consider any nonzero A, B V3. Let a, ..., an and b, ..., bn be the
eigenvalues of A and B, respectively. As (a,..., an), (b,..., bn) 4: (0,..., 0),
and 7] n

i-- ai , -_ bi 0, for a suitable permutation a of the set { 1, n } we
have ’_- aib(i) 4 O. Let U, V Un(,) be such that UAU diag (a, an) and
VBV diag (b,(), b,(n). Then

n

(T(A),B)=( UAUt, VBVt) E aib,(i) 40
i=1

where T" n n -- n n is defined in the same way as above. Using an argument similar
to the one used in the case tr2, we conclude that tr3 is G-irreducible.

Since dim1 and dim /#2 are less than dim tr3, no linear map from / to "/3
or from /2 to tr3 can be invertible. Also, dim tr dim tr2 only when n 2. For
this particular case of n 2, we may take

[0 11 u(n)U=
0

and consider gv G defined by

gv(A UAU for all A e2 2.

If h / - /’2 is a linear map that satisfies gvh hgv, then

gth(I) hg(I) h(I).

Since gv(A) 4 A for all nonzero A e tr2, we then have h(I) 0. Hence, h is not in-
vertible. Using Theorem 2.2, we can conclude that, if =< < j -< 3 and ho
is a linear map that satisfies hijg ghij for all g e G, then hj 0.



G-INVARIANT NORMS 441

Combining the preceding observations, we have the following result. As the proof
is similar to that of Theorem 4.1.1, we omit the details.

THEOREM 4.1.2. (a) Let H:n -- ’ be afunction. Then H is a symmetric
form satisfying

H( UAUt, UBUt) H(A,B)

for all U Un(g) and A, B gn ifand only ifthere exist a, , 3’ g such that

H(A,B)- (tr A)(tr B)+/5 tr (Aat)+’y tr (AB)

for all A, B ,
n.

(b) Let 11" :,,- be a function. Then [1" is an elliptical norm on,, satisfying

11UA Utl[

for all U U() and all A Rnx n if and only if there exist a, [3, 3’ such that
3 > [3’1, na + + "r > 0, and

I[A[[ 2= a(tr A) 2 +/3 tr (AA t) + "r tr (A 2)

for all A n.

We remark that we may consider "U to be the real linear space Hn of all n n
Hermitian matrices and obtain characterizations of u.s.i, symmetric forms and u.s.i.
elliptical norms on Hn that are similar to those in Theorem 4.1.1 (see [6, Thm. 4.2]).
Also, we may consider g" to be the real linear space Sn(g) of all n n real symmetric
matrices or the space K() of all real skew-symmetric matrices. By arguments similar
to those in the proof of Theorem 4.1.2, we can deduce that

(a) The u.s.i, symmetric forms H on S() are exactly those of the form

H(A,B)=a(tr A)(tr B)+tStr(AB) forall A,Bn,

where a and/3 are real;
(b) The u.s.i, elliptical norms [1. on S() are exactly those of the form

A 2 a(tr A 2 +/3 tr (A 2) for all A 0n n

where na +/3 > 0 and/3 > 0.
Similarly, we have
(a) The u.s.i, symmetric forms H on Kn() are exactly those of the form

H(A,B) a tr (AB) for all A,Brnn

where a is real;
(b) The u.s.i, elliptical norms 11" on K,() are exactly those of the form

IIA[I z tr (A_a t) for all Ann

where a > 0.

4.2. Unitarily invariant. Let bem n and let G be the collection ofall the unitary
operators T m n " m n defined by

T(A)= UAV forall A.gZmxn,

where U e U,,(:) and V e U,(:). Then G-invariant norms are unitarily invariant (u.i.)
norms. This class of norms has been studied by many authors, and many interesting
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results have been obtained (e.g., see 2, Chap. 3 ], 5 ], 7, Chap. 10 ], 8 ], 9 and the
references therein).

Now suppose A, B [:mn have singular values al >-- >= ak (>--0) and bl >_-- bk (--0), respectively (here k min { m, n ) ). Then (see 3, Ex. 7.4.13 ])

max {l( UAV’,B)I Ue Um(:), l/’e Un(:) }

-max (Itr(UAVB*)I’UUm(:), Ve Un(:) }
k, aibi,

i=1

which is greater than zero if both A, B are nonzero. Using arguments similar to that in
4.1, we see that :mx n itself is G-irreducible. By Theorem 3.1, we have (cf. [5, Thm.

2.2]) the following result.
THEOREM 4.2. (a) Let H" mn X :mn -’ be afunction. Then H is a Hermitian

form satisfying

H( UA V, UBV) H(A,B)

for all A, B [:m x n and U Um(:), V Un([:) ifand only ifthere exist a R such that

H(A,B)=atr(AB*) forallA,B:mxn.

(b) Let [1. [[’:mxn "- R be a function. Then ][. is an elliptical norm on
[:m x n satisfying

UA vii IIA
for all A C.n x n and U U,(:), V Un(:) if and only if there exists some > 0
such that

IIAII2=tr(AA *) forallA:mxn.
4.3. Unitary congruence invariant. Let be Cnx n and let G be the collection of

all the unitary operators T" Cn x n " Cn x n defined by

T(A UAU for all A Cn x

Then G-invariant means unitary congruence invariant (u.c.i.). In fact, if we regard
A Cn x n as a bilinear form A (., on Cn, such that

A(x,y)=xAy for all x,yCn,
then UAU represents the same bilinear form A (., .) with respect to a new orthonor-
mal basis.

Now Cn n ’*1 () ’2, where

{ACnxn’At=A }, 1/’2= {A-Cnxn’At= -A },
and for any A e Cnxn, A A + Aa where

A+A A-A
A $1/’ A22 2

Clearly, / and W/2 are mutually orthogonal and are G-invariant. If A, B /1, we
can find U, V Un(C) such that

UAUt= diag (a, ,an), VBVt= diag (b,
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where a >= >_- an (>_-0) and b >- >- bn (>_-0) are the singular values ofA and B,
respectively (e.g., see [3, 4.4 ]). Suppose T" Cn n -- Cn n is defined by

T(X) V UXU V for all XCn x n.

Then

n

(T(A), B) ., aibi,
i=1

which is greater than zero if both A, B are nonzero. Therefore, tr is G-irreducible.
IfA e tr2, then there is U e Un(C) such that

UAUt= Y1 @"" () Ym@X
where m is the largest integer less than (n + )/2,

are such that A has singular values a, a, a2, a2, and X is void if n is even and is
(0) if n is odd (see [3, 4.4 ]). This situation is the same as that of2 in Case 2 of
4.1. Therefore W’2 in the present example is G-irreducible.

Since dim /’ > dim tr2, no linear map from tr to #2 can be invertible. Using
Theorems 3.1 and 2.2, we have Theorem 4.3.

THEOREM 4.3. (a) Let H" Cn n Cn n -- C be afunction. Then H is a Hermitian
form satisfying

H( UAUt, UBUt) H(A,B)

for all U Un(C) and A, B Cn n ifand only ifthere exist a, 3 such that

H(A,B)- tr (AB*)+ tr (AB)

for all A, B Cn n.

(b) Let 11" Jl’Cn,, I be a function. Then II" is an elliptical norm on
Cn n satisfying

UA utll IIAII
for all U Un(C) andA Cn x n ifand only ifthere exist a, {3 R such that a > [31 and

A 2 tr (AA * + [3(tr (A/i))

for all A Cn x n.

Because the proof of the above is similar to that of Theorem 4.1.1, we omit the
details.

We do not consider the u.c.i, concept on Rn n because it reduces to the u.s.i, concept,
which has been studied in Case 2 of 4.1. Nevertheless, we may consider the u.c.i.
concept on the complex linear space Sn(C) of all n n complex symmetric matrices or
the space Kn(C) of all n n complex skew-symmetric matrices. In both cases, we can
show without difficulty that a u.c.i. Hermitian form must be a real multiple of the usual
inner product, and a u.c.i, elliptical norm must be a positive multiple of the Fro-
benius norm.
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4.4. Unitary row equivalence invariant. In our last example, let V" be ]::m n and let
G be the collection of all the unitary operators T" m n --’ m n defined by

T(A UA for all A m n

where U e U,(:). Then G-invariant means unitary row equivalence invariant (u.r.e.i.).
Now for each 1, n, let

"i-- {A -gSmxn: the jth column of A is zero if j4: i}.

It is routine to check that :mxn "1 () () "n and, n are mutually
orthogonal, G-irreducible subspaces. For any A e m n, if 1, ..., n, let xi ecm be
the ith column ofA and let Ai - IFmxn be such that the ith column ofAi is xi and all the
other columns are zero. Then

A =A1 + +An
and Ai e //i for all i. For 1, n, let Pi /i -- Cn be the projection of the ith
column ofAi onto Cm. We need the following lemma to prove Theorem 4.4.

LEMMA. Let t1 be defined as above. Suppose <= <j <-_ n and suppose
hij $l/’i I/rj is a linear map. Then hij satisfies

(4.2) ghj hjg for allgG

ifand only ifthere exist scalars ko g: such that

(4.3) hij(Ai) ko(p)-pi)(Ai) for allAi-/’i.

Proof. Note that h satisfies (4.2) if and only if the linear map (pjhjp v, C’ -Cm satisfies

(4.4) U(phpV, )(x) (pjhipV, U(x)

for all U Um(:) and x e Cm. Since condition (4.4) is equivalent to

(phijpV, ke

where k : and e is the identity map on Cm, the result follows.
THEOREM 4.4. (a) Let H: m n X :m n "- be afunction. Then H is a Hermitian

form satisfying

(4.5) H( UA, UB)= H(A,B)

for all U Urn(g:) and A, B g:m if and only if there exists a Hermitian matrix
K :n x n such that

H(A,B)= tr(AKB*) forallA,Beg:mxn.

(b) Let I1" ::m "- R be a function. Then [[. is an elliptical norm on
:m X n satisfying

(4.6) UA IIA
for all U Um(:) and A g2m n ifand only ifthere exists a positive definite Hermitian
matrix K [Fn n such that

A 2 tr (AKA * for all A m n.
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Proof. (a) From the discussion preceding the lemma, and by Theorem 3.1 and the
lemma, we see that H is a Hermitian form satisfying (4.5) if and only if there exist
kii R (for 1, n) and kij IF (for _-< < j _-< n) such that

(4.7) H(A,B)= kii(Ai, Bi)+ Z (kij(p)-lpi(Ai),Bj)+ij(Aj,p-lpi(Bi)))
i= i<j_n

for allA A + + An, B BI + + Bn, where Ai, Bie /’i for all i. Let K (kij)
IFnxn, where ki k for all < j. Since (A, B) equals the (j, i) entry of the matrix

B’A, the expression (4.7) equals

tr (KB*A)= tr (AKB*).

(b) Note that ]l" is a norm that satisfies (4.6) if and only if it is induced by a
positive-definite Hermitian form H satisfying (4.5). Because the Hermitian form H
in (a) is positive definite if and only if the matrix K is positive definite, the result
follows.

Using the same method, similar results on unitary column equivalence can be ob-
tained.
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BACKWARD ERROR ANALYSIS FOR A
POLE ASSIGNMENT ALGORITHM*
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Abstract. Of the six or so pole assignment algorithms currently available, several have been claimed to be
numerically stable, but no proofs have been published to date. It is shown, by performing a backward error
analysis, that one of these algorithms, due to Petkov, Christov, and Konstantinov [IEEE Trans. Automat.
Control, AC-29 (1984), pp. 1045-1048 is numerically stable.

Key words, backward error analysis, pole assignment, numerical stability

AMS(MOS) subject classifications. 65G05, 93B55, 93D15

1. Introduction. A single-input time-invariant linear control system has the form

(1.1) =Ax+ bu

with x, b R, A e R , and u e R 1. The function x(t) is known as the system state
and u is called a control function, to be chosen to control the evolution of x(t). One
way of choosing the function u is through the linear feedback relation

u= -krx

where k R is known as the gain vector. Equation 1.1 becomes

=(A-bkr)x
which is known as the closed-loop system. Stabilization can be achieved by proper
specification of the poles ),..., , which are eigenvalues of A- bk r. It is well
known [K] that if the linear system (1.1) is completely controllable, that is if
[b, Ab, ,A- b] e Rn has rank n, then the eigenvalues can be chosen or assigned
at will and a unique k exists so that A bk r has these eigenvalues. More background
information on this problem can be found in Russell [R].

At this point the control theory problem enters the realm of numerical linear algebra.
Given A Rn and b Rn, we seek k R so that A bk r has the eigenvalues ,, ,
)n. A number of pole assignment algorithms have appeared in the literature. At least
three methods in print are based on orthogonal plane rotations to reduce the system
matrix to triangular form, including Varga [V]; Miminis and Paige [MP]; and Petkov,
Christov, and Konstantinov [PCK]. Proofs ofnumerical stability have not been published
for any of these algorithms; however, the authors have a verbal communication from
one ofthe authors of MP that their algorithm has been shown to be numerically stable.
Two other papers that discuss numerical stability of algorithms for time-invariant linear
systems are [P] and D]. A broad overview ofthe matrix theory for linear control systems,
supplemented by an extensive bibliography, is presented in [B].

In this paper we present a detailed backward error analysis of the pole assignment
algorithm introduced by Petkov, Christov, and Konstantinov; we will refer to this as the
PCK algorithm. The algorithm can assign eigenvalues that are distinct or repeated, and
can handle complex conjugate pairs of eigenvalues using real arithmetic. Herein we will
restrict our analysis to the real case.
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Before stating our main theorem, a brief outline of the PCK algorithm is in order;
the details can be found in 2. Throughout this paper we will assume that the pair
(A, b) is completely controllable. The first step is to reduce the problem to a canonical
form. An orthogonal similarity transformation is used to reduce A bk to the form
A) b)k)r, where A) is unreduced, upper Hessenberg, b) b)el, b) 4: 0, and
e denotes the th standard basis vector.

The second step applies a procedure that we call PCK deflation n times. PCK deflation
is closely related to deflation for Hessenberg matrices (see W ); that is, given an eigenvalue
of an unreduced, upper Hessenberg matrix of order n, an unreduced, upper Hessenberg
matrix of order n can be produced possessing the remaining n eigenvalues. Each
application of PCK deflation assigns one eigenvalue and finds one component of an
orthogonally transformed gain vector. The first application of PCK deflation begins
with the pair (A (), b)) and finds an orthogonal Q(O) and a unique scalar a so that
Q()rb()=[,b) 0,." 0] r,b)4:0, and for any n-1 vector k()

(Qt)rA()Q() Qt)rb()[a, k()r])e ,lel. The n vector k (1) is determined
by assigning the remaining n eigenvalues to A ) b ()k () r, where A (1) is the lower

)el. Since can be con-fight n n block of Q()TrA()Q() and b() b Q(O)
structed so that A () is unreduced, upper Hessenberg, PCK deflation can be applied to
the pair (A t), b()). This process continues until a system matrix is reached.

The third step transforms the result back to the original coordinate system.
Throughout this paper [[. 11" 2, [1" [[F denotes the Frobenius norm, and u denotes

the unit rounding error.
Our numerical stability result is given in the following theorem.
THEOREM 1.1. Let A R , b Rn, , ..., R, and let the pair (A, b) be

completely controllable. Let k denote the gain vector computed by the PCK algorithm.
Then there exist AA e R" n and Abe Rn with AA / [[A O(n3b/), [1Abl[ / [[bl[
O(r/Eu), so that A + AA (b + Ab)k r has eigenvalues ),

In 2 we explain the PCK algorithm in detail and in 3 we prove Theorem 1.1 by
performing a backward error analysis in three parts. In Proposition 3.1 we show that the
computed result from PCK deflation is the exact result for a matrix whose relative dif-
ference from the original matrix is on the order of the machine unit. In Proposition 3.2
we show that the PCK algorithm is numerically stable ifwe start with the above-mentioned
canonical form. Finally, Theorem 1.1 is proved using Proposition 3.2 and Wilkinson’s
results on the error analysis of Householder transformations.

2. The PCK algorithm. In this section we describe the three steps in the PCK al-
gorithm.

Step One. The PCK algorithm first transforms the pair (A, b) into a canonical
form via an orthogonal similarity transformation. Let P0 e R " be a Householder trans-
formation constructed so that Pob -sign (b)]]b]le (see [GV, pp. 38-43 ]). Next,
construct a product of n 2 Householder transformations W := P1P2"’" Pn-2 SO that
A) Wr(PoAPo)Wis upper Hessenberg (see [GV, pp. 38-43 ]). Set P PoW. Then

(0)A) PrAP and the form of Wimplies that b) Prb P0b bl)el with bl
-sign (b)llblle. Now Pr[b, Ab, A"-b] [b), A)b), (A))"-b)]
has rank n so that the pair (A), bt)) is completely controllable. Let H be upper
Hessenberg, then the pair (H,/3e is completely controllable ifand only ifH is unreduced
and/3 4:0 (see [MP]). Consequently, A c0) is unreduced. It is sufficient now to find the
unique gain kt) so that A t) b)kt)r has eigenvalues )1, ),, since then, with
k Pkt), Pr[A) bt)k)r]P A bk r has the same eigenvalues.
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PCK Deflation. In Step Two of the PCK algorithm, PCK deflation is applied
n times. Before outlining this step, we describe a simplified version of PCK defla-
tion in detail. At the end of this section we show how this simplified version was modi-
fied in PCK] to reduce the operation count. As mentioned in 1, PCK deflation is re-
lated to deflation for unreduced, upper Hessenberg matrices. In general, PCK deflation
requires as input an eigenvalue to be assigned and a pair (H, /3el), where H is un-
reduced, upper Hessenberg and/3 4: 0. In Step Two, PCK deflation is applied first to
the eigenvalue ,1 and the pair (A (), b()) and this is where we begin.

If v) 4:0 is an eigenvector of A)- b)k)r corresponding to ,, then v)

must satisfy

(2.1) [e2, ,%It(A()- XlI)v<)=0

because A) and A) b<)k()r are identical except for row one. Since A) is unreduced,
upper Hessenberg, V(n) cannot be zero, so that once v() 4:0 is chosen, (2.1) can be
solved for v) by backward substitution. Next, for 1, , n use Givens rotations
Ji(n i, n + in the (n i, n + )-plane to transform v) so that

v(i)’= Ji(n i, n i+ l)...J(n-1, n)v<) [vl i), v(i)- i,O, ,0]

where Vnti)_ > V(n0)I > 0. For 1, n- 1, setD(i)’= JiDti-l)JwithDt)’=A)
and define Q<O)r j_ i"’" J1. Then Q<)rv<) v "- l)e and

Q<O)rA(O)Q<O)= D<n- ).

Now according to (2.1) there is a unique scalar al so that (A <) ,lI)v<)

v I"- l)alb<O). Transforming, we have (D ("- ) X I)el alQ<)b), where Q<)rb<)
J,_,b<) [, b<)v] r, with b<’) := b]’)e, an n vector, and

(n 2) 2 (n 2) 2 1/2 (l) (n 1)v + v 4:0 If > b we find fromd a
(n--l) (l)otherwise from d12 albl Solvxng for c1 in this fashion is crucial to our proof

of Theorem 1.1. For any n vector k(), (D (-1) Q()rb()[al, k()r])e
and hence D(-) Q()rbt)[al, k(l)r] is block 2 2 upper triangular. The n
vector k() is determined by assigning the remaining n- eigenvalues to A ()

b )k(1) r where A denotes the lower fight n n block of D ("

If n > 2 D(l) has fill-in in the (n, n 2) entry due to the form of A() and for
2, n 2, D() should have fill-in in the (n + 2, n i) and (n + l,

(n-l) b(0)n entries due to the form of D (i- ); however, (A () , I) v
,(i) (i)(n l)lb<O It follows that an-i+2,n-iVn-i 0implies that (D<i)-,lI)v(i)=vl

so that -n-i+2,n-
d() 0, since vn-;<) >Iv.)l= > 0. Thus D(i) has fill-in only in the

(n + 1, n entry for 2, ..., n 2. In particular, D <n-2) has fill-in only
in the (3, entry as does O (n 1) due to the form of Jn- 1. Since

(D<n-1,_hlI)V<n-l,=vln-1)ala(o,rb<O, d’-l’vln-’,=O,
which implies that d[7- ) 0, since v n- ) >_- v)l > 0. Consequently, D <n-1)is upper
Hessenberg.

To see that A<) is unreduced, define k)r := [a, k(l)r]Q)r, and C<) A()

b<)k<)r. Now C<) is unreduced, upper Hessenberg so that the pairs (C<), b()) and
Q<o) rC<o Q<o), Q<o rb()) are completely controllable. But Q<o rC o Qo is 2 2 block
upper triangular with a upper left block equal to ,1. Let C<1) denote the lower
fight n n block ofQ()rC)Q). It follows that the pair (C<1), b<)) is completely
controllable and so C<) must be unreduced, but then so must A <1) C
since A 1) and C 1) differ only in their first rows.
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Step Two continues with the application of PCK deflation to the pair (A (1), b(l)).
We summarize Step Two as follows.

Step Two. For 1, ..., n 2, apply PCK deflation to the pair (A- ), b- ))
and the eigenvalue to find the scalar c and an n + n + orthogonal
matrix Qtg- ) so that for any n vector k)

Q(i- l)TA (i- )Q(i- 1)__ Q(i- 1)rb(i-l)][oti, k(i)T

has the form

where A ti) is an n n unreduced, upper Hessenberg matrix, b (i) bi)et is an
(i) (i)n vector with bi) 4: O, and/3i, ’ t, and "Y21 are scalars.

Apply PCK deflation to the pair (A ("-), b ("-)) and the eigenvalue X_ to find
the scalar ,,_ and a 2 2 orthogonal matrix Q._ so that for any scalar oz,,

Qn- 2)rA n- Z)Qn- z)_ Q.- 2)vb .- )][ a._ , On]

has the form

Step Three. Set k(n- I) Otn (’y (2- 1)

gain vector k(). For n 2, ..., 0, set
Sn)/[Jn. Transform back to obtain the

oti+ ]ERn_k(i)= Qi
k(i+l)

Finally, set k Pk() E R n.

Operation Count. Step One requires about 5n3/3 flops using the Moler concept of
flops (see [GV]), while Step Three requires about 2n 2 flops. One application of PCK
deflation to a matrix of order m requires about lm3/2 flops. This takes into account
m2/2 flops for the backward substitution to find the eigenvector v(), 4(m flops for
the Givens rotations, and 5m2 flops for m updates of the form JHJ, where J is a
Givens rotation and H is an m m upper Hessenberg matrix except for one fill-in
element. As was pointed out in [PCK], the cost of the computation of the transformed
eigenvectors v (i) can be reduced. First, compute V(m)- and then for 1, ..., m 2,

(i-- I) (i- 1) (i)compute vm-i- and Ji(m i, m + and update vm and vm-i+ 1- In this way
the m2/2 flops required to find v() can be replaced by 3(m flops, a 9 percent
deduction in the work. Using this version of PCK deflation, Step Two requires about
5m3/3 flops. Henceforth, the term PCK deflation will refer to this 5m- flop version whichwe now state in detail.
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PCK Deflation. Given D() e Rmxm unreduced, upper Hessenberg, b() bl)e1t
Rm with b e O, and a real eigenvalue ),, compute scalars ,, b1), and an orthogonal
matrix Q e Rm x m.

Choose V(m) 4: O.
(2.2) V(m) ’= (h- d(m)m)V(m)/,4),.m,m-

For 1, ..., rn 2 (do not execute if rn 2)
(2.3) V(m/-_/)_,

[0, ""- ) a.- )

Construct a Givens rotation J J(m i, m + 1) in the (m i,
m-i+l)
coordinate plane so that

e_Jv"-) v)_ > 0
e_+,Jv"-) v)_+, 0

For k m + 2, ..., m (do not execute if m > rn + 2)
v( 0

repeat
D") JD"-

repeat

Comment: all components of v(m- ) have been computed.
Construct J_ Jm-(1, 2) so that v(m- ) Jm-v(m-:) satisfies

vim-l)> 0 and v[m- ) 0
D(m- 1) := Jm 1D(m-2)JmT
Q(O)r := Jm-1" J

e Jm_ b
bt) efJm- lb(0)
If (1/3 >_- Ibg>l) then

a := (d]-1)-
else

a, := d- 1)/
end if.

3. Backward error analysis. In this section we will use the notation of Wilkinson
and his error analysis ofGivens rotations (see W, pp. 131-141 ). Following Wilkinson,
we simplify bounds of the form u) <= / e <= / u)r, where u denotes the unit
rounding error, by assuming that ru < 0.1; it then follows that el < r( 1.06)u (see also
[DB, p. 52 ]). PCK deflation takes as data an m m matrix D(), an m vector b(), a
real eigenvalue 2, and a scalar normalization v (m). As output, it provides an orthogonal
transformation Q(0); the updates Q()TD()Q() and Q()Tb(); and the first component,
a, of the transformed gain vector. Proposition 3.1 is a perturbation result for PCK
deflation.

PROPOSITION 3.1. For a positive integer m >= 2 consider PCK deflation applied to
thefloating data D(), b(), , and V(m), where D() Rmxm is unreduced, upper Hessen-
berg, and b() bl)el with bl) 4: O. Let .]1, 2m-1 Rmxm denote the computed,
approximate Givens rotations and let D(k)’= fl(kD(k-)), k= 1,’", m 1.
Assume that 12 m u < O. and set d := 1.06.

Then there exists an unreduced, upper Hessenberg perturbation (o), with
IIzS(o) D()l[F __< (5m 4)dullD()ll, and a perturbation )(m), with I(m) V(m0) _--<
2(m- 1)dulv(m) I, so that PCK deflation applied in exact arithmetic to/5(), b(), ,,
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and) yields Givens rotations J, Jm- Rmxm, with IIJ 11 3du, and up-
dates tk)= jktk-)j, with I1k) -Dk)llF<-- (5m- 4 + 12k}dullD)llvfor k=
1, m 1. If Q)r Jm- l" J and )r denotes the computed accumulation
ofthe transformations , m-1, then IIat 0tllF _-< 6m(m- 1) du.

Proof. Let vi) denote the computed components of the transformed eigenvectors
in PCK deflation. Using the Wilkinson model of floating point arithmetic (see [W, pp.
112-116 ), we have that

(3.1a) v) /0) /o)
,mm m,m

with I-1 -< 3du and for k 0, m 3
(k+ 1) (k)

t)m_k_2-- l)m_k_2

(3. lb) --[(k--a(mk)k- l,m k- 1) 1)(k)m-k- d(mk)-- k- l,m- k)(km)---k( "dl-’Yk)]/

[d)-k 1,m-k-2( q- k)]

where dikl =< 4 du and 13’kl =< 3 du. Now for 1, m 1, define the m m Givens
-1)+ /SQR(i)i )/SQR(i) and si vrotation Ji J/(m-i,m-i+ 1)byci= Vm

(i- 1)] 2 (i-1) 1/2where SQR(i)’= { vm -- [/) m +
2 } SO that

[ ] [ (/-1)] [ SQR(/)]i Si I)m
1)

mSi Ci V n--i+ 0

and let Ji denote the corresponding computed, approximate Givens rotation with
computed cosine and sine di and gi. Then di ci <= 3 du c g s <-- 3 du sg
IIJi ,11 < 3du, and .i) SQR(i)(1 + ei) with I1 < 2du. In addition, ifQ)T"Um-
Jm-1"’" Jl and Otor denotes the accumulation of the corresponding computed trans-
formations, then Q 0tO) llF --< 6(m du (see W]). Next, for 0,
m 1, define vectors to by

(m-l)(m- 1)= v(m- 1)= [/) ,0, ,0]T
(m-2)= [I)m-2)(1 +em_l),l)(2m-2)(1 +Sin_l),0, ,0IT
(m-3)= [l)Im-2)(l+t:m_l),/)(2m-3)(1 +Sin_l)(1 +$m_2),

/)m-3)(l +em-1)(1 +$m-2),0, ,0]T
(m-2)(3.2) v + em- 1)

(m-3)(v2 + em-1)(
/)m- 4)( -" em- 1)( "+" Sm- 2)( -" gm- 3)

o)
(1)l)m-2( +em-1)"" "( +e2)v-1( -" gm-1)"" "(. v)( +em-1)"" "( +el)

It follows that (m-1) v(m-1) Jm-1(m-2) Jm-IJm-2r(m-3)
Jm-Jm-2"’’ Jt), and that for k O, ..., m 3

tmk)-k=V)-k(1 --gm-1)"’" (1 +ek+)

(3.3) )-- V)-- 1(1 +em-1) (1 +e+)
~(k+ l) (mk) (k+ 1)"l)m-k-2--) -k-2=lm-k-2( --em-l) (1 +ek+2).

The first equation in (3.3) with k 0 implies that I v)l =< 2(m 1)dulv I.
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PCK deflation has the property that for k 1, ..., m 3

(3.4) ,(k) --d(mO)-k-l,m-k_l and d(mk)_k l,m k 2-d(m)-k l,m k 2tim-k- 1,m-k-

Multiplying both sides of(3.1a) by + em-1) + el) and using (3.3) with k 0,
we find

(3.5a) (o) (o!, A(o)()k-- t/mm)9 (m0)/[ 1(1m m,m

Similarly, for k 0, m 3, multiplying both sides of (3. b) by (1 + am-1)
+ ek / 2) and using (3.4) and (3.3), we have

~(k+ 1) (k)
t)m-k-2-- gm-k- 2

(3.5b) [(,--d(mO)-k-l,m-k-l)9 (k) -d(mk)_ _kg(mk)_ (1 + )]/m- k- k- 1,m k "Yk

[d()"m-k-1,m-k-2( +

wherej(o)_ +/k=)(11+ di_l
+ tk)( + ek+ l) and hence Ikl(o) <=6dud(o" Now

2()define .(o)’m’m’() .’----

/m and for 1, m, define ,li and ,ii aii Then
(3.5a) becomes

to) 2to) )(mO)/2o)k ,’mm ,.’m,m- 1.

Next, define ,(o) d() d(m)- (1 + Yo) Then,,.,m-l,m-2 ’m-l,m-2( + /0)and d(m)_l,m l,m

from (3.5b) with k 0 we obtain

92 --9(m0) d(m0) 1,m- -1-- ]/ l,m- 2.-2 2--[(k )(m0> d(m0) 1,m9 (m0> d(m0)

To continue this process we have

d(m’> d(m)_2,m- fl( 2,m- 11 -[" 2,mffl

d(m0) 2,m-I q- ’m- 2,m-I )C1 -- d(m0) 2,m( q- 0"m 2,m)S1,

where ’m-2m- l, < ~(o) (o)]O’m-2m-l[ 5du. Define dm-2m-3 :- dm-2m-3(1 + f31),
d(ml) 2

(l) ~(0) (0)
-l ’,’m-2,m-l( / 3’1), dm-2,m-I := dm-2,m-l( / ’m-2,m- 1)( / 3’1), and

2(0) := d(mO)__2m(1 + am-2m)(1 + 3’1). Then from (3.5b) with k we obtaintm 2,m

2) /(0) ~(1) ~(1) (1)
m-3 9 3--[(k--,.*m-2,m 2)/)m 2 dm-2,m 19 ]/d(mO) 2,m- 3.

If m ->_ 5, then for each k, k 2, ..., m 3, we can start from
()
m-k- 1,m-k

(k- l) .4(k- l)Jl(am-k-l,m-kk + urn-k- 1,m+

.4(k-Id(mO)-k-l,m-k(1 + m-k-l,m-k)Ck+"m-k-l,m-k+l(1 +rm-k-l,m-k+l)Sk,

where ’m- k- l,m- k I, am- k- l,m- k+ -< 5 du, and define d(m)- k- l,m- k- 2 and
d(m)- k- l,m- k+ for j O, k, so that

’7() d(m)- k 2 <(5m-- 12)au] a(m)_k l,m k-2],.’m-k-l,m-k-2 k-l,m-

"().m- k- ,m- k+ d(m)- k- 1,m-k+l < (5m 12)du d(m)--k-l,m- k+l Substituting in
(3.5b), we find

~(k+ 1) (k)
Um-k 2-- k 2m-

[(k-- d(m0)k 1,m k 1) 9(k) d(mk) kg(mk) k]/d(m0) -k-2m-k-l-- k-l,m- k-l,m
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This process defines an m m unreduced, upper Hessenberg/0) satisfying the entrywise
bound I/t) Dt)l =< (5m 4)dul Dt)l (which holds for m >= 2).

It follows that starting with/o) and ), PCK deflation in exact arithmetic pro-
duces the m vectors to), tm-2), m-1)= vm-1), the m m Givens rotations
Jl,’", Jm-1, and the updates/k) jktk-1)j. The estimate I1 Dt)IIF =<
(5m 4)du D I1, together with Wilkinson’s bound on Givens updates yields
11/Stk) Dtk)ll F <= (5m 4 + 12k)dullD)llF for k 1, m 1. By examining
[W, pp. 131-141 ], it can be seen that in this proof bounds of the form (1 u) <-
+ e -< + u)r arise with r =< 12 (m so that d can be taken to be 1.06, since we

have assumed that 12(m u
The next step in the proof of Theorem 1.1 is to prove that this theorem holds when

the problem is in the canonical form mentioned in 1.
PROPOSITION 3.2. Let A) Rn n be unreduced, upper Hessenberg and let b)

b)el, b ) 4 O. Let kt) be the gain vector computed by the PCK algorithm applied to
the pair (A), bt)). Then there exists Z, AZ, AA) Rnxn and Ab) e R n, with Z
orthogonal and IIzllv-< 4n2u + O(
Ilat)ll / IIt)ll _-< 5n2u / O(u2), so that

(3.6) A()+ AA ()- (b() + Ab())k()r (Z+ AZ) ".. (Z+ AZ)-1

0

where 1, n are the eigenvalues to be assigned.
Proofby induction on n. We begin by using Proposition 3.1 with m n,

D() =A(), and the machine unit u sufficiently small. Let Q(O)r=
[/31, b(l)r] T fl(Jn-Ib()) and [ill, (l)r]r Q(O)rb(O) jn_ lb(O). In the proof of
Proposition 3.1, it is shown that/31 fil + el), and bl 1) 11)( + e2) with [el I,
121 --< 4du.

Now set Dtn- 1) R + E, where R is the upper Hessenberg part ofD<n- 1) and E is
zero except for fill-in due to roundoff on the second subdiagonal ofDn-1). Since
is upper Hessenberg, EIIv =< ]l/<n- 1) Dtn- 1)IIF --< 17n 16)du A co)[IF. We will find
scalars a and rt with wl =< 2du, and a matrix F that is zero except in the (1, and
(2, entries so that IIF[le --< (34n 22)dullA<)llFand for any n vector k

b
[al’k(l)T]

0 R(I)- b(1)k (l)T

Here, R1) denotes the lower fight n by n block of R.
In case Ibll)/l -< 1, PCK deflation computes al in (3.7) by

n-l)
Oll= fl[(dll Xl)/BI],

hence

(3.8) al ((dtn- 1))11 ,1)/[/31(1 +n)]

for some r/with nl 2du. Setfll 0. Then equality holds for the (2, entry in (3.7).
We now show that If2l -< (34n 22)dulIA<)IIF. PCK deflation applied in exact arith-
metic to the pair (/:o), b<0)) and the eigenvalue XI yields a unique scalar &l so that
(/(n-l)_ klI)el l[dl, (I)T]L where (1) l)el with bl 1) =/= O. Consequently,
~(n- 1)dll ,1 &1/31 and dz] 1) &lbl 1) from which we obtain the identity

~(n- l) ~(n- l)/(3.9) 1 dll fil d21 I ).
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Using (3.8) and (3.9), we find that

f2, b’)[d’ -’)- dl-’)]/3,(l +)+b’),3(2-’)/[Dll)/3,(l+)]-d(2 -’).

Since d-’) ’-’) --< II/(’-’ D(-’IIF, it follows from Proposition 3.1 that
IAl (34n 22)dullAtll. The case I/bll < can be treated similarly, except
that now al fl(d2 l/bll ). We note that our proof fails if al is not computed in this
way. The PCK algorithm proceeds by assigning the remaining eigenvalues X2,
to the pair (Rtl), bt l). Denote the resulting gain vector by k(1) By the induction hypothesis
we have n n matrices Zl, AZ(l, ARI, and an n vector Ab l) with Z
orthogonal and IIAZ)II _-< 4(n )2U "]" O(U2), IIz’)IIdlIR’)IIF <- 16(n )3u
O(u=), Ilab)ll/llb)ll _-< 5(n 1)=u / O(u=), and

(3.10)

R(1)+ AR(I)- (b(l) + Ab(l))k(l)T= (Z (l) + AZ (1))/)k2["
O Xn](Z ()+ AZ ())-.

Now set W’= diag 1, Z ()), AW’= diag (0, AZ ()), H’= diag (0, AR()), and

[ o o]G=
ClAb(l) 0

From 3.7 and (3.10) we have

R+F+H+G_[ l(l+rl) ] r]
b)+Ab) [a, k)

(3.11) =/(- l)+L-- [Q()rb()+ f][cl,k (l)r]

-(W-I-AW) ".. (W-- AW)-1

O

where L D(n- 1) (n-l) E + F + H + G and

D(I)--(1)+AD(1)

Next, we obtain estimates for L lie and f II. First,

IIGIIF-IIcabtl)ll- Ic 115(n- 1)2u+O(u2)lllbtl)ll

I.lbl) 115(n 1)2u/O(u2)]<_ 11/3- l)llF[5(n-- 1)2u/O(u2)]

--IIa<0)lle[5(n- 1)2u/O(u2)].

Here we have used (3.7). Also, Ilnlle- IlzXRC)IIF----< [16(n 1)3u + O(u2)] IIR<)lle =<
[16(n- 1)3u + O(u-)lllRIle_ [16(n- 1)3u + O(u=)llla<>llF. It follows that
Iltlle -< [{68n 54 + 16(n 1)3u + 5(n 1)2}du + O(u=)IlIA<>IIF. Finally, f --<
{4Vdu + [5(n- 1)=u +

The computed gain vector is found from

k(0)=f/(jl... fl(L- _fl( :n-l al, 1 (l)r r))... ).
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Now given x e R", there exists AJi R"x" so that IlAJll 5Vdu andfl(]ix)
(Ji + AJi)x. It follows that there exists AQ() e Rnxn so that

IlAQ()lle_ (n 1)5fdu +O(u2)
and k) (QtO) + AQ(o))[a, l()r]r. Setting (Q(O) + AQ(O))-r Q(o) + AU, it fol-
lows that

AUII-- IIAQ) I1/( zXQ() IIF) =< (n- )5fdu + O(uZ).
Multiplying (3.11) on the right by (Q(O) + AQ(O))r and on the left by QO) + AU

and collecting terms we have (3.6) with AA() Q)In-)AQ()r + Q)LQ)r +
Q()LAQ()r + Au(n-)Q()r + AUl(n-l)AQ()r + AULQ()r + AULAQ()r,
Ab(O) Q(O)f + AUQtO)rb(O) + AUf, Z := Q()W, and AZ AUW+ QAW+ AUAW.
Finally, for n

_
2, IIAt0)lIF/I/t)l/F -< 2(n )Sl[du + (68n 54)du +

16(n 1)3u + 5(n 1)2u + O(u2) _-< 16nau + O(u2). IIAbt)ll/llb)ll -< 4[du +
5(n )2u + (n )5[du

_
5n2; and ]IA’Z II - (n )5/du + 4(n )2u +

O(U2) 4n2u + O(u2). I"1
We now have the tools to prove Theorem 1.1.

ProofofTheorem 1.1. Let A e Rn x n and b e R" and let the pair (A, b) be completely
controllable. We use the notation of the first step of the PCK algorithm in 2. Our
statements about the error analysis for Householder transformations are based on [W,
pp. 152-162 (see also GV, p. 41 ). Let/50 denote the computed Householder trans-
formation and define b() := fl(/5ob) and B := fl(_f’oAl5o). Then b() Po(b + e) and
B Po(A + E)Po, where Ilell --< n2dullbll and Ilgll --< n2dullAII. Let W= PI’" "en-2
be as in 2 and let A to) denote the computed upper Hessenberg matrix. Then A (o)

Wr(B + F)W, where IIFII - Vn=dullnll. Set P’= PoW. Then A) Pr(A + G)P,
where IIGII -< 3n2dullall and Ilat)ll Ilall + O(u)). Since PrAP is unreduced, upper
Hessenberg so is A() for u sufficiently small. We also have b) WrPo(b + e)=
Pr(b + e). Following Wilkinson’s analysis, we can derive the following estimates. If/Sk
is the computed Householder transformation, then given y e Rn there exists APk e R""
with Ap -- 15 / 2 (n k + du so that fl(Pky) (Pk + APk)Y. Due to the
form of the Householder transformations Po, "’", P,-2, it follows that there exists
Ape Rx with I1,11 (n 2 + 18n 19)du so that k fl(Pk()) (P + AP)k().

We now apply Proposition 3.2 to the pair (At), b()). Substitute A(
pr(A + G)P, b Pr(b + e), and k (P + Ap)-lk into (3.6) and define T’= PZ
and AT by T + AT (P + AP)-r(Z + AZ). We have

(3.12) A+I-(b+Ab)kr=(T+AT) ".. (T+ AT)-1

0 X
and the theorem follows. Also, T is orthogonal and Arll O(n2u), ,XA ! A
O(n3u), IIAbll/llbll =O(n2u). Here we have used II1()11/11III +O(u). Also
(P + AP)-rPr i + AV, where AV -P(AP)r[I + P(AP)r] -1 and P(P + AP) r

I + AWwith IlzxvII, IIwll--< (n 2 + 18n- 19)du.

[DB]
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THE COMPUTATION OF GENERALIZED CROSS-VALIDATION
FUNCrIONS THROUGH HOUSEHOLDER TRIDIAGONALIZATION

WITH APPLICATIONS TO THE FITTING
OF INTERACTION SPLINE MODELS*

CHONG GU, DOUGLAS M. BATES, ZEHUA CHEN, AND GRACE WAHBA

Abstract. An efficient algorithm for computing the GCV (generalized cross-validation) function for the
general cross-validated regularization/smoothing problem is provided. This algorithm is based on the Householder
tridiagonalization, similar to Elden’s [BIT, 24 (1984), pp. 467-472] bidiagonalization and is appropriate for
problems where no natural structure is available, and the regularization smoothing problem is solved (exactly)
in a reproducing kernel Hilbert space. It is particularly appropriate for certain multivariate smoothing problems
with irregularly spaced data, and certain remote sensing problems, such as those that occur in meteorology,
where the sensors are arranged irregularly.

The algorithm is applied to the fitting of interaction spline models with irregularly spaced data and two
smoothing parameters, and favorable timing results are presented. The algorithm may be extended to the
computation of certain GML (generalized maximum likelihood) functions. Application of the GML algorithm
to a problem in numerical weather forecasting, and to a broad class of hypothesis testing problems, is noted.

Key words, computation ofGCV functions, interaction splines, Householder tridiagonalization, distributed
truncation

AMS(MOS) subject classifications. 41A13, 41A63, 41A65, 60G60, 62J07, 65F20, 65U05

1. Introduction. Generalized cross validation is generally recognized to be an ef-
fective method of automatically choosing smoothing parameters in various regularization
problems. Applications have been found in remote sensing problems, ridge regression,
univariate and multivariate smoothing spline regression, partial spline models, penalized
GLIM models, penalized likelihood estimation, penalized log-density and log-hazard
estimation, etc. (see for example, [16], [11 ], [12], [23], [25], [41 ], [34], [27], [26],
28 ). Some ofthe theoretical properties of this method are well known (see 32 ], 30 ],
[291, [211, [91, [241).

The general regularization problem we consider can be written as follows. The data
y are modeled by

Yi Lif+ ei 1, n

where fe H, some Hilbert space with the property that Li’s are bounded linear functionals,
and e’s are uncorrelated zero mean random errors with common variance. The method
of regularization seeksj in H to minimize

n

1.1 _.1 Z (Yi-Zif) 2 d- xlle,/ll
ni=l

where PI is the orthogonal projection in H onto a subspace HI of codimension M, with
M (( n. Smoothing problems are included if the Li’s are point evaluations, and remote
sensing problems can be modeled by choosing ti’s as integrals. For example, if S
[0, 1] and H W[0, 1], we may take Ilefl[ = f (f(m)(s))2 ds.
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The generalized cross validation (GCV) estimate for , is the minimizer of V(,)
given by

(1.2) V(X)=
(1/n) (I-A(,))y 2

[( 1/n) tr (I- A(X))I 2

where A(X) is the n n matrix satisfying

The problem we are concerned with is efficiently computing the minimizer of V(,) for
large n.

In many examples (see, e.g., [35], [25], [26]), it is convenient to approximate the
minimizer3 of 1.1 by a linear combination of some basis functions { Bt }= , and to
minimize (1 1) in the span of { Bt } -_ 1. Generally, to avoid losing information at this
stage, p should be chosen to be fairly large. Letting

p

fx IBI,
l=1

the problem becomes the following. Find c (Cl, cp)r to minimize

(1,3)
1

Ily- = + Xc Jc
n

where l (Zinl) and Jij (PtBi, PBj)I-Z, where (.,.)H is the inner product in H. If
H W’, then B-splines are a popular choice for the Bt’s. Let cx be the minimizer of
(1.3), and L be the Cholesky factor of J (so LrL J) and ux Lcx while X
then (1.3) becomes: minimize

which gives

and

(1.4)

Ily Xu II: + Xu
n

ux (X rX+ nM)-X ry,

A(h) X (X rX + nM)-X r= I- nX(XX r+ nM)-.
We see that this reduces to the standard ridge regression formulation (see [16]).

In the ridge regression case, when A() is of the form of (1.4), there are at least
four different strategies that we know of for minimizing V(X), which we will discuss in

2. In this paper, we will be mainly concerned with the efficient minimization of V(,)
when the variational problem 1.1 is solved directly in H rather than in span ( Bt }. The
minimizer of 1.1 is known to be in a particular (n + M)-dimensional subspace of H,
and the form of A(X) will be slightly different. In some applications (we will give a
concrete example below), it is more appropriate to solve directly in H. Frequently, these
applications involve H as a space of functions of several variables, where the data func-
tionals exhibit irregular patterns, and good approximating subspaces of reasonable di-
mension much less than n + M are not readily apparent. The form of I A(,) in this
case is known (see 20 ], 33 ], 36 ). To establish notation, we briefly sketch the derivation
of I A() in this case.
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From [20] (see also [33]), the exact minimizer of 1.1 may be written
n M

1.5
i=l

where i P/i, i being the representer of Li in H, Lif (r/i, fn; the { } _- span
the null space of elf and c (c, cn) r and d (d, dM) r satisfy

(.6) (+nXI)c+sa=r, sre=0
where

(1.7)

and

(1.8) SnM= (Li).

We remark that if H has a reproducing kernel Q(s, t),s, eS, then i(s)=
Litt)Q(s, t), where Li(t) means L applied to what follows as a function of t, and
(f;i, j) Li(s)Lj(t)Q(s, t).

Letting the QR decomposition of S be

S=(FF_)
O

a series of standard calculations (see, e.g., [36]), we obtain

I- (X) nXF(Ff2F + nXl)-F
and if we let Fr2F and . F,, we have

1/n)r(N + nXl)-
(1.9) V(,)

[( 1/n) tr ( + nM)- 2"

The present work centers on strategies for minimizing V(,) of the form (1.9), while
existing results in the ridge regression case are based on a form similar to (1.9), with
replaced by X rX.

Some strategies for the GCV computation are readily applicable to the minimization
of the generalized maximum likelihood (GML) function

1/n)zr(, + nM)-z
(1.10) M(X)=

det + nM)-/( )"

The GML estimates are useful in a certain general class of hypothesis testing problems
([ 10], [38]), and when the Bayesian model behind the estimatej is true. GML is not
recommended for the general regularization problems since it is not robust to deviations
from the exact Bayes model (see [36]).

In 2, we will review some of the computational strategies in the ridge regression
case. In 3 we will present an algorithm based on the Householder tridiagonalization of
the matrix ; for the efficient minimization of V() and M(X) of 1.9 and 1.10 when
; is not sparse. A distributed truncation strategy is proposed in 4 that may speed up
the tridiagonalization process when is rank-deficient. In 5, we will illustrate our
algorithm using an interaction spline model (see [2], [3], [37 ], [8]) as an example. In
this example more than one smoothing parameter appears, making efficient computation
even more crucial. At the end ofthe paper, we offer some remarks on other applications
and further studies in 6.
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2. A brief review of existing results for ridge regression. We briefly describe some
of the existing algorithms for minimizing

(2.1) V(,)
1/n) (I- A(X))y I12

[( 1/n) tr (I- A(X))] 2’

in the case

(2.2)
where

A(X)= X (X rX + nXl)-X

tr A(X) =p- n, tr (X rX + nM)-,
and X is the so-called design matrix of size n p.

To our knowledge, basically four different strategies have been proposed. We list
them as follows.

Singular value decomposition approach (SVD). Do the singular value decompo-
sition ofX UDV, where U, are orthogonal and D is diagonal. Then V( )) can be
represented as a rationalfunction of ). Do a grid search tofind the minimizing ). This
approach was originally proposed-by Golub, Heath, and Wahba [16 ], and has been
refined by Bates and Wahba [5], and implemented by Bates et al. [6] in GCVPACK.

Cholesky decomposition approach (CD). For each trial value of), do a Cholesky
decomposition ofnM + X rX C rC. Compute the numerator ofthe GCVfunctionfrom
the Cholesky factor C, and compute the denominator from its inverse C-. Do a grid
search or a golden-section search tofind the minimizing ). A very efficient algorithm has
been developed by Hutchinson and deHoog [19 following this approach, making use
of the special band structure in X that is available in some applications like one-dimen-
sional smoothing spline regression.

Bidiagonalization approach (BD). Do the Householder bidiagonalization in the
first part of the singular value decomposition algorithm, but do not iterate to the final
diagonalform. Evaluate the GCVfunction for each trial value of)from the bidiagonal
matrix B UrXV r, where U and are orthogonal. This approach was proposed by
Elden in 14 ].

Monte-Carlo approximation. In some very large sparse linear systems like those
that appear in image processing and tomography problems, the solutions are usually
obtained through iterative methods, hence the trace term in the denominator ofthe GCV
function is very difficult to evaluate. In an unique work by Girard 15 ], however, a nice
simple Monte-Carlo approximation to the trace term is provided. In this method, for
each trial value of ), the regularized least square system is solved by some iterative
methods and automatically we will get the numerator ofthe GCVfunction. Then passing
a pure noise vector as data through the same iteration steps will result in a Monte-Carlo
approximation to the denominator ofthe GCV function. The approximate GCV values
are then compared over trial values tofind the minimizing ).

2.1. Comparison of the basic strategies. Now we briefly discuss the pros and cons
ofthe existing algorithms. Our main concern is the speed ofthe algorithms. To be specific
in later discussions, we call the Cholesky decomposition approach described above the
direct Cholesky decomposition approach (DCD henceforth). It is worth keeping in mind
that in most applications of the generalized cross validation technique, p is often ofthe
same order as n.

The SVD approach explores the singular value structure that makes possible the
explicit expression of V()) as a rational function of ). The explicit expression is useful
for theoretical analysis, and the singular values are useful in model diagnostics. For the
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sole purpose ofcomputing the GCV estimates of k, however, the explicit diagonal structure
is not necessary. At the same time, the singular values are very expensive, as observed
by many numerical experimenters (see, e.g., 6 ).

One alternative to the SVD approach is to evaluate GCV function at each trial value
of directly from (2.1) and (2.2). The standard technique is through the Cholesky
decomposition ofn hi + XX CCto compute the numerator of(2.1), and to compute
the denominator from C-, which requires about the same amount of calculation as the
Cholesky decomposition. When the design matrix X is banded, each evaluation can be
done in O(p) flops, thus this approach is very efficient (see, e.g., [19]). See also [28] for
its use in nonlinear settings. When X is a general matrix, though, each evaluation will
take / 3 )p3 flops (for both C and C- ), so the grid search of DCD in general cases is
very expensive.

In understanding the SVD and DCD approaches, we see two extreme trends in their
strategies. SVD performs an expensive one-time structural exploration on the design
matrix X before doing the grid search on k; the cost for the grid search that follows is
then negligible. DCD directly does the grid search based on the raw design matrix; its
performance is then determined largely by the property ofthe raw design matrix. Elden’s
BD approach 14 provides a nice middle strategy for the general dense matrix X. Instead
of exploring the unnecessary expensive singular value structure, BD stops at the less
expensive bidiagonal form. It is obvious that the bidiagonal structure provides the band
structure that makes the evaluation of GCV function very efficient through Cholesky
decomposition. (However, Elden’s original treatment of B is not through CD.) BD is
thought to be superior to SVD.

It must be emphasized that the above comparison is solely based on the leading
terms of the flop counts. For small and moderately sized problems, the other terms can
be as big as the leading term, and thus affect the relative performance of the algorithms.

The above three approaches are all based on suitable matrix decompositions. How-
ever, in some very large sparse ill-posed linear systems, the regularized solutions to the
systems are usually obtained through iterative methods such as conjugate gradient methods
or successive overrelaxation (SOR) methods, without explicit decomposition of the cor-
responding matrices, hence the trace of the influence matrix A(k) cannot be obtained
through the above methods or any variants. Girard’s 15 Monte-Carlo approximation
to the trace term is the only method yet known to apply the GCV technique of choosing
smoothing parameters to such systems. These systems are common in image processing
problems and computerized tomography (CT) problems. On the other hand, in problems
where the direct matrix decomposition approach is appropriate, the Monte-Carlo ap-
proximation is unnecessary.

3. Proposed algorithm. To evaluate (1.5), where 2;, or equivalently X rX, is directly
available, we propose the following algorithm for computing generalized cross validation
and maximum likelihood estimates of k.

ALGORITHM 1.
Step a. Tridiagonalize ; by

uTu T

where U is orthogonal and T is tridiagonal.
Step b. Form x U TZ. The GCV and likelihood functions become

(1/n)x(nkl+T)-2x
(3.1) V(X)= [(1/n)tr(nM+T)-] 2
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and

(3.2) M(X)=
1/n)xr(nM + T)-lx

det nM + T (n M)"

Step c. For each trial value of , do a Cholesky decomposition of (nM + T).
Compute the GCV and likelihood functions from the Cholesky factors. Do a grid search
on to find the minimum.

Step a can be done by successively applying the Householder transformation, taking
about (2/3)n 3 flops. U can be stored in factored form in the strict lower triangle of 2;

(see [17, pp. 276-277]). A strategy for speeding up this step by appropriate truncation
will be presented in 4.

Step b can be done with n2 flops, using the LINPACK routine dqrsl in an appropriate
way, from the factored U. See [13, Chap. 9].

For step c, we can find routines for the Cholesky decomposition ofbanded positive
definite matrix and related routines from LINPACK 13, Chap. 4 ]. The only tricky part
in evaluating 3.1 and (3.2) is to compute the denominator of (3.2), for which we will
use the formula presented by Elden 14] as illustrated later in this section. The overall
operations needed for the evaluations are of order O(n). In most cases, the likelihood
function and the GCV function are unimodal as varies, so the golden-section search
might be used for a grid search on ,. Generally speaking, 20-30 evaluations will suffice
in most applications.

3.1. Compute the denominator of the GCV function. Given the Cholesky decom-
position (nM + T CrC, where

a2
C=

62

an-M-

is upper bidiagonal. The calculation of the denominator of the GCV function is derived
by Elden in 14 ], as illustrated below.

We need to calculate tr (C-IC-r). Denote the ith row of C-1 by el. We have
tr (C-C-r) Z Ilc/[] 2. From

c-Tc-T-- Cl C2, ,Cn_M)

al
a2
bz ".. I

an-M-
bn-M- an-M-

we have

an- MCn M-- en- M, aici ei- bici + 1, n M- 1,

where ei’s are unit vectors. Because C-is lower triangular, ci / is orthogonal to el. Thus
we have the recursive formula

Cn MI[ 2 a2_ M,

lie/l[ 2 / b/2 I1ci+1112)a72 n M-

which can be calculated in O(n) flops.
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3.2. Comparison with other algorithms. Other possible algorithms applicable to
our setting are the DCD approach, and the eigenvalue decomposition approach, which
is the direct analogue of the SVD approach in the ridge regression setting.

In modern literature on numerical linear algebra, the recommended algorithm for
the eigenvalue decomposition ofa symmetric matrix is through Householder tridiagonal-
ization followed by symmetric QR iterations (see [17, Chap. 8]). Similar to BD versus
SVD, our tridiagonalization approach (TD henceforth) stops before getting into the
iterative step, but takes in the extra complexity of evaluating the GCV and likelihood
functions from the tridiagonal matrix instead of from the diagonal form. This can also
be viewed as introducing the band structure through tridiagonalization, which makes the
grid search based on Cholesky decomposition very efficient, but avoids further exploring
the eigenstructure that is not necessary for the purpose of evaluating the GCV function.

To compare TD with DCD, we must distinguish between the likelihood function
and the GCV function. For the likelihood function, the operational cost for each grid
evaluation is mostly in the full matrix Cholesky decomposition, which is about /6)/73
flops. See 13, Chap. 8 ]. On the other hand, the cost for TD is mostly in the Householder
tridiagonalization, which takes (2/3)/’/3 flops, see [17, p. 277]. Thus the TD approach
is roughly equivalent to four grid evaluations ofthe likelihood function in computational
cost. When DCD is used to evaluate the GCV function, however, we need to invert the
Cholesky factor to compute the trace of the inverse matrix. This needs an extra / 6)n
flops (see [13, Chaps. 3, 6]). Hence the TD approach takes twice the operations needed
for one grid evaluation of the DCD approach for GCV computation. Remember that
the Cholesky decomposition might be the least expensive approach for solving the system
when , is known, so it provides a reasonable baseline for comparison.

Our method is in the spirit of Elden’s BD approach. It also suggests an alternative
method for handling the bidiagonal form after the bidiagonalization in BD. In his original
proposal, Elden 14 applies a sequence of Givens rotations on the bidiagonal matrix B
to compute the numerator of GCV function for each k grid. Instead, we can form a
tridiagonal matrix T B rB, and use our step c to evaluate the GCV function at various
trial values of k based on the tridiagonal form T. Both Elden’s method and our step c
are of linear order, although our method can easily be implemented by calling the ap-
propriate LINPACK routines.

4. Householder tridiagonalization and truncation. In this section, we will present a
distributed truncation strategy in the implementation of the Householder tridiagonaliza-
tion algorithm described in [17, pp. 276-277]. The truncation is controlled by the
Wielandt-Hoffman theorem, through a lemma proved at the end ofthe section. To make
the discussion self-contained, we first review the Householder tridiagonalization algorithm.

4.1. The Householder tridiagonalization. Given a nonzero vector b of dimension
l, the Householder matrix

2
(4.1) H=I vrvvv
where v b Ilb[lel, is an orthogonal projection matrix projecting b onto the linear
space spanned by el. That is, H zeros all components of b except the first one. If b is of
unit length, the Householder matrix (4.1) can be written as

T

(4.2) H=I-
/21

where v el -+ b and ul _+ bl (see also [13, Chap. 9 ]).
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For any symmetric matrix A of size n n, let

b (a2, ,aln) T.
If bl 4: 0, forming the Householder matrix H1 from bl through (4.1), we have

where has all components 0 except the first and D is a symmetric matrix of size
(n (n ). We can write A as Do, and it is easy to see that, by applying the
procedure described above successively to Dk’s, we will reduce the matrix to tridiagonal
form. Actually, before step k, we have

[ o]Ak- (P"" "Pk-1)TA(P"" "Pk-1) Tk-1 bff
0 b D_l

where Tk-1 is k k tridiagonal, D is an (n k) (n k) general symmetric matrix,
call it tail, and b is an n k vector. Ifbk 4: 0, we apply an (n k) (n k) Householder
matrix from both sides to set all but the first components of bg to zero. Ifb 0, we call
it a diagonal separation, and skip the step. The matrices Pg are generally in the form

P diag (Ik, Hk)

where Ik is the identity matrix of size k k, and H is a Householder matrix of size
(n k) (n k). If step k is skipped due to a diagonal separation, then P In. At an
unskipped step k, the operational count is about 2(n k) 2 flops.

4.2. Implementation. In the implementation ofthe Householder tridiagonalization
algorithm, our main task is to update the tail D_ by Dg. HkD_ H. We first stan-
dardize the bg’s at each step, and use (4.2) to compute the Householder matrix Hg. We
drop all subscripts since no confusion is caused, and assume b is prestandardized to have
length one. It can be shown as in [17, p. 277] that

D. HDH D- vwr- wv r

where v is as in (4.2), and

where
Dv

An important aspect of the implementation is the appropriate criterion for setting the
diagonal separation, which is the main issue ofthis section. Diagonal separations at early
steps may speed up the process considerably.

4.3. The Wielandt-Hoffman theorem. We include here the Wielandt-Hoffman
theorem 17, p. 270 that leads to the truncation scheme discussed later.

THEOREM (Wielandt-Hoffman). Let X and Y be n n symmetric matrices,
having ordered eigenvalues { di }, { Si }, respectively. Then

(di-si)2<=tr[(X-Y)r(X-Y)l IIX-Y 112.
i=1
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The theorem implies that the difference of the eigenstructures of two matrices is
controlled by the Frobenius-norm of their difference.

4.4. Distributed truncation during tridiagonalization. We now describe a distributed
truncation strategy for speeding up the Householder tridiagonalization algorithm. The
strategy skips the Householder transform whenever appropriate by truncating the small
b’s to zero. Remember that at step-k we need about 2(n k) 2 flops to perform the
Householder transform. We propose the following algorithm.

ALGORITHM 2 (Distributed Truncation in Householder Tridiagonalization).
(1) Initialization" Given the tolerance e, compute u e/C, where C

,-2 (n k)2 [n(n- 1)(2n 1)/6] 1..Set z 0.
(2) Tridiagonalization" For k 1, n 2

(a) Set z + (n- k)2u.
(b) If 2 Ilbk 2 =< r, then set z z 21lb , set bk 0, skip the Householder

transform. Otherwise, perform the Householder transform as usual.

As the justification of the truncation strategy, we have Lemma 1.
LEMMA 1. For the above truncation strategy, denote the matrix A. as the matrix

restoredfrom thefinal tridiagonalform by reversing the Householder transforms applied.
Then IIA A, F < , where e is the prespecified tolerance.

Usually the tolerance e is made to be a small proportion of the total square norm,
6 IIAII , say, where 6 is specified by the user. If great precision is desired, 6 will be set to
the square of the machine precision. The proof of the lemma is given at the end of the
section. This lemma assures that the truncation described above is under our control in
the sense of the Wielandt-Hoffman theorem. It is easy to see that we will have diagonal
separation when the matrix A is rank-deficient, as assured by the following lemma.

LEMMA 2. For any k k tridiagonal matrix T, if all of its off-diagonal elements
are nonzero, then rank (T) >= k 1.

The validity of Lemma 2 can easily be seen by evaluating the determinant of the
left-bottom corner (k (k submatrix. Each application of the Householder
transform adds one to the rank of the tridiagonal part T. So we have Theorem 2.

THEOREM 2. For an n n symmetric matrix A with rank A k, the tridiagonal-
ization algorithm will perform the Householder transformation at most k times. The
operations involved are at most (2 / 3 n n k) 3 flops.

It is observed that we may have quite a large number of diagonal separations even
when the matrix A is ofcomputationally full rank. We should also truncate the tail when
enough norm is accumulated at the upper-left corner, to make the strategy complete.

4.5. Proof of Lemlna 1. First we assume we only truncate twice. Denote the product
of the Householder matrices up to the first truncation as U, and the product of House-
holder matrices between the first truncation and the second truncation as U2. Denote
A as the matrix restored after.the first truncation, and Az as A. defined in the lemma.
We have

(4.3)

since

IIA-A211 IIU (A-A)U+UI(A Az)U ,
UI(A_A1)U [ T

0 b
bl

D O D O b O
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and

U(A-A2)U
D O D, O D-D,

where DI. is the submatrix restored after the second truncation at this corner. Thus the
two matrices in the fight-hand side of (4.3), treated as two big vectors, are orthogonal.
The square Frobenius norm of part one is 211 =. Note that U2 diag (I, I12), where
U2 matches DI in size. We can do the same process with D DI., as we do with A
A. So the square norm of the second part is 2111)2112, where b2 is the second truncated
b. It is easy to continue this procedure by induction in the general case where we have
more than two diagonal separations.

5. Application to interaction spline smoothing with multiple smoothing parameters.
5.1. Interaction splines. Let H H0 ( H be a Hilbert space where H0 is of di-

mension M and H is the direct sum ofp orthogonal subspaces H, Hp,
p

(5.1) HI= (R)n13

13=1

where H13 are orthogonal subspaces, and suppose we wish to find f H to minimize

n p

(5.2)
1

(yi_Lif)2 + h O Ileofll 2

ni=l t3=1

where 01 and p13 is the orthogonal projector in H onto H13. By replacing the square
norm etfll 2 -- p13f 2 in (1.1) with Y= 0 eafll 2 it can easily be seen that
the solution to the problem (5.2) is of the form 1.5 with

replaced by

and that in (1.6) is of the form , + o22 +’" +
where the ijth entry of ;13 is (P13i, p13j)H.

The additive spline models and their generalizations, the interaction spline models,
fall into this framework. The additive spline models have become popular in the analysis
of medical data (see 18 ], 7 ], and references cited therein). The interaction spline
models have been discussed by Barry [2 ], [3 ], Wahba [37], and Chen [8]. These models,
which in a sense generalize analysis of variance to function spaces, have strong potential
for the empirical modeling of responses to economic and medical varibles, given large
data sets of responses with several independent variables, and represent a major advance
over the usual parametric (mostly linear) models. We have chosen a relatively simple
special case of an interaction spline model, based on synthetic data, for the first test of
the algorithm, because it has many of the features of the general case, and because nu-
merical methods for efficient computation ofinteraction smoothing splines with irregular
data have not, to our knowledge, been presented elsewhere.

We now describe these models. Let W’ be the Sobolev space

W= {f: f,f’, ,f(m-1) absolutely continuous, f(m)eL2[O, }
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with the squared norm

Ilfll wT- E (Rf)- + (f(m)(x))2 dx
=0

where

R,f= f()(x) dx, v=0, 1, ,m- 1.

Let kt(x) Bt(x)/l!, where Bt is the lth Bernoulli polynomial, and we have R,,Bt 8,,_
where 6i 1, 0, and 0 otherwise. With this norm, W’ can be decomposed as the
direct sum ofm orthogonal one-dimensional subspaces ( k ), 0, 1, m 1, where
{ kt ) is the one-dimensional subspace spanned by kt, and H., which is the subspace
(orthogonal to (R) ( kt } satisfying R,,f 0, 0, 1, m 1, that is,

W’= {ko}(R) {kl}(R)... (R) {km-,}(R)H,.
d

This construction can be found, e.g., in [11]. Letting (R) W’ be the tensor product of
W’ with itself d times, we have

d d

(R)WT=(R)[{ko}(R)’"(R){km-}(R)H,l
d

and (R) W’ may be decomposed into the direct sum of(m + )d fundamental subspaces,
each of the form

(5.3) ](R)[ ](R)...(R)[ (dboxes)

where each box ]) is filled with either ( k ) for some l, or H.. Additive and interaction
spline models are obtained by letting the Ha’s of (5.2) be various of these (m + )d
fundamental subspaces. To obtain (purely) additive spline models, similar to those in
[18 ], we retain only those subspaces of the form (5.3) above whose elements have a
dependency on at most one variable; this means that (at most) one box is filled with an
entry other than { ko } =- { }. We may construct spline models that are nonparametric
in one variable and polynomial in all the others, nonparametric in two variables, and
so forth.

The form of the induced norms on the various subspaces can be seen most easily
by an example. Suppose d 4 and consider, for example, the subspace

[{ kt} ](R)[H, (R) [H,] (R) { kr} ],
4

which we assign the index l* *r. Then the square norm of the projection of f in (R)

WT onto this subspace is

11P**rf = Rl(x,)R.(x4)f( x,,x2,x3,x4) dx2 dx3[OxOx

where Rk(x) means Rk applied to what follows as a function ofx. When we use the fact
that the reproducing kernel (r.k.) for { kt} is kt(x)kt(x’) and the r.k. for H, is Q(x, x’)
given by

Q(x,x’) km(x)km(x’) + (- )m- k2m([X__
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where [u] is the fractional part of u (see [11 ]), it is easy to see that the r.k. for this
subspace, call it Qt**r(X, x2, x3, x4; x’, x, x, x) Qt**r(X; x’), is

Qt..r(X X’) kt(xl kt(x’ Q(x2, xl Q(x3, x’3 kr(x4 kr(x’
For the properties of tensor products of r.k. spaces (see ], 40 ]). If Lif f(x(i)),
where x(i) is the th value of x, then

(Pl..ri)(x) al..r(x( i),x)

and

<el,,ri,el,,rj> Ql,,r(X( i), x(j)).

In the purely additive modelf(xl, Xe) is of the form
d

f(x, ,xe-. + 2; g(xl

where g e { kt } (R) (R) { km- } (R) H. and the penalty term in (5.2) can be taken as
d fol(Omga)2,._ 0,-

Oxm
dx,.

Although the popular purely additive model could be fitted with the methods described
here, we do not do so because the present method does not use the special structure that
is available for computing univariate polynomial splines (see, e.g., 19]).

5.2. Numerical examples. For simple yet nontrivial examples, we consider fitting
interaction models with d 2, rn 2. Let

W22 (R) Wz Ho (R)H (R) HI
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FG. 1. Sampling pointsfor the numerical experiment.
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FIG. 2. The "interactive" test function.

where H0, the null space of the penalty functional, is the M 4 dimensional space

/4o=
i,j=O

We will denote by HA the union ofsubspaces that are linear in one variable and "smooth"
in the other. Ha is thus

/-/, [({ ko } (R) {k,})@/-/,]@[/4,, (R)({o} (R) {k, })]

and HI is the nonlinear two-factor interaction subspace

[H, (R)H, ].

Then f Wz2 (R) W2 has a (unique) decomposition of the form

f( x,,x2) { d.,uk.(x, )ku(x2) }
u,t 0

’[- fo, (X, + k, (x2)f,, (x,)bfo2(X2)-i- kl (xl )fl2(X2) } 4c- {J(Xl,X2) }
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FG. 3. The I/( and MSE for the "interactive" example. (a) I/(,) in a broad area. (b) MSE (,) in
the same area as a ). c Enlargement of a in the boxed area. d Enlargement of b in the boxed area.

wherefo, f02, fll, and f12 are in H. andJ is in H. (R) H., the components in { } are
in Ho, Ha, and HI, respectively. We consider the smoothing problem as follows. Find
f e W (R) W’ to minimize

(5.4)
nI , (yi_f(x,(i),xE(i)))z + x( llP fll :z +O-’llPlflI2),

n=l

which is actually a reparameterization, for numerical purposes, ofthe more natural form

(5.5) Z (Y,-f(x,(i),x2(i)))2+ X. e.f = + XllleIfll 2,
ni=l



COMPUTATION OF GCV FUNCTIONS 471

FIG. 4. The estimated "interactive" function, with the GCV estimates of,A and

with/9 )kA]I. (We note that we could have allowed two or more separate X’s for
different components of Ha but we chose not to do that here.) In modeling response
data, if a good estimate of ,i turns out to be sufficiently large, then the interaction term
will not be "significant," and the user may choose to delete it. If this term is not "sig-
nificant," then consideration may be given to deleting the "cross" terms kl (x2)fl (x)
and k (x)fl2(X2).

The r.k.’s Qa for Ha and Q1 for H are given by

a(x x x’ x’
Q(x ,X’l + Q(x2,x’2) + k(x)k (x’)Q(x2,x’2) + Q(xl ,X’l )k (x2)k (x)

and

Qt(x ,x2;x’ ,x’2) Q(x ,x’ )Q(x2,x’2).

The ith row of the n 4 matrix S of (1.8) is

(1,kl(X(i)),k(x2(i)),kl(X(i))kl(X2(i))).
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FIG. 5. The "additive" test function.

i(X) in 1.5 is given by

i(X) QA(X(i),x) + OQl(X(i),x)

and the ijth entry of ; of (1.7) is

(5.6) QA(x(i), x(j)) + OQi(x(i), x(j)).

If the x(i)’s form a regular pattern, then there will be some special structure that, in
principle, could be exploited (see 31 ). Our work is aimed at the case where no special
structure can be assumed.

The sampling points we chose in the numerical experiment are shown in Fig. 1. We
first drew a 25 25 regular mesh, with each side being .02(.04).98. Then we divided
the mesh into 5 5 regular blocks, with each block containing 25 meshpoints. From 10
ofthe blocks randomly chosen out ofthe 25, we randomly deleted seven meshpoints per
block, and from the remaining 15 blocks we randomly deleted 17 meshpoints per block.
This procedure leaves us with 300 "patchier" data points as shown in the plot. These
300 data points x(i), 1, ..., 300, are ordered so that

i<jxl(i)<xl(j) or xl(i)=x(j), xz(i)<x2(j).



COMPUTATION OF GCV FUNCTIONS 473

FIG. 6. The V(X) and MSE (,) for the "additive" example. (a) V() in a broad area. (b) MSE () in
the same area of a). (c) Enlargement of a in the boxed area. d Enlargement of (b) in the boxed area.

We use the random number generator rnor (which further calls uni) [22 ], as implemented
in the Core Mathematics Library (CMLIB) from National Bureau of Standards, to gen-
erate 300 independent normal N(0, deviates 8i to go with these data points, with the
first dummy call using seed 4321, and variable mdig in routines rnor and uni fixed to
16. Thus the standard deviation ofthe ei’s was equal to the distance between two successive
hatch marks in the vertical scale in Figs. 2, 4, 5, and 7. We ran the experiment on the
data Yi f(x(i)) + ei for two different test functions. One has a strong interaction com-
ponent, and the other is purely additive. We present them in sequence.

The "interactive" test function is shown in Fig. 2:

40 exp (8 [(x--.5)2 -1" (X2-- .5)2])
f( x ,x:)

exp (8 [(Xl -.2)2 + (x2 -.7):]) + exp (8[(Xl -.7)2 + (x:z -.2)])"
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FIG. 7. The estimated "additive" function, with the GCV estimates of,A and hI.

Figure 3(a) shows V(,) V(A, )kI) for a wide range of ,A, kI, with a tensor product
mesh of log10 (n,A) e -6(.3)3 and log10 (nXI) -9(.3)0. Defining MSE() as

(Lif_Lfx)2 i(f(x(i))_fx(x(i))) 2()MSE’’=n n

Fig. 3(b) shows MSE(,) over the same mesh as in Fig. 3(a). In theory the minimizer
of V(X) is an estimate of the minimizer of MSE(,), and so, in a numerical experiment
such as this one, MSE(,) can be inspected to see how good the estimates (minimizer of
V(,)) are. Figure 3(c) gives these surfaces over a narrower range of values of A
and )kI containing their minima (boxed region of Figs. 3 (a) and 3 (b)), using mesh
log0(n,A) e -4(.1)-1 times log0(n,/) e -7(.1)-4. The minimum GCV value
1.14694 on these meshpoints is obtained at lOgl0 (n ’A) --2.5 and log0 (n XI) -6.0.
This combination gives the fitted surface shown in Fig. 4. This surface has an MSE
of 0.10874 compared to the minimum possible MSE value of 0.09141 on the mesh-
points. By setting one ofthe smoothing parameters to infinity, i.e., leaving out HI or Ha,
we can estimate the "marginally" optimal smoothing parameters. There are some theo-
retical results, to be presented elsewhere, that suggest the "marginally" optimal smooth-
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ing parameters can be good starting guesses for the simultaneously optimal smoothing
parameters under certain conditions. For the current example, the "marginally"
optimal smoothing parameters are log0 (nha) -2.568 with GCV value 2.356, and
log0 (nhz) -5.928 with GCV value 1.661.

The "additive" test function is shown in Fig. 5, and is

f(x ,x2) 4(exp (-8x2) + 3 exp (-8x22)).

The model f f0 + JJ + j, where fo Ho, fa HA, and J)e HI as before, was
fitted, with V(h) and MSE(h) searched on the mesh lOgl0(nhA)e--7(.3)2 times
lOgl0(nh/)--5(.3)4. The minimum GCV value of 1.01669 was obtained at
lOgl0 (n ha) -2.2 and log0 (n hi) 4, indicating that hz wants to go to infinity. The
MSE at (-2.2, 4) was .078457, and the minimum MSE on the mesh was .075363.
T,he model f fo + J was then fitted, and log(nha) --2.13 obtained by a golden-
section search, with a minimum GCV of 1.01647, which suggests that hI (3(3 is, in
fact, the minimizer. We also tried the modified model f f0 + JJ, + j,, where the
primes are here intended to indicate that the "cross" terms, that is, the terms of
the form k (x2)f (Xl) and k (Xl)f12 (x2), were removed from Ha and added to HI.
This gives new spaces HA, and HI, with corresponding smoothing parameters ha, and
XI,. The same mesh was searched (in lOgl0 (nha,) times log0 (n hi,)) and the same min-
imizer was found, but with a minimum GCV value of 1.00940, which is less than 1.01647.
V(h) and MSE(h) for this modified model are plotted in Fig. 6. Figures 6 (a) and 6 (b)
contain the edges ofthe high plateau in both GCV and MSE surfaces that appear at large
Xa,. Figures 6 (c) and 6 (d) give the surfaces in an area where ha, is around the optimum
and the decreasing trend in the hi, direction can be visualized (boxed region ofFigs. 6 (a)
and 6(b)). The purely additive model was tried (that is, hi, and this model was
fitted using log0 (nha,)= -2.2, which gave a GCV value of 1.00940 and an MSE of
0.073606. The minimum MSE on the meshpoints ofFig. 6 is 0.072730. The fitted purely
additive function is shown in Fig. 7.

5.3. Numerical strategies and timing results. Now we briefly describe the basic
numerical strategies in fitting the above presented models, as well as some timing results
of interest.

It is clear from (5.6) that the ; matrix in (1.6) varies with the parameter 0. As
discussed in 3, the major numerical work ofthe algorithm rests on the tridiagonalization
process, so the GCV evaluations on various grid points of h for fixed 0 (the notation of
(5.4)) are essentially free given the tridiagonalization. Thus the two parameters 0 and h
bear different numerical properties. 0 is "cubic" and h is "linear." For obtaining a "quick"
solution, a double grid search can be done on (0, h), with the execution time being
basically proportional to the number of 0 values tried. However, to visualize the GCV
and MSE surfaces, the parameterization in (5.4) is not appropriate. We need to draw
the surfaces on the product mesh of hA and hI as parameterized in (5.5). When both hA
and hz are in a log scale, as they should be, and when the stepsizes on both axes are the
same, it is easy to see that the meshpoints on each diagonal line have the same 0 parameter.
Our strategy of obtaining those surfaces presented before is based on this observation.
Hence the numerical cost of each surface is proportional to the sum ofthe grid numbers
on both axes minus 1.

For our examples, the matrix Z is of size 296 296. We set the truncation rate in
the tridiagonalization to the square ofthe machine precision, so essentially no real mass
will be truncated. The timing for one run of tridiagonalization of a full rank matrix Z,
on the Celerity at the Yale University Computer Sciences Department, is 86.0 seconds.
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One evaluation of V(k) given the tridiagonal form takes 0.083 seconds. Obtaining the
coefficients c and d for fixed ) takes a further 0.600 seconds. In fitting the purely additive
model, the matrix 2 has a rank ofno more than 50, due to the way we chose the sampling
points. The above three numbers become 35.0, 0.083, and 0.233 in the additive case. It
shows that the truncation strategy (most likely the tail truncation in this situation) in
our implementation ofthe Householder tridiagonalization does work properly. It is noted
that the first and third numbers reduce significantly, for both ofthem are affected by the
number of Householder transforms needed to tridiagonalize the 2; matrix, although the
second number is not affected.

As a matter of fact, the major block of our algorithm is just a GCV solver for the
system (1.6). A famous one smoothing parameter example that satisfies (1.6) is the thin
plate smoothing spline. Dr. Fred Reames has conducted a numerical experiment to com-
pare the proposed algorithm against the SVD approach for the thin plate smoothing
spline implemented in GCVPACK. On a data set of size n 496, with M 3, the
proposed algorithm solves (1.6) in 2,342 seconds on a VaxStation, and the GCVPACK
does this in 9,646 seconds. Remember that our tridiagonalization method is the symmetric
version of Elden’s bidiagonalization method. This in a sense verifies the conjecture of
Bates et al. 6 that the bidiagonalization would speed up the numerical process signif-
icantly for large data sets. For details about the thin plate smoothing spline models, see
Wahba and Wendelberger [34] and Bates et al. [6].

6. Some remarks on further topics.
6.1. Anisotropic thin plate smoothing splines. The usual thin plate spline penalty

functional is

1 + +OZd=m

(see, e.g., [34]). In some applications an "elliptical" penalty functional is desirable, for
example, in modeling diffusion processes with two or three space variables and one time
variable, it is desired to have a free scale factor in time. In this case f(x, Xd) is
replaced byf(x, 02, Od.fd) where the 02, Od are scale factors to be chosen.
Then 2; will depend on the O’s. The numerical formulation is similar to that ofinteraction
smoothing spline models.

6.2. A problem from meteorology. Another type of problem that arises in meteo-
rology, can be put in a form such that the present algorithm allows efficient solution.
Suppose we have two information systems providing data on same function g (meteo-
rological variables such as atmospheric wind and temperature), for example,

i= 1, ,n

where e() is distributed as N(0, tr2I) and (2) is distributed as N(0, bZ0). Here 2;o is a
correlation matrix sufficiently different from I, and possibly depending on a parameter
0. a 2, b, and 0 are unknown, and it is desired to estimate the relative error r a2/b and
(possibly) 0. Details of an important meteorological example and a family of practical
generalizations are discussed by Wahba in [39].
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Let z y(l) y(2), then z is distributed as N(O, b(Z,o + rl)). Maximizing the
likelihood with respect to b, r, and 0 gives that the maximum likelihood estimate of
(r, 0) is given by the minimizer of

z’(Z0 + rI)-lz
M(r,O)=

[det(Zo+rl)] -/n’

so that the algorithm for (1.10) applies.

6.3. The use ofM(X) in hypothesis testing /model building problems. IfH possess
a reproducing kernel, say Q(s, t), s, e S, then there is a Bayesian model that leads to
the variational problem 1.1 ). That is, suppose f is a stochastic process with

M

f(s) ] 6,ck,(s)+bX(s), seS
v=l

with X(s), s eS, a zero mean Gaussian stochastic process with E[X(s)X(t)]
Q(s, t), 6 (61, 6t) r is a random Gaussian vector with E[66r] 71, then

o-2
fx(s) lim E(f(s)l yl, ,yn), X=
o nb

(see 33 ]). We remark that if f is a sample function from a stochastic process and H.
is an infinite-dimensional space, then f H. with probability one. This remark accounts
for the differing range of applicability of VandM(see also 36 ). In the Bayesian setting
the null hypothesis b 0 (equivalently 3’ 1/X nb/o-2 0 is equivalent to f
Zr,, for some 6. The alternative, 7 > 0, is equivalent to f H. An important example
is the case of

H.u’f linear vs. nalternative" f W22

Some of these hypothesis tests are discussed in 42 ], 4 ], 10 ], and 38 ]. The
likelihood ratio test statistic is

and the GCV test statistic is

M(,)
tMi inf

x M(o)

v(x)
tocv infV()

For computational purposes it is convenient to change the parameter from to
1/X -y.

If the tridiagonalization is carried one step further to diagonalization, then it is a
relatively simple matter to generate the distribution of these statistics under the null
hypothesis and specific alternative hypotheses. In the purely Bayesian model, tMi is a
standard choice. It is not known how the ML and GCV tests would compare against
non-Bayesian alternatives. These tests can, in principle, be used to test hypotheses about
whether 0a’s are zero in the interaction spline models.

6.4. Further numerical strategies. Some preliminary numerical experiments indicate
that to get eigenvalues from the symmetric tridiagonal form is comparatively cheaper
than to get singular values from the bidiagonal form, provided the orthogonal matrix
involved is not accumulated. Also of interest is that poorer conditioning seems to speed
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up convergence in the symmetric QR iterations. Since the eigenstructure will provide
more information about the adequacy of the model rather than simply a fitted model,
and the usually negligible difference between the evaluations ofGCV function from the
tridiagonal form and from the diagonal form would become serious when resampling
statistical inferences are applied to the problem, it is preferable to go further from tri-
diagonal to diagonal form, at least as an option for special purposes. To avoid accumulating
the orthogonal matrix involved, it is possible to dynamically update the data x in (3.1),
(3.2) during the reduction from tridiagonal T to the desired eigenstructure. This process
needs further special coding as opposed to simply assembling the routines from standard
libraries. We plan to implement and test this procedure in further study, thus providing
an option beyond the tridiagonalization model fitting.

An alternative to the BD approach for ridge regression setting is as follows. Form
X rX at the outset as in DCD, and then apply TD on X rX instead ofBD on X. The TD
approach (including the formation ofX rX is usually slightly faster than BD approach.
This is because in TD we can take advantage of the symmetry of matrix X rX, which
makes the operations needed for tridiagonalization halfofthose needed for bidiagonalizing
unsymmetric matrix ofcomparable size. More details ofthis approach to ridge regression
will also be explored in later work.

One thing of interest here is the role of the matrix condition in the GCV compu-
tations. In the case where linear systems are solved directly as in the standard least square
problems, great precision in the computation of small singular/eigenvalues are ofcourse
very crucial to the numerical stability ofthe solver. Thus the singular value decomposition
ofX is commonly preferred to the normal equations for standard least square problems
(see [17, Chap. 6 ]). When we are applying regularization procedures to the ill-posed
problems, however, the effect of very small singular/eigenvalues are supposed to be
thresholded by the smoothing parameters. Hence the solution should be robust to the
precision of the very small singular/eigenvalues. This is the reason that appropriate
truncation can reduce the numerical burden without sacrificing the precision of the so-
lution (see also 5 ], 6 ). This phenomena makes the worse matrix condition a welcome
event numerically in this specific situation. Also, this phenomena, together with the
benefit offered by symmetry discussed earlier, might make the methods based on normal
equations preferred over the singular value decomposition ofX for the regularized solver
of linear systems.
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MULTISPLITTING WITH DIFFERENT WEIGHTING SCHEMES*
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Abstract. Parallel algorithms generated by multisplittings are considered. A parallel algorithm may be
formed, first, by concurrently executing the iteration associated with each splitting, and second, by forming a
weighted sum ofthese computations. However, it is not imperative that the weighting be done last. Convergence
results are obtained for a variety of other weighting schemes. In particular, it is shown that preweighting is in
some cases more desirable than the traditional postweighting. Furthermore, we indicate how one can use a
symmetric weighting scheme to obtain a good multisplitting version ofthe SSOR preconditioner. These algorithms
are illustrated by computations done on an Alliant FX/8.
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1. Introduction. In this paper we consider the linear algebraic system

(1) Ax=d.

Iterative methods for approximating the solution of (1) are usually based on a single
splitting A B- C. In order to utilize multiprocessing computers, O’Leary and White
9 introduced multisplittings. A multisplitting of a matrix A is a sequence of splittings
A Bk Ck for k 1, K, where Bk are nonsingular. When coupled with weighting
matrices Dg for k 1, K with Dg >= 0, diagonal and X := Dk I, one can form a
parallel algorithm.

Parallel algorithm with postweighting.

xm + Hxm + Gd where
K

(2) H= DkBC and
k=l

K
-1G , DkBk

k=l

The terms in Hxm and Gd may be.computed concurrently.
Note B-lA I- B-1Ckand (7]:= DkB-I)A I- (= DkB-ICk) or GA

I- H. So given G and A one can define H I- GA and define an algorithm by

xm + Hxm + Gd
(3) (I-GA)xm+Gd

xm + G(d-Axm)
xm + Gr(xm).

In this paper we consider different forms of G given by a multisplitting with 0 _-< , _-< 1"
K

1-(4) Gx DB-IDk
k=l
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When ) 1, this is the postweighting used in (2). For ) 0 we call this preweighting,
and ) 1/2 is symmetric weighting. As we shall see, when the matrix A has dis-
section form and the multisplittings are associated with the SOR method, then Go
/w(D wL))-I and the iterative method (3) with G Go is the serial SOR method.

When 1/2 and each B is symmetric positive definite, then G1/2 will be symmetric
positive definite. Consequently, G1/2 can be used as a parallel preconditioner for the
conjugate gradient method; this means the preconditioned portions may be broken into
parts corresponding to the terms in (4) and executed concurrently.

The convergence for (2) was first considered in O’Leary and White 9 for the case
A is an M-matrix, and later in Neumann and Plemmons [8]. In White [15] an analysis
is given when A is a symmetric positive definite matrix. Related overlapping blocks
schemes have been considered by Ostrowski 11 ], Robert 13 ], Hayes 4 ], and McBryan
and Van de Velde 7 ]. White 16 ], Neumann and Plemmons 8 ], and Elsner 2 consider
comparison results for 0(H) in (2).

In the next section we give convergence results for the algorithm (3) for general G
and for G Gx in (4) (see Theorems 2 and 4). Both the M-matrix condition on A
(Theorems l, 2, and 4), and the symmetric positive definite condition (Theorem 6) on
A will be considered. The third section contains a discussion of preconditioners for the
conjugate gradient method. This will include the case where , 1/2 in (4) and B are
from SSOR multisplittings (Theorem 7 ). The last section contains a number ofnumerical
experiments done on the Alliant FX/8 multiprocessing vector computer at Argonne
National Laboratory. These experiments will indicate speedups (relative to computations
done with one CPU or CE and with no vectorization) ofabout ten for the SOR multisplit-
ting method, and six for the SSOR multisplitting preconditioned conjugate gradient
method.

2. Weighting schemes for the multisplitting algorithm. In order to simplify our
discussion of (3) with (4), we initially restrict our consideration to A of the form

A -C21 A2 -C23 where Ak Mk-- Nk.
-C31 -C32 A3

The nodes have been partitioned into PI, P2, and P3 as given in Fig. 1. Consider two
splittings ofA given by

B M with D1 0
-C31 M3 d13I

B2 M2 with D2 I
-C32 M3 d23I

Assume d13 + d23 so that D + D2 I. The multisplitting form ofthe SOR algorithm
is given by

Mk=--(D(k)--oL(k)) where

D k) diag (aii), Pk
L tk)= lko.)

l { -a’O, j >--_

< i’ i’j Pk
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=u P
$1, $2 overlapping blocks
P1, P2, Pa disjoint blocks

FIG. 1. Blocks ofnodes.

Serial SOR. The SOR algorithm is given by a single splitting A B C, where

[M, ]B -C21 M2
-C31 -C32 M3

Multisplitting (3) and (4) with 0 -< X =< 1. The above Bk matrices have block ele-
mentary form, and so,

Bi-1 M2 Ml

-C31 M3 MI C31M- M
M]-

B M1

M C32M M

Gx= DB-{’DI-X+DBID -x

d)3M C31M-{ 0 d3M dlf x 0

M_{
M

d3M C3M-{ dX3M1C39_M M

M;
d3M; C32M; d3M; df x

as dl3 + d23 1.

G; exists and so (3) may be represented by a single splitting A M- N, where

[ ]M G M2
d]’3 C3 d3 C32 M3

Remark. IfA has dissection form (C21 C12 0), then Go B is the serial SOR
algorithm. If C21 or C12 are not zero, then we may consider these splitfings as "incomplete"
SOR splittings.

Several interesting questions will be answered in the following theorems. Under
what conditions on A and the multisplittings will the scheme in (3) and (4) converge?
How does the rate of convergence depend on the parameter X in (4)? We first consider
a general form of G and assume nonnegativity conditions as in a weak regular splitting.

THEOREM 1. Let G andA be given with A nonsingular. Consider the algorithm (3),
where H is defined by H I GA. Assume A-l, H, G >- O. Then the following are
equivalent:

(i) The algorithm (3) converges and its limit is the solution of( ).
(ii) p(H) < 1.
(iii) Each row ofG has at least one nonzero component.
(iv) G is nonsingular.
Proof. The first four implications of the following proof are well known. In the

literature [9] and [10], the condition (iii) implies (i) is implicitly stated in the proof of
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convergence for an algorithm associated with a single weak regular splitting. Condition
(iii) is usually verified to determine convergence.

(iv) (iii)" If (iii) is not true, then det (G) 0 and G is singular.
(ii) (iv)" By Theorem 2.45 in [10] I- His nonsingular, and so, G (I- H)A -1

is nonsingular.
(iv) (ii)" GA I- H. Since both G, A are nonsingular, I- H is nonsingular.

By Theorem 2.45 in [10], o(H) < 1.
(i) (ii): By the definition of H, xm + nxm + Gd and H >= 0. Since xm +

converges, 0(H) < 1.
(iii) (i)" If I + + Hm is uniformly bounded, we are done. Since G and H

are nonnegative,

O<=(I+ +Hm)G (I+"" +Hm)(I-H)A -1

(I-Hm+ 1)A-1
<=A -1.

Let I + + Hm (s), G (go) and A- (ao). For all and j
m0 < , seges < ao.

Let g be fixed and choose j =j(g) such that ge,se)> 0. Since smii, gej, a0 => 0,
m <s iege,j( e) ai,j( e)

si <---- ai,j(e)/ge,j(e).
Since the fight side is independent of m, algorithm (3) converges. The convergence as
given in (i) (ii) implies 0(H) < and, therefore, G is nonsingular. Thus, for xm -- xx Hx + Gd (I- GA)x + Gd. GAx Gd, and consequently, Ax d.

The following three corollaries are proved by using condition (iii) of the above
theorem.

COROLLARY 1. Consider problem (1) with algorithm (3) and G G in (4). If
A-1 >_ 0 andA Bg Cg are weak regular splittings, then (3) converges to the solution
of(l).

Proof. This is Theorem (a) in [9]. By assumption B >_- 0 and B-ICk >- O. Thus,
G GI DgB- >= 0 and GA DkB-A I- DkB-ICk, and so, H
DBCg >= O. It remains to show that condition (iii) in Theorem holds. Let G

(go) and (dih.) DB’, where Dk diag (dk) and B (h/). Let/be fixed.
Since D I, there is some k k(i) and that dik) > 0. Thus, go dkih >=
dkit)h kt) Since each B exists, every row of B must have a nonzero component,6

.k(i)that is, n i,j(i) > O. Thus gi,j(i) > O. i--]

In the next corollary we assume Go, Ho >= O. Theorem 2 gives a class ofmultisplittings
which satisfy Go, Ho >= O.

COROLLARY 2. Consider problem (1) with algorithm (3) and G Go in (4). If
A -l, Go, Ho >= 0 and A B C are weak regular splittings, then (3) converges to the
solution of( ).

Proof. We show condition (iii) in Theorem holds. Let Go (go) Z, (h.d)
Z B-IDk, where Dk =. k(s)diagkj(d);.,,and B1= (h/). Let k k(j)such that.tjdk(J)>h3

0,
fix i, and note go >- no u B- exists, every row of Bj) must

k(j(i))have at least one nonzero component, that is, hi,jr i) > 0. Therefore,
k(j(i)) .4k(j(i))
i,j(i) uj(i) O. [’]

COROLLARY 3. Consider problem (1) with algorithm (3) and G Gx in (4) and
0 <- X <= 1. IfA-l, Gx, Hx >-- 0 and A Bg Ck are weak regular splittings, then (3)
converges to the solution of( ).
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Proof. As above let Gx (gij) (di)Xh(d) 1-x. Let di(i) > 0 and letj
k( i) k( i)

gii di hii > O. [-]

In order to apply Theorem to algorithm (3) with G Gx for 0 =< h < 1, we must
make further restrictions on the multisplitting. We consider K splittings. This corresponds
to K overlapping block similar to that illustrated for K 2 in Fig. 1.

AK+

<=k,j<=K+

Ak Mk-- Nk

mk

--CK+ 1,k

dk,K+ 11

MK+

l<=k<=K

I is in the kth block

Assume AK+l MK+l NK+l is block diagonal, for example, see [16]. Let 0 =<
dk K+l be diagonal matrices that are constant on these blocks and 2;= dk K+ I.
Then MK+ dk,KX+ M:+ dk,K+X this is used below in the derivation of line (6)

THEOREM 2. Consider the multisplitting ofA given by (5). Assume A-1 >_ O, Ak
Mk Nk are weak regular splittings and Ckj >-- 0 for <= k, j <- K + 1. Then algorithm
(3) with G Gx in (4)for 0 <= <= converges to the solution of( ).

Proof. Use Theorem by showing Gx >-- 0, Hx >-- 0, where GxA I- Hx and Gx
satisfies (iii) or (iv). The reader may find the notation for K 2 or 3 easier to deal with
than the general case as presented below.

K

Gx Z DB-lDk-x

k=l

K

k=
MTc+ 1CK+ 1,kM- 1"

Oo

d),K+ M+l CK+ 1,kM-1’’" M7+1

K

as dk,K+l=I.
k=l
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Since M
_

0 and Cr+ ,k >- 0, Gx >- 0. Since M M+ exist, G exists and equals

(6) GZ
d,r+, Cr+ ,,k" "Mr+,

In order to show Hx >= 0, compute GxA I- Hx.

I-M- Nk M-U C#q

--M)-I Qk ...I-Mf’NGxA

3"k
x MTc+ Cr+ ,,kM- M:+dk,K+

K+

Clk

C’k- l,k

Ck+ l,k

CK+ l,k

I=<j_K+
where<- k<=K

(nonpositive terms) + dk, Mr+ Cr+ ,k(I-M1Nk)-Mk+ Cr+ ,,
(nonpositive terms)+ (I-d,,r+ )MTr+Cr+ l,k--d,,r+ MTc+Cr+ ,kM-Nk
nonpositive, for <= k <= K,M Nk >= O,M >= O, Ckj >- O. Also,

Yr+ x mk+ Cr+ km- MTc+ --Ck r+dk,r+

Mr+ -NK+
K

dk,K+ l,kM-1Ck K "- I-- MTc+ NK+
k=l

(nonpositive terms) + L
Thus, GxA I + (nonpositive terms), and so, Hx >= 0. V1

The next theorem is a comparison result with respect to for the algorithm given
in Theorem 2. We will use the comparison Theorem 3.15 given in Varga [14 ], which
we state here as Theorem 3. In both Theorems 3 and 4 notice the stronger condition
A- > 0 and regular splittings.

THEOREM 3. Let A B C be regular splittings ofA and A- > O. If
C >= C with equality excluded, then

p(B-(?)<o(B-C)< 1.

THEOREM 4. Consider the multisplitting ofA given by (5). Assume A- > O, A
Mk N are regular splittings ofA, and Cj

_
0 for <= k, j <= K + 1. Also assume

CK+ , v 0for <= k <= K. Let Hx be defined by the algorithm (3), where G Gx in (4)
and GxA I- Hx. If < , then

p(Hx < p(H) <
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Proof. By line (6) in the proof of Theorem 2, Hx may be given by a single splitting
ofA Bx Cx, where Bx G and Cx Bx A

(7) Cx

C/+ l," Cc+ ld’’" Nr+l

IC+ ,-- I- d,ic+ 1) Cg+

Since0-<X<X-< land0<deg+l<Iforsomek I dk,r+l > I-- dk,K+l > 0. Since
Cr+ 1,k >- 0, Cx >- CX with equality excluded when Cr/ 1,k 4: 0. By Theorem 3

p(H,) p(Bl C,) < p(B;l Cx) p(Hx) < 1.

The above theorem suggests that when forming multisplitting algorithms of the
form (3) with G Gx, one ought to use preweighting, that is, X 0. Furthermore, the
remark before Theorem also holds for the more general multisplitting given by (5) if
Ak Mk Nk represents the SOR algorithm for the kth block. In particular, if A has
dissection form (Ckj Ck 0 for --< k, j _-< K), then the algorithm for X 0 is exactly
the serial SOR algorithm.

The next result considers the case when A is assumed to be symmetric and positive
definite. We will utilize the Householder-John theorem 5], which we state here as
Theorem 5.

THEOREM 5 (Householder-John). Let A B C be Hermitian and B* + C be
positive definite. Then p(B-1C) < ifand only ifA is positive definite.

THEOREM 6. Consider the multisplitting ofA given by (5) and the algorithm given
by(3) and G Gx in (4). If

A is a real symmetric positive definite and
(ii) B + Cx is positive definite where

"M[+Nk Ckj dk,K+l...
(K+l,k (/C+ld "’"M+lNIc+,_

dk,K+ (I-d),,ic+ 1)Ck,K+

d/c+ ,k (I- d),,r+ 1)CK+ l,k (I- dk,/c+x l) Ck,/r+ l,

then the algorithm (3) converges to the solution of( ).
Proof. We need to show o(a Cx) < 1, where Bx G; in line (6) and Cx A

Bx in line (7). An easy calculation gives B x
r + Cx in line 8 ). Thus by the Householder-

John theorem p(B1Cx) < 1.
Remarks. When

Ak Mk--Nk 1/o)(D(k)- ooL(k)) -( 1/w)(( w)D(k) + wL(k)T)

(Dk), Lk) for -< k -< K + are defined as in the beginning of 2) andA has dissection
form (Ckl C/k 0 for =< j, k =< K), then BTo + Co (2 oo)/ooD, where A D
L- L r. Thus, Theorem 5 may be considered as a generalization of classical con-
vergence result for the SOR algorithm, 0 < w < 2 and real symmetric positive definite
matrices.
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(2) As indicated in 16 ], Bx
r + Cx being positive definite may be viewed as a further

constraint on co. In [16 it is shown that 0 < co -< COo < 2 implies, in many cases, B x +
Cx is positive definite.

3. Multisplitting preconditioned conjugate gradient method. In this section we con-
sider with A symmetric positive definite. Preconditioners, M, are usually associated
with single splitting of A M- N and are also symmetric and positive definite. The
idea is to choose M so that M-IA approximates the identity matrix, and Mz r can
"easily" be solved. This is more precisely stated in Golub and Van Loan [3] or Ortega
and Rheinboldt [10]. Several preconditioners are now described.

SSOR preconditioner. The SSOR preconditioner is given by a forward and backward
sweep of SOR. Let A D L U. The SSOR iteration matrix is

G= I(D COU) -[(1-CO)D+COLl (D-COL) -[(1-CO)D+COgl

By using the identity H(I- H) -I (I- H) -I I for invertible I- H and using routine
matrix algebra, we may calculate M-1 from A M N and M-IN G, namely,

(9) M-1 -coU) D -coL)

This is the M in the algorithm because Mzn-1 rn-1 d-Ax,_l and z,-1

M-l(b + Nxn-1) x,-1. This form of M-1 requires less computational effort. The
importance of this preconditioner is that it significantly reduces the number of iterations
needed for convergence and the overall computation time.

Vector preconditioners have been investigated by Poole and Ortega [12 ]. Jalby,
Meier, and Sameh [6] have studied preconditioners that use multiprocessors systems.
Adams and Ong [1 have introduced an additive preconditioner that can be viewed as
a multisplitting.

Additivepreconditioner. Let A B C and A be symmetric. Then a second splitting
ofA is A A r Br Cr. So, K 2 with D 1/21 and D2 1/21 gives H DB]-1C
+ DEBIC2 1/2B-IC + 1/2B-rC and G D1B-{I + DEB 1/2(B- + B-r).
Note, G is symmetric. Adams and Ong used this to construct an additive preconditioner
where B (1/co)(D- coL). Then M-1 1/2(B -1 + B-r) 1/2((1/CO)(D COL)) -1 +
1/2(( 1/CO)(D COL)) -r.

Symmetric multisplitting preconditioner. Let A Bk Ck and Bk be symmetric
positive definite. The matrix := DkB- may not be symmetric. We can use the addi-
tive preconditioner with B (Z [= DkB- )-1 This gives the preconditioner

M-1 =- DkB-I+ DkB-
k=l k=l

)DkB_I + , B_TDk(10) = k=l k=l

1
(DkB_I + w_l Dk).

This preconditioner requires two calculations with each B In the following, symmetric
weights allow one to reduce the computation almost in half.
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Symmetric weighted multisplitting preconditioner. Let A Bk Ck, where Bk is
symmetric positive definite. Use the symmetric weight GI/2 for the multisplitting algorithm
in (3)

K

11 M-1=
k=l

THEOREM 7. Consider 11 ), where B are symmetric positive definite. Then M-is symmetric positive definite.
Proof. The following calculation shows that M- is symmetric;

(M-I) T=
k=l

K

D/2B’rD/2
k=l

K

D/B-IDa-k=l

=M-1.

Next we show that M-1 is positive definite. Let x =/= 0 and assume D/x =/= 0 for some
k ko that

K

xTM-1x xTD/2B-ID/2x
k=l

’DI/2....,rB-Io(DI./9-. D/- 0 ) go )+ -x)rB; (D/-x)
k/ko

Since B; is symmetric positive definite, the terms in E/ are nonnegative and
(Dl_/2..,rB-o 1/2o "! (Dko X) > 0. Thus, x x > 0.

A particular choice of B; in (11 is taken from the serial SSOR in (9) ap-
plied to the kth block. Let B; be as in (5) with Mk =( 1/oo)(D(k) coL(k)) and Nk
1/oo)(( oo)D(k) q- ooL(k)T). Define B; as follows

(12) B; =B;T2-:

The calculations given in the next section will indicate the relative effectiveness of the
preconditioner given by 11 and (12).

4. Numerical experiments on the Alliant FX/8. In this section we consider the
numerical solution ofthe algebraic problem obtained from the five-point finite-difference
method applied to the elliptic partial differential equation

(13)
--Au-10.0 on fl-(0,1)(0,1)

u 0.0 on

The resulting algebraic equation is scaled by

(D-/EAD-I/E)(D/Eu) D/2d

where D is the diagonal ofA. The multisplitting version of SOR and the multisplitting
version of the SSOR preconditioned conjugate gradient methods will be illustrated.
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The calculations were done on the Alliant FX/8 at Argonne National Laboratory.
The Alliant FX/8 has eight processors or CEs (computational elements). Each CE has
a vector pipeline and processes data in 32 64-bit groups. There is a high-speed local cache
of 512 KB, and the global memory is 64 MB. The software has parallel extensions of C
and FORTRAN and includes vector operations. The parallelism is loop based and can
be turned on or off by either compiler options or simple directives before each loop.
Concurrency is distributed to the outer loops and vectorization is done in the inner loops.
We used the following compiler options:

-0g optimized serial code (one CE),
-0gv optimized serial code with vectorization,
-Ogc optimized code with eight CEs,
-0 optimized code with eight CEs and vectorization.

The multisplittings were formed by considering overlapping blocks of ft. Fig. 2
indicates f with four blocks which overlap by one row.

In general, let { 1, N} represent the unknowns and { 1, N} LJ:= Sk,
where Se may overlap. Consider the component form of algorithm (3) with G Gx and
Dk diag(d)withd/=0foriSk, d/ >0and:= d=

SOR version ofAlgorithm 3 with G Gx in (4). Let A (a0) and d (di). Then

r’ di- Z aou’
J

k,m+l ( -Xrr_,aij )/au(14) ri =w (di) r’m+l

j<i
jSk

K

uT,+ l= uT’ + , (di)Xrki ’m+ .
k=l

The following calculations were for N 57 57 3,249 and the blocks were as in Fig.
2, with only one overlapping row of unknowns. The stopping criteria was

un + u --< 0.0001 for all i.

The values for the SOR parameter w were optimized by numerical experimentation to
within +0.005. The nodes were ordered as in (5), where the overlapping nodes were
listed last. Within the disjoint blocks the nodes were listed by rows, starting with the
bottom row of each disjoint block. Table indicates the effect of different compiler
options. In all calculations the SOR parameter was o 1.900. The numbers from those
in White 16 are indicated in Table by parenthesis. There are two possible reasons for
time differences. First, in [16] red-black ordering was used within the disjoint blocks,
and consequently, one expects to obtain faster vectorized code. Second, the local high-
speed cache for the calculations in Table was 512 KB. This is four times larger than
that used in 16 ].

 iOo,
block $1

FIG. 2. f with four blocks.
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TABLE
K and compiler options.

Option Times (Times in [16] with RB)

-0g 11.75 (15.36)
-0gv 5.54 (4.56)
-Ogc 8.15 (10.08)
-0 4.23 (2.77)

In our discussion speedup will refer to the ratio of the time for the given method to
the time for calculation with the -0g option (one CE and no vectorization). The dif-
ferences in the speedups in Table are primarily due to the red-black ordering used in
16 ]. The red-black ordering cannot be used for algorithms ofthe form (3) with G Gx

in (4). This is because a permutation may destroy the property of a matrix being lower
triangular, for example,

1,2,3--1,3,2

a -- 0 0 a 0 0 b a c
b c a 0 0 b c a 0 0 0 0 a

However, some permutations, such as the diagonal ordering, do not have this undesirable
property. This will be described in the discussion ofthe preconditioned conjugate gradient
method.

Table 2 contains different , and different numbers ofblocks K. The -0 option was
used in all calculations. The decreasing times as , decreases verifies the theoretical results
contained in Theorem 4. The best speedup of about 10 was obtained by letting , 0
and K 8.

The convergence rate for the SOR method can be very sensitive to the choice of
SOR parameter o. This is especially true when the number of unknowns is large. The
conjugate gradient method is a good alternative, and the serial SSOR preconditioner
serves as a good preconditioner when the choice of SOR parameter does not radically
alter convergence rates. In 3 we mentioned three preconditioners. The serial SSOR (8)
and the symmetric weighted multisplitting 11 preconditioners seem to be the best for
our example (13). When the -0 option was used (see Table 4), the speedups ranged
from 4.5 to 6.4.

In our numerical experiments we had N 191 191 36,481 unknowns. The
stopping criteria was rrM- rn < 10.0e 6, where rn d- Ax and M is the precon-
ditioner. The SOR parameter was found by experimentation and 64-bit reals were used.
The following is the component form of the preconditioner in 11 with B in (12).

TABLE 2
Multisplitting algorithm with

K , Iterations 0 Times

184 1.925 3.64
145 1.920 3.29
128 1.900 2.90
126 1.900 1.66
125 1.900 1.20
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n = node number

16 19 22 25

14 17 20 23

Lt_
12 15 18 21

11i

vector number in pipe of length equal to three

FIG. 3. Diagonal ordering.

aii uki ’m +1 0(d/k) 1/2 r o Z aij uki +

j<i
jSk

The weighting scheme in (11 is symmetric about B;1 and implies that the precondi-
tioner is symmetric, as is established in Theorem 7.

Symmetric weighted SSOR multisplittingpreconditioner. The computation ofM-r,
where M is the preconditioner:

jeSk
j increases

(15) vki’m+ =(2--w)aiiuki ’m+ --o _, aijvlf’m+ j-Sk

j>
j decreases

jSk

K

[M-,rli= (dki)l/2vi,m+l.
k=l

Table 3 contains calculations with the serial SSOR preconditioner, different compiler
options, and two types oforderings ofthe nodes. The row ordering is the classical ordering
of nodes, starting with the bottom row and moving from left to fight in each row. In
order to take advantage ofthe vector pipelines in each CE, we have used diagonal ordering
of the nodes as illustrated in Fig. 3. There are 27 unknowns with three rows and nine
columns. The numbers in the big boxes indicate the diagonal numbering. The numbers
in the small boxes indicate the nodes in a pipe that can be computed by vectorization.
This ordering preserves the form of the existing lower triangular matrices. Note, the red-
black ordering does not do this.

In Tables 3 and 4 the total time is broken into two parts, the cg time and the pg
time. The cg time refers to the time required to compute the conjugate gradient portion
(the preconditioner is the identity matrix), and the pg time is the time required to compute
the preconditioner portion.

In all the calculations in Table 3 the SOR parameter was o 1.92, and it took 28
iterations to satisfy the stopping criteria. The effect ofthe diagonal ordering was significant,

TABLE 3
One block, K 1.

diagonal -0g 17.98 25.75 43.73
diagonal -0gv 10.32 7.07 17.39
diagonal -Ogc 4.82 18.43 23.25
diagonal -0 2.54 7.17 9.71
row -0 2.54 16.10 18.64

K Ordering Option cg time pc time Total time
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TABLE 4
Variable blocks.

K Overlap Iterations o cg time pc time Total time

28 1.92 2.54 7.17 9.71
2 38 1.90 3.35 4.99 8.34
4 45 1.86 4.10 3.94 8.04
8 48 1.85 4.29 3.23 7.52
8 3 44 1.83 4.02 3.15 7.17
8 5 41 1.86 3.71 3.10 6.81

and it allowed full use ofthe vector pipelines. The best speedup was given by the diagonal
ordering and the -0 option (all eight CEs with vector operations) and was 4.5. In this
calculation the conjugate gradient part of the code took 2.54 seconds and the precon-
ditioned part took 7.17 seconds. The next table shows how one can reduce the time to
compute the preconditioner (pc time) by using the multisplitting preconditioner.

Table 4 indicates that as the number of blocks increases, the number of iterations
will increase to meet the stopping criteria. The fastest computation is given by K 8
with an overlap of five rows between the blocks. The overall speedup is 6.4. In this case,
the preconditioner time is reduced to 3.10 seconds, and the conjugate gradient time is
3.71. The speedup for the preconditioner was 8.3. The increased conjugate gradient time
is a result of increasing the number of iterations from 28 to 41.
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THE STRONG STABILITY OF ALGORITHMS FOR SOLVING
SYMMETRIC LINEAR SYSTEMS*

JAMES R. BUNCHf, JAMES W. DEMMEL:I:, AND CHARLES F. VAN LOAN

Abstract. An algorithm for solving linear equations is stable on the class ofnonsingular symmetric matrices
or on the class of symmetric positive definite matrices if the computed solution solves a system that is near the
original problem. Here it is shown that any stable algorithm is also strongly stable on the same matrix class if
the computed solution solves a nearby problem that is also symmetric or symmetric positive definite.

Key words, stability, symmetric matrices
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1. Introduction. When applied to a linear system Ax b, a stable algorithm for
solving systems of linear equations produces a computed solution that is the solution
to a nearby system

where II All/Ilall is small and lib bl[/[Ibll is small, for some norm II" II. How "small"
is small enough depends on the accuracy desired in the solution (and on the condition
number ofA) 16, pp. 189-191 ]. A proof ofthe stability ofan algorithm usually involves
showing that IIi a ! and b b ! b are bounded by p(n) u, where p is a low
degree polynomial, n is the order ofA, and u is the unit roundoff (machine precision).
We would like/7(n) u << 1.

In solving structured linear equations, it is often important that the perturbed matrix
J have the same structure as A. For example, solving electrical network problems gives
rise to symmetric systems of linear equations, Ax b. If the computed solution to
Ax b satisfies b, but is not symmetric, then the system b could never
have arisen from an electrical network problem. But if J is symmetric, then we hope
that there is an electrical network near our original network that gives rise to the system

b.
Another situation where it is important that the perturbed matrix remain symmetric

is in the analysis ofAlgorithm 5 in 3 ]. That algorithm uses a variation ofinverse iteration
to find the eigenvectors of a certain class of symmetric matrices to high accuracy. The
class includes all symmetric positive definite matrices that can be consistently ordered.
The error analysis uses a new perturbation theorem about symmetric perturbations of
symmetric matrices, and to apply it one needs to know that a nearby symmetric matrix
exists which exactly satisfies the equations at each step of inverse iteration.

The term strongly stable, developed in [4], is used in this context. An algorithm
for solving linear equations is strongly stable for a class of matrices A if for each A in A
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and for arbitrary b the computed solution 2 solves a nearby system A.f b with A in A.
Note that for stability we do not require .4 to be in A, but for strong stability we do.
(Other stability concepts were introduced in 2 ], 13 ], 14 ].)

In [4] it is shown that the following algorithms for solving linear equations are
strongly stable for their respective classes of matrices:

Gaussian elimination with partial or complete pivoting on A { nonsingular
matrices } 16 ];

(2) Cholesky on A2 { symmetric positive definite matrices } 16 ];
3 LDL r (symmetric Gaussian elimination on A2 16 ];

(4) Symmetric indefinite algorithm (diagonal pivoting method 5 ], 6 ], 9 on
A3 { nonsingular symmetric matrices }

(5) LU decomposition (Gaussian elimination without pivoting) on A4 { strictly
column diagonally dominant matrices ([au[ > j/ [aji[ for all i) } or A { strictly
column diagonally dominant band matrices }. (See Appendix.)

(6) Gaussian elimination with partial or complete pivoting followed by iterative
refinement on A6 { nonsingular matrices with an arbitrary but fixed sparsity pattern
and which are not too ill conditioned }. (See [2 ], [13 ], [14] for discussion.)

In 4 it was noted that while Gaussian elimination with partial pivoting and Gaussian
elimination with complete pivoting are stable on A and A3 and Aasen’s method [1 ],
10 is stable on A3, it does not follow from their error analyses that these algorithms

are strongly stable. Thus, the strong stability ofthese algorithms onA and A3, respectively,
was left as an open question.

Here we will extend the list of strongly stable "situations" developed in [4]. In
particular, we show that if a method is stable for the class of nonsingular symmetric
matrices or the class of symmetric positive definite matrices, then it is strongly stable for
the same class.

2. Constructing a symmetric perturbed system. IfA A , (A + E)z b, z 4: 0,
where E might be nonsymmetric, then we shall construct F Fr such that (A + F)z
b and FII is within a small constant of Eli for the 2-norm and the Frobenius norm.
We shall do this in two different ways. The first will use the Powell-Symmetric-Broyden
(PSB) update [12 ]; the second will use a construction via the QR decomposition; in
either case we shall show that z is the exact solution of a symmetric perturbed system.
We include both since the analyses are instructive in their own fight.

The problem of nearby symmetric systems has already been addressed in the
theory for quasi-Newton methods. For the first approach we shall use the following [7 ],
[8, p. 196].

THEOREM 1. Ifnc is symmetric, Sc 4 O, then the unique solution to

minimize { H-H F: H Hr, Hsc Yc }

is given by the PSB-update:

(yc-Hcsc)Sf+ Sc(Yc-Hcsc) r (yc-Hcsc, Sc)ScSrc
H/=Hc+ ScSc (ScSc)

Here, lie is the Frobenius norm and (u, v) u rv. We will use this to prove the
following theorem.

THEOREM 2. IfA A T, A + E)z b, r b Az, z 4: O, then

p= rzr+ zrr zrr)
zz (zz) zz
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satisfies (A + )z b, r, and [[j0[[ =< 3[[El[ for the 2-norm and the Frobenius
norm. Furthermore, is the unique solution to

minimize { FI[F: F= Fr, (A + F)z= b }.

Proof. In Theorem 1, take Hc A, s z, y b. Then

Yc- Hcsc b-Az= r. Thus, the unique/ minimizing { 11FIIF:(A + F)z= b,F= Fr}
is the PSB update

Thus,

But

Hence,

p= rzr+ zrr zrr)
zrz (zrz) zzr"

Pll_ < PIIF -< IlrzllF+ IlzrllF
zrz

Izrrl

uV11 uv llz u IIllvlt= 0, p. 6 ].

PlIz < PlI< 211r Ilzllzllz + Ilzll z3 [Irll_
3

rII___z
[Izll Ilzll Ilzll_

However, r b Az Ez, so r IIz Ell2 Ilzl12. Thus,
IIPlI2--< IIPlIF 311Ell=_-< 3[IElIF.

Now, we shall construct a symmetric perturbed system by an approach via the QR
decomposition which will give a slightly sharper bound. But first we need the follow-
ing lemma.

LEMMA 1. Given any two unit vectors u and v, there exists a symmetric orthogonal
matrix P such that Pu v.

Proof. If u and v are parallel, then P is a multiple of the identity. If u and v are not
parallel, P can be taken to be a Householder matrix that reflects in a plane containing
u + v and is orthogonal to the plane containing u and v. ff]

THEOREM 3. IfA A r, (A + E)z b, z 4 O, then there exists r such that
(A + P)z b, 11/0112 _-< ElI2 and IlPllv --< 11 EII. (The bounds are sharp.)

Proof. We need to determine so that

pr= Pand/z r,

where r =- b Az Ez. If r 0, let P 0. Suppose r 4 0.

Let X- z r] QR, where R 171, and

be the QR decomposition ofX. Note that, expressing/ QFQr, it is sufficient to de-
termine F so that

QFQ QFQ" and QFQrz r,
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or, more simply, so that

FT=F and F=f.

These can both be satisfied by choosing F diag (F11, 0) if F11 can be determined
so that

FI F11 and Fll
0 /2

Since z 4= 0 and r 4 0, 1 4 0, and 1 4 0 or 2 # 0. Let

U [1
and

v=

By Lemma 1, there exists P pr p- such that Pu v. Let
I111_/I111. Ilrl12/Ilzll. Then Fz r and FT F.

r 112 Ez112Eli2 ll P[12 - Ilzl12 Ilzll --< ELI2,

If Ezll2 EII211zl12, then ElI2 Eli2 and the bound is sharp.
Since F is a multiple ofa 2 X 2 orthogonal matrix, [IF,IIF-- llF,l12. Thus,

FIIF-- 11 Eli2--< 11EII--< 11EIIF,
Setting/ QFQT gives us the result.
However, the/ constructed in Theorem 2 minimizes

{ FIIF" F= F’, (A + F)z b },

and, hence

PlIF---< Pll---< Vll EIIF.
.Thus, Theorem 3 gives us the following Corollary.

COROLLARY. The matrix in Theorem 2 satisfies [IFII --< VII EIl.
(Note: In 11 Higham gives a result similar to this Corollary.)

3. Applications. Gaussian elimination with pivoting and Aasen’s method are stable
for symmetric systems 10 ]. But, while the computed solution 2 solves a nearby system

(A+E)2=b,

it is not the case that the matrix E is symmetric, at least not from the traditional back-
wards error analyses. Our results show that there is a symmetric Fwith F[[ 2 =< Eli 2 and
F[[ r =< /[[ Eli F SO that

(A+F).=b.

Thus, Gaussian elimination with pivoting and Aasen’s method are strongly stable when
applied to symmetric systems. In 4 ], only the diagonal pivoting method 5 ], 6 ], 9
was shown to be strongly stable on symmetric systems. More generally, we have
Theorem 4.
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THEOREM 4. Ira method is stablefor (nonsingular) symmetric matrices, then it is
strongly stablefor (nonsingular) symmetric matrices.

Finally we make some observations about strong stability ofalgorithms for symmetric
positive definite systems. The BFGS update [8, p. 201 and the DFP update 8, p. 205
do not give an F near E in the symmetric positive definite case. However, we can make
an existence argument as follows.

THEOREM 5. IfA is symmetric positive definite and

(A+E):=b

with E[12 < kmin (A ), then there exists a symmetric F so that

()

(2)

and

(3)

(A +F):=b,

FII2 -< Ell2,

kmi (A + F) > 0.

Proof. Theorem 4 ensures that and (2) hold. From 10, p. 269 or 16, pp. 101-
102 we have that

kmin (A -[" F) )kmi (A) + kmin (F) kmin (A) El] 2.

Since EJl2 < )kmin (A) and I1FJ[2 =< g[12, we have )kmin (A + F) > 0.
IfA is symmetric positive definite, then ,min (A) A ][2. Hence, Theorem 5 says

that if (A + E) b with [[E[[2/[[A[]2 < 1, then there exists a symmetric F such that
A + F is positive definite, (A + F) b, and F[I 2 /

We shall state this more formally in Theorem 6.
THEOREM 6. Ifa method is stablefor symmetric positive definite matrices, then it

is strongly stablefor symmetric positive definite matrices.

4. Conclusions. We have shown that any algorithm for linear equations that is
stable on A2 { symmetric positive definite matrices } or A3 { nonsingular symmetric
matrices } will also be strongly stable on the same matrix class.

Appendix. A matrix A is strictly column (row) diagonally dominant if [aii[ >
Yg lal for each (la.I > lal for each i). Let us perturb A to A A + E. The
following lemma shows that if the perturbation E is small enough then A + E is still
strictly column (row) diagonally dominant.

LEMMA 2. IfA is strictly column (row) diagonally dominant and if EII < 6, where
6 mini { ale ]j4i [aji } (if Ell < mini { [aii Zj/i [aij[ }), then
A + E is strictly column (row) diagonally dominant.

Proof. We shall prove it for column dominance; the proof for row dominance is
similar. Since

we have

Z e[ < EII < 6 and [aji[ <: [a,[ ,
j j4i

Z lai+eil Z [ayil + , el < laii[-+i-leiil
j4i j4i j4i

<= aii + eii for each i.
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The following theorem shows that if the machine precision u is small enough then
Gaussian elimination without pivoting (LUdecomposition is strongly stable for column
strictly diagonally dominant matrices.

THEOREM 7. Let A be a column strictly diagonally dominant; let z be the com-
puted solution by Gaussian elimination without pivoting. Then there exists an E
such that (A + E)z b, where IIEII --< p(n)ua, p(n) is a low degree polynomial in n,
u is the machine precision, and a =- maxi,j lail. If, also, u < 6/(p(n)a), where
max/{ lal j,e ajl }, then A + E is strictly column diagonally dominant.

Proof. From [10], [15], [16], there is an E such that (A + E)z b with IIEII
1/2p(n)u maxi,j,k lak) I, where p is a polynomial of degree 3 and a,) are the elements in
the reduced matrices. From [15, Chap. 3], maxi,j, a/) =< 2a. Ifu < 6/(p(n)a), then
EII < 6, and by Lemma 2, A + E is strictly column diagonally dominant.
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Abstract. A detailed account of various determinantal formulas is presented in a graph-theoretic form
involving paths and cycles in the digraph of the matrix. For cases in which the digraph has special local properties,
for example, a cutpoint or a bridge, particular formulas are given that are more efficient for computing the
determinant than simply using the matrix representation. Applications are also given to characteristic deter-
minants, general minors, and cofactors.

Key words, digraph, cycle, determinant, minor, cofactor
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1. Introduction. The connection between the digraph of a matrix and the deter-
minant of a matrix has been pointed out by many authors during the past three decades
(see, e.g., 2 5 ], 9 ], 10 ], 12 ], 15 ], 18 ], 19 ], 21 ). These papers include appli-
cations to solving linear systems, finding spectra of graphs and solving qualitative prob-
lems; however, no systematic exposition of this subject has appeared. Our purpose here
is to derive some fundamental formulas and give some new applications. The fundamental
formulas are in 2. The remaining sections are independent except that the cofactor
formulas in 7 depend on results on nonprincipal minors in 6. Sections 3 and 4 contain
formulas for digraphs with special local properties; applications are given in 5. We
conclude in 8 with an example illustrating several of our formulas.

The motivation for this work comes from the fact that although the evaluation of
a determinant may be very difficult using the matrix representation, the matrix digraph
often indicates efficient means of evaluation. We give specific examples of this involving
the graph-theoretic concepts of cutpoints, critical subdigraphs, and bridges.

We now introduce our notation. With an n n matrix .4 aij] we associate the
digraph D(.4) (V, ), having vertex set V { 1, 2, n} and arc set containing
the arc (i, j) if and only if aij 4:0 for 4: j. In addition we suppose that there is a subset
Vo

_
V of distinguished vertices of D(.4). The vertex V0 if and only if ag 4: 0. (It

should be noted that, for reasons motivated by applications, some authors prefer to put
(i, j) in if and only if ai 4: 0; see for example. The development of determinant
formulas is the same in either case, however.) In order to fix our terminology, we shall
call a sequence (i, i2, ir) of distinct vertices a path in D(.4) if each of the arcs
(il, i2), (i2, i3), "’’, (ir-, ir) belongs to . The length of such a path is r- 1. We
sometimes use a notation like p(i -- j) to denote a path in D(A) from to j. The length
of p will then be denoted by l(p) and the set of vertices belonging to the path will be
denoted by V[p]. The set of vertices of D(A) not belonging to p will be denoted by
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V(p). We call a sequence (il, i2, ir, il), where i, i2, ir are distinct vertices
of D(A) and each of the arcs (i, i2), (ir, i) belongs to , a cycle of D(A). Its
length is r >- 2. We also call the distinguished vertices ofD(A) cycles of length one or 1-
cycles. A cycle of D(A) will be denoted by c; the length of c is l(c)

_
1. V[ c] is the set

of vertices in c and V(c) the set of vertices of D(A) not in c.
Suppose I

_
V. We use the notation (I to denote the subdigraph ofD(A generated

(induced) by the vertices in I; that is, the arc set of this subdigraph is exactly the arcs of
joining vertices of I. See [11] or [20 for a discussion of this concept. Usually we

regard subsets of V as being ordered sets since they are subsets of the set of the first n
integers. If I is a subset of V, we denote by A[I] the principal submatrix ofA in the rows
and columns defined by I. Similarly, we denote by A (I) the complementary principal
submatrix, i.e., the principal submatrix in the rows and columns defined by V- I. The
determinants of these submatrices are denoted by det A[I] and det A (I), respectively.
These are principal minors of the matrix A. If I , we set det A[I] 1, and thus
det A (V) 1. Note that det A V] is equal to the determinant ofA, denoted by det A.
The relationship between principal submatrices ofA and generated subdigraphs ofD(A)
is given by D(A I] (I).

Ifp is a path in D(A), we let A[p] denote the corresponding product of elements
ofA, which we call a path ofA. Similarly, if c is a cycle ofD(A), then A[ c] denotes the
corresponding product of elements ofA, which we call a cycle ofA. (Note that if c i,
a distinguished vertex of D(A), then A c] aii.) When p is a path of D(A) we denote
by det A[V(p)] det A(V[p]) the principal minor ofA in the rows and columns defined
by V(p), i.e., the indices not on the path. Similarly, det A[V( c)] is defined for c a cycle
ofD(A). We call det A[V(p)] the cominor ofp and det A[V( c)] the cominor ofc. Thus
to each path and cycle ofA there is associated a uniquely defined principal minor ofA
called the cominor of the path or cycle.

If I_ V and J_ V with [II JI, we denote by A[I, J] the submatrix of A
in rows I and columns J and by A (I, J) the complementary submatrix; note that
A I, I] A I] and A (I, I) A (I). Then det A [I, J] and det A (I, J) denote the cor-
responding determinants.

2. Fundamental formulas. By definition, for A [aij] an n n matrix,

n

det A (sgn $) 1-I ai,,ti)
4 i--1

where b is an arbitrary permutation of Vand sgn is the sign ofthe permutation . Any
permutation can be uniquely factored (up to the order of factors) into a product of
disjoint permutation cycles. Let b b, b2, "", bt be the unique factorization of .
Each of the 4j, j 1, 2, t, is actually a sequence (ll, 12, lrj) of distinct
integers. Thus, provided each of the arcs (l,/2), (12, 13), (lrj, l belongs to , 4
defines a unique cycle c of D(A), namely, (l, 12, lri, l ). In this case also deter-
mines a unique cycle A[cj] of A. The sign of the permutation b can be com-
puted from

sgn b sgn $1 sgn b2)"" sgn t).

Consequently we have the formula

n

(sgn 4) II ai,(i) (sgn 4)A [Cl (sgn 42)A [c2]"" .(sgn dpt)A[ct].
i=1
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This term is nonzero ifand only ifeach ofthe permutation cycles (])1, (])t corresponds
to a cycle of D(A). Note that sgn 4j is positive if 4j is a cycle of odd length and negative
if b is a cycle of even length.

We now restrict 4 to permutations in which each permutation cycle corresponds to
a cycle present in D(A). Observe that the set of cycles f { c, c2, ct } of D(A)
defined by the factorization of 4 consists of pairwise disjoint cycles and every vertex of
D(A) belongs to one of them. Such a set f is called a factor ofD(A). (Graph theorists
define a 1-factor for a digraph D to be a spanning subdigraph for which each vertex has
indegree and outdegree equal to one (see, e.g., [3 ]). Thus our use of the term factor
coincides with the concept of a 1-factor as used in graph theory except that we use
distinguished vertices in place of loops.) Thus there exists a one-to-one correspondence
between the factors ofD(A) and the nonzero terms in the expansion ofdet A. With each
factor f of D(A) we associate the unique integer tf equal to the number of cycles of
even length belonging to f. Also we set A [f] equal to the product of the A c] over the
cycles c in f.

From this discussion we can deduce the fundamental determinant formula in the
following graph-theoretic form (see, e.g., 2 ], 4 ], 9 ], 19 ).

THEOREM 1. Let A be an n n matrix with digraph D(A ). Suppose D(A has the
factorsf { Ck, k2, Ckml) k 1, 2, q, and let tk be the number ofcycles of
even length in fk. Then

(1)
q q

detA= (-1)’A[Ck]A[c2].. "A[Ckmk] (-1)UA[j].
k=l k=l

We observe that applied to (I) gives a formula for computing det A[I]. Formula
is simply a restatement of the formula for the determinant of a square matrix in

graph-theoretic terms. It can have as many as n! terms in the event that D(A) is a
complete digraph on n vertices and V0 V. Thus the utility of such a reformulation
depends on whatever special structural properties the matrix A may have, as defined by
its digraph D(A). Note that even if aij 4: 0, the term aij occurs in det A if and only if
and j are in a cycle that is in a factor of D(A). We present later some special cases for
which yields efficient formulas for det A.

The sign (-1 )k appearing in can also be written in another way. For < k =<
q and <- j <= mk, the sign contributed by the cycle ck is tkj + 1, where lkj is the length
of ce. But l1 + l2 + + lgm n for each k. Consequently, as uk and n + m are both
even or odd, we can also write in the form

q

(1’) detA (-1)n (-1)mA[c]A[Ck2].. "A[cgm]
k=l

where mg is the number of cycles in the factorJ. This is the form derived in [3], where
the formula is attributed to Coates 2 and historical remarks are also given. At this point
we observe that when A is a (0, matrix, our results can be stated in terms of the
adjacency matrix of a digraph (or graph; see, e.g., [3]).

A classical tool in the theory of determinants is the expansion of det A by rows or
columns and, more generally, by the Laplace expansion formula. These tools have led
to many useful theoretical results. By using the concept of a cycle in the digraph D(A),
theoretically useful expansions ofdet A in terms ofprincipal minors ofA can be derived.
We turn next to such expansions.
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THEOREM 2 [18]. Let .4 be an n n matrix with directed graph D(A ). Let be a
fixed vertex in V, suppose the set of all cycles of D(A) containing the vertex is
(c, c2, cq ) and the length OfCk is lk. Then

q

(2) detA (-1)tk+ 1A[ckldetA[V( Ck)l.
k=l

Proof. We can partition the set of factors ofD(A) into subsets F1, "", Fq according
to which one of the cycles belongs to the factor. All factors containing Ck are placed in
Fk. Each term in the expansion of det A corresponding to a factor f e Fk contains the
product (sgn Ck)A[Ck] which equals (-1)lk+ A[Ck]. The remaining cycles in the factor
f generate a factor of ( V(Ck). Thus, when we sum over all factors belonging to the set
Fk, we generate the product l + A Ck det A V(Ck) ]. Formula (2) now follows
from by summation on k.

Several applications of (2) are given in 5. This formula can be looked on as an
expansion of the determinant ofA relative to a fixed diagonal element, namely the ith
diagonal element, i.e., relative to a fixed vertex of D(A). Here is a generalization.

Let I be a fixed subset of V. A setfi of disjoint cycles in D(A) spans I if every cycle
in fi contains at least one vertex of I and every vertex in I belongs to one of the cycles.
Such a spanning set of cycles will be called minimal if the set of vertices in fi is equal to
I. Corresponding to eachj) we have a unique cominor det A [V(j’))], where V(fi) is the
.set ofvertices not intl. Iffi is minimal, then det A [V(fi)] det A (I). Iffi is not minimal,
then det A [V(fi)] is a principal minor of A (I). Denote by EI the sets of fi that are
spanning sets of cycles for I, and which are not minimal spanning sets of I.

THEOREM 3 15 ]. Let A be an n n matrix with digraph D(A). Then, in terms of
the notation above, we have

(3) detA =detA[IldetA(I)+ , (-1)"(h)A[fildetA[V(fi)]

where A [fi is the product ofall A c for c fi and t(fi) is the number ofcycles ofeven
length in ft.

Proof. From ), det A 7;h (-1)"(h)A [fi] det A[V(fi)]. Formula (3) follows by
separating minimal sets from those that are not minimal. [2]

We may regard (3) as an expansion of det A relative to a fixed set of vertices of
D(A). When I { }, (3) coincides with (2).

3. The cutpoint and critical subdigraph formulas. Our ability to relate the expansion
ofdet A to D(A) in )-(3) can be used to obtain useful special results in the event that
D(A) has special local properties. Here and in 4 we present some applications based
on this idea.

Recall that the vertex olD(A) is called a cutpoint ifthe number ofweak components
olD(A) ( } is larger than the number ofweak components olD(A). (We remind the
reader that D(A) { } is obtained by removing the vertex from D(A) together with
any arcs of incident at i. Weak components are discussed in 11 and [20 .) Suppose

is a cutpoint of D(A) and the components of D(A) ( } are Dj, =< j -_< p(i). Set
Ij V[Dj], the vertex set of D/, and let/ ( where =/. (J {i}, <-_ j <= p(i).
Thus Di Di- {i}.
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THEOREM 4. Let A be an n n matrix and suppose D(A has a cutpoint i. Let
p( i), I and I be defined as above. Then

(4)
p(i) r p(i) l p(i)

detA [detA[/j] I detA[Ik] J-(p(i)- 1)aii H detA[Ik].
j=l k=l k=l

k/j

Proof. Let b be a permutation of V. Suppose first that b(i) 4: i. Then (i) E/ for
some j. Factor @ into the disjoint cycles 4, @2, @t. There will be a unique cycle,
say m, that moves i, i.e., bm(i) 4: i. Since is a cutpoint of D(A), the corresponding
cycle Cm in D(A) must lie entirely in 3j (because c,, { } is a path it must lie entirely
in some weak component). Any other cycle Ck determined by tk for k 4: m must lie
entirely in some Dr,

_
l <= p( i), l 4 j. Therefore the product

(sgn b )A c ](sgn b2)A c2]" "(sgn dPt)A[ Ct]

appears exactly once in the expansion of
p(i)

detA[1 I-[ detA[Ikl
k=l
k/q

when q j, and does not appear in any of the terms when q 4 j, _-< q =< p(i). Next
suppose (i) i. In this case there is a unique cycle, (m say, such that @re(i) i. But
again because is a cutpoint of D(A), any cycle Ck E D(A) determined by k, k 4: m,
must lie entirely in some Dr, <= 1

_
p(i). In this case we observe that the product must

appear exactly once in each term
p(i)

detA[J.] I’I detA[Ik], <=j<=p(i).
k=l
k/j

Since the permutation $ either moves or fixes i, every nonzero term in the expansion
of det A will appear at least once in

p(i) p(i)

(5) detA[] I] detA[Ik].
j=l k=l

k/j

Finally we note that the terms in det A falling under the first case will be counted exactly
once in (5). The terms in det A falling under the second case will be counted p(i) times
in 5 ). Since the expression aii I’[ (/) det A Ik] comes from precisely those terms in the
second case, (4) holds. V]

We illustrate (4) for a cluster of cycles in 5 and also in our example in 8.
We remark that, in the case where is not a distinguished vertex of D(A), the

expression in (5) equals det A. This can be viewed as a generalization ofthe formula for
the determinant of the coalescence of two graphs without loops (see, e.g., [21 ]).

We now derive another form of the cutpoint formula (4). For each j 1, 2,
p(i) let { cj, Cjmj } be the set of cycles of D(A) incident at the cutpoint and such
that V[Cjk] N I 4: b. Also let/k be the length of Cjk, k 1, 2, m. Then we can
apply the vertex expansion formula (2) at the vertex to evaluate each ofthe determinants
det A[I]. To simplify the notation let us set Ik I V[Cjk], SO that/k -- Ij. Then
we have

detA[J] (-1)t+ A[Cjk]detA[Ik]+aiidetA[I].
k=l
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Substituting this into (4) yields

det A (- A Cjk] det A [/k] + aiidet A [/j] det A Ik]
j=l k=l k=l

p()

-(p(i)- 1)aii I-I detA[Ik],
k=l

which simplifies to

(4’) detA=a I-i detA[Ik]+ (-1)*+A[C2k]detA[Ik] detA[Ik].
k=l j=IL k=l k=l

kq.j

Here is a special case of (4’). Suppose for all j 1, 2, p(i), there is a unique
cycle cj of length 1 incident at such that V[ c] A/ 4: . We then obtain the expansion

p(i) p(i) p(i)

(6) detA=aii I- detA[Ik]+ (-1)+A[cj]detA[- V[c]] I[ detA[Ik].
k=l j=l k=l

k/j

The key property of a cutpoint that permits us to prove (4) and (4’) is that each
cycle in D(A) must be contained entirely within one ofthe sets Dj, and hence each factor
of D(A) consists of factors ofD for some j and of Dk for k 4: j. If this property can be
generalized to some larger subdigraph ofD(A), we say that D(A) has a critical subdigraph.
More precisely we use the following concept.

Let D be a digraph. The subdigraph Do will be called a critical subdigraph ofD if:
(a) Do (Io) for some I0 c V;
(b) (V- Io) D Do has more weak components than D; and
(c) If D; (/), j 1, 2, p (p

_
2) are the weak components of D Do,

then every factor of D consists of a factor of (I0 U/) for some fixed j together with
factors of (Ik) for k 1, 2, p (k 4: j).

We can now prove the following result.
THEOREM 5. Suppose the digraph D(A ofthe matrix A has a critical subdigraph

Do. Then in the above notation

(7) detA= detA[IoU/] I-[ detA[lk]-(p-1)detA[Io] I-I detA[lk].
j=l k=l k=l

kqj

Proof. By property (c), the sum on the fight above contains every term in the
expansion of det A. However the term det A[Io] I-I= det A[Ik] occurs p times in the
summation, hence it must be subtracted off (p times, giving (7).

We shall see, by way of some examples, that Theorem 5 offers a substantial gener-
alization of the cutpoint formulas (4) and (4’). On the other hand, it is certainly not
clear even from the graph-theoretic point ofview how to characterize a critical subdigraph.
Here, however, is a sufficient condition that a subdigraph be critical.

LEMMA 1. Let Do (Io) be a subdigraph ofD satisfying a) and (b). If there
exist vertices Via and Vout ofDo such that every cycle c with V[ c] f3 Io
(V- Io) 4 ck enters Do at via and leaves Do at Your, then Do is a critical subdigraph ofD.

Proof. If c is any cycle of D, then either V[ c] c 10, V[ c] c/. for some fixed j
{1, 2, p} where Dj (/) is the jth weak component ofD Do, or V[ c] satisfies
the condition of the lemma. But in the last case it is clear that V[c] fq (V- Io) I for
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some fixed j. It follows that every factor of D consists of a factor of (I0 tO/j.) for some
fixed j together with factors of (Ik) for k

We now give two applications of the critical subdigraph formula.
Let D (V, ) be a digraph. We call D a ladder digraph if V V tO V to tO

Vk, where Vi fq Vs b, 4 j, k >-_ 3, and every (x, y) e is such that x e V, y e Vs- with
-Jl --< 1. The subdigraphs (Vi), 1, 2, k, are called the rungs of D and, for
2, 3, k l, the interior rungs of D.
Let A be a block tridiagonal matrix, i.e.,

AI B 0 0 0
Cl A2 B2 0 0
0 C2 A3 0 0

b b b Ap’-I B;-I
0 0 0 Cp-1 Ap

where p >= 3, and Aj is an rj r block, j 1, 2, p, rj. n. Then we can write
D(A) (V, ) where V Vl tO V2 tO tO Vp, and setting r7 Z}-I r, r 0, V,.
(r7 + 1,..., r’ + ri), 1, 2,...,p. Note that ViN Vj. b if i4:j. Also we have
(i, j) e if and only if and j belong to Vk for some k 1, 2, p, or e Vk, j e
Vk/ , k 1, 2, p 1, or Vk, j Vk- , k 2, 3, p. Thus, ifA is block tri-
diagonal, D(A) is a ladder digraph. Conversely, if D(A) is a ladder digraph, there exists
a permutation matrix P such that PrAP is a block tridiagonal matrix.

We call the block tridiagonal matrix critical if D(A) is a ladder digraph and each
interior rung of D is a critical subdigraph. The concepts are illustrated in Fig. 1, where
(R) denotes a distinguished vertex. By Lemma 1, the subdigraphs ( 3, 4), ( 5, 6 ), (7, 8 ),
and (9, 10) are all critical.

Now consider the interior rung (V2). Applying Theorem 5 we get

det A det A Vl tO V2 det A V3 tO tO Vk + det A Vl det A V2 tO tO V
det A V det A V2 det A V3 tO tO Vk

But we can apply Theorem 3 to det A V tO V2 ]. In fact, let El,2 be the set ofall nonminimal
sets of cycles which span V in (V tO V2). Then

detA[V1U V] =detA[VldetA[V2]+ ., (-1)(f)A[fldetA[V(f)].
fe El,2

5 7 9 11

10

FIG. 1. A ladder digraph.
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FIG. 2. A directed 4-cockade.

Here each det A V(f) is a principal minor of det A V2 ]. Thus in this case formula
( 7 )becornes

det A det A V1 det A V2 (A t.J Vk]

+ (-1)(fA[f]detA[V(f)]detA[V3t_J (A Vk].
fe El,2

Observe the analogy between this formula and the recurrence formula for the ordi-
nary tridiagonal case. Also observe that for k > 3 we can apply the same reasoning to
det A[V2 t3 t.J Vk] using the interior rung (V3), etc. In this way we can associate a
generalized recurrence relation with a critical ladder digraph.

As a second application, consider the following class of digraphs (see [17]). IfD is
a digraph and (x, y) is an arc of D, a 3-path operation adds two new vertices zl, z2 and
three new arcs (y, Zl ), (Zl, z2), (z2, x) to D. We call D a directed 4-cockade if it can be
obtained from a 4-cycle by a finite sequence of 3-path operations. This is introduced for
undirected graphs in [22 ]. It is easy to see that every directed 4-cockade is strongly
connected and that every cycle has length four. We illustrate in Fig. 2 a directed 4-
cockade with all vertices distinguished. Observe that for Do (x, y), D Do has four
weak components, but there do not exist vertices Vin and Vout in (x, y). This shows that
the condition of Lemma is not necessary for a subdigraph to be critical. However, we
can use our formula (7) in this example as Do is a critical subdigraph.

More generally, if (x, y) is an arc of a directed 4-cockade D with all vertices dis-
tinguished, then D (x, y) has more weak components than D if and only if the
arc (x, y) belongs to at least two 4-cycles. Note that, as pointed out by a referee, such a
digraph (x, y) is not necessarily a critical subdigraph. However, we can prove that such
an (x, y) is not critical if and only if there is a 4-cycle in D { x } that is not in D
{ y }, and a 4-cycle in D (y } that is not in D (x }.

4. The bridge formulas. Another type of local behavior lending itself to a simple
determinantal formula is the following. The arcs (i, j) and (j, i) constitute a bridge of
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the digraph D if their removal increases the number ofweak components ofD. Suppose
D is a weakly connected digraph and that (i, j) and (j, i) constitute a bridge ofD. Then
and j are in different weak components and there are exactly two weak components.

Let/i,/j be the weak component ofD(A) ((i,j), (j, i) } containing i,j, respectively.
Set Di=J {i}, Dj=Jj {j} and define [= V[/], ]= V[/j], I= V[D],
J= V[DA.

THEOREM 6. Let A be an n n matrix with a weakly connected digraph D(A ). If
the arcs i, j) and (j, i) constitute a bridge ofD(A and the subsets I, J, I, J of V are
defined as above, then

(8) det A det A I] det A J] aoajdet A I] det A J].

Proof. Any nonzero term (sgn ) I-[ ’= ai,4,(i) in the expansion of det A is uniquely
determined by its representation as a factor of D(A). If f is a factor, then f falls into
one of the following mutually exclusive classes:

(a) Every cycle of f lies in Di or in D;
(b) f contains the cycle i, j, i) and every other cycle of f lies in either Di or D.

The factors in (a) are uniquely determined by all the terms in det A I] det A[J], while
those in (b) are uniquely determined by all the terms in aoai det A[I] det A[J]. Formula
(8) follows on taking account of the sign of the 2-cycle aijaji. I]

When A is a (0, symmetric matrix, 8 can be viewed as a formula for computing
the determinant of a graph from the determinants of subgraphs (see 3]).

The bridgeformula ofTheorem 6 can be looked on as a special case ofthe following
situation. Let c be a cycle of length l >= 2 of a weakly connected digraph D(A), and
assume that D(A)- {arcs of c} consists of a set of isolated points and a set D,.., Dp of disjoint subdigraphs each containing two or more points and exactly one
point ofc. Here 0 =< p -< l. Let V[c] f3 V(Dj) {Xj} ,j 1, 2, p, and Io V[c]
{ x, x }. We can assume that p >= since p 0 implies that D(A) c. Setting. V[/j] and/j. V[Dj] { xj }, j 1, 2, p, we have

(9)
p p

detA= H detA[.] ]"[ a,,+(-1)l+Atc] 1-I detA[/].
j=l aI0 j=l

This generalized bridgeformula is an obvious extension of (8) and we omit the proof.
When 1 p 2 it reduces precisely to (8). Also, in the special case where p l we have

detA= I-[ detA[[jl+(-1)t+lA[c] I-I detA[/j].
j=l j=l

Next we present an application of this generalized bridge formula. Let c
1, 2, l, be a cycle of length >_- 2 and suppose there is at most one cycle cj, j

1, 2, l, of length lj >- 2 such that V[c] (’1 V[ c] { j }. Setting V[c] and/
V[ cj] { j }, if in addition cj is the only cycle of length -> 2 in Ij, then we have

detA[ 1 1-I a**+(-1 )/+ IA[cj],

and det A[/j] 1-I6 a,,. We then obtain from (9) the following result:

(10) detA I-[ a.+(-1 )t+ A[cj] +(-1 )t+ 1A[c] a.
j r=l+
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Observe also in connection with (10) that A[c] a12a23""al-1,tat1. In the particular
case where / 2, j l, 2, l, we can write A[cj] aj,t+jat+,, j l, 2,..., l,
and thus

2l

detA= YI {ajat+,+-a,+ja+,} +(-1)t+ la12" "al I-I a.
j=l j=l+l

5. Applications. Let us begin with two applications of the expansion formula (2)
relative to a vertex. First consider an n n matrix A aij] with ai 4:0 if and only if
-2 _-< -j _-< l; this is a special case of an upper Hessenberg matrix. The digraph ofA
is shown in Fig. 3.

Let us denote the leading principal minor ofA of order r by det Ar, r 0, l, 2, ,
n, where det A0 l, and det An det A. There are three cycles incident at vertex n,
namely, the 1-cycle at n, the 2-cycle (n, n 1, n), and the 3-cycle (n, n 1, n 2, n).
The corresponding cycles ofA are ann, an,n- lan- l,n and an,n-1an-l,n-2an-2,n with cominors
det An-1, det An-2, and det An-3, respectively. Consequently, we derive from (2) that

det A ann det An- an,n- an- 1,n det An- + an,n- an- 1,n- 2an- 2,n det An- 3.

This formula expresses the determinant ofA in terms of the determinants of three suc-
cessive principal minors of A. Obviously the same reasoning can be applied to any of
the generated subdigraphs (1, 2, r) for r >- 3. In this way we obtain the recur-
rence formulas

11 det Ar arr det Ar ar,r ar l,r det Ar 2 "t" ar,r ar l,r 2 ar 2,r det Ar 3

for r

_
3 with det Ao 1, det AI a11, det A2 a22 det A1 al2a21 det Ao.

The recurrence formulas 11 may also be readily applied to the characteristic matrix
A ,I A(X) to yield

(12) detAr()=(arr )det Ar-l(k)--ar,r-lar-1,rdetAr-2()
+ ar,r ar l,r 2 ar 2,r det Ar ()

for r >- 3 with initial conditions det A0(X) 1, det AI(X) al X, det A2(X)
(a22 ,)det AI(,) a12a2 det A0(,). Note that when ar-2,r 0 this reduces to the
recurrence formulas for a tridiagonal matrix (see, e.g., [7 ]). These relations could be
used to investigate the spectral properties of such an upper Hessenberg matrix A (see,
e.g., [17]).

A second example of the application of (2) arises from a modification of an econo-
metric model currently used by the U.S. Department of Energy 16 ]. Suppose an n n
matrix A ai] is such that ai 4:0 if and only if 1, j 1, j, or n. The digraph
ofA is shown in Fig. 4.

Here again each vertex of D(A) is distinguished. In this example every cycle of
length >_- 2 is incident at vertex 1. This means that the cominor of each such cycle, as

FG. 3. The digraph D(A)forA [aj] with aij 0 ifand only if-2 <= -j <= 1.
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FIG. 4. The digraph D(A)for A [ao] with ao 4:0 ifand only if 1,j 1, j, or n.

well as the cominor of the 1-cycle at vertex itself, is simply a product of elements ofA
on the principal diagonal. Choosing in (2), we obtain

fi
n n-I n-I

(13) detA=all aii- aliai I’[ akk+ , ananiai I akk,
i=2 i=2 k=2 i=2 k=2

k/i k/i

an explicit formula that can be readily evaluated.
Again we may apply our result to the matrix A(,) A Mto obtain the following

formula for the characteristic determinant ofA"

(14)
n n n-I n-I

detA(X)=(al-X) (aii-X)- , aliail 1"[ (akk--,)+ , ana,iail II (akk--X).
i=2 i=2 k=2 i=2 k=2

k/i k.bi

We note that this formula can be used to give information about the spectrum ofA under
various special hypotheses about the signs ofthe nonzero elements ofA. In the formulas
13 and (14) we have separated offthe factor involving a in the first term on the fight-

hand side because this is the only place at which it occurs. All other elements along the
principal diagonal appear in at least n terms.

We now derive an eigenvalue property from the critical subdigraph expansion (7).
Suppose the matrix A has a critical subdigraph and, as above, set A (,) A M. Then
the expansion (7) becomes

(5)
P p p

detA(h)= Z detA[Iot.J/.;,] I-[ detA[Ik;X]-(p-1)detA[I0;,] 1-I detA[Ik;,]
j=l k=l k=l

k/j

where we have used the more compact notation A I; ,] instead ofA (X) I].
THEOREM 7. Suppose the digraph ofthe matrix A has a critical subdigraph Do and

that o is an eigenvalue oft ofthe submatrices A Ik], 2 <--_ r <= p. Then o is an eigenvalue
ofA ofmultiplicity at least r- 1.
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Proof. By hypothesis det A [Ik; Xo 0 for r >-- 2 values of k. It follows that ,0 is a
zero of each of the terms in the sum in formula 15 (r )-times. It is also a zero of
the last term r-times.

Next we turn to an application of(3). Let A be such that D(A) has a pair ofpendant
vertices k and I each joined to another vertex of D(A) by symmetric arcs. To be more
specific, let i, j, k, and I be distinct vertices of D(A) such that (i, k) and (k, i) are the
only arcs ofD(A) incident at k, and (j, l) and (l, j) the only arcs ofD(A) incident at l.
Applying (3) with I { k, 1 }, and denoting A { k, 1 } by A (k, l), we obtain

16 det A akkattdet A (k, 1) akkajtatj det A (j, k, l) auaikakidet A i, k, l)

+ aikakiajtat det A (i,j, k, l).

Observe that in (16) the minors det A (j, k, l), det A (i, k, l), and det A (i, j, k, l) are
all principal minors ofA (k, 1).

As an application of(4) consider the following. Let the matrix A be such that D(A
has all vertices distinguished and consists ofm -> 2 cycles c, ..., c, of lengths 11, "",
1,, respectively, all of which intersect at a single vertex and are otherwise disjoint. We
call such a matrix a cluster of cycles. Without loss of generality, we label this unique
cutpoint of D(A) vertex 1. Letting Ik, k 1, 2, , m, be the set of noncutpoints of Ck
and [k Ik t_J { }, we have

detA[Ik] ]-I a,, and detA[/k] I-I a,,+(-1)tk+A[ck],
r- Ik

k 1, 2, m. From (4)we then obtain

detA II a+(-1)+ 1A[cj] a-(m- 1)a I-I
j=l a =1 k=2

k/j

whence

i
m

(17) detA=a akk+ Z (-1)/+IA[j] H a##.
k=2 j=l

Setting A M A(X) as before, we deduce from 17 the formula for the char-
acteristic determinant of a cluster of cycles (with cutpoint at vertex ), namely,

n m

(18) det A (,)= (a- k=2 j=l

6. Nonprincipal minors. The expansion formulas derived in 2 can be applied as
in 14 to yield graph-theoretic insights into the expansion of an arbitrary minor of the
matrix .4. In particular this leads to a theoretically valuable formula for computing the
matrix of cofactors of.4, cof .4, and for computing .4- whenever it exists.

As before, let D(.4) (V, ) with Vo
_
Vthe set of distinguished vertices ofD(A).

SupposeI_ V, J_ Vwith II ]Jl,I4: J. LetL=IJ,s= ILl andd(I,J)=
ILl III. Following [13 ], we call d(I, J) the dispersion of the pair of sets I and J.
Note that d(I, J) + II =< n and d(I, J) >_- 1. Let K I fq J (possibly empty). Then
there exist nonempty sets Io, Jo such that I K tO Io and J K LI Jo, where lol
Jol d(I, J) and Io f’l J Jo f) I b. Note that L K t_J Io tO Jo.

We define the (I, J)-generated subdigraph ofD(A) as follows. Start with (L) and
delete all ares of (L) incident to a vertex ofIo and all arcs of (L) incidentfrom a vertex
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of J0. In order to relate this subdigraph of D(A) to a submatrix of A, consider the
principal submatrix A L ]. In this submatrix set to zero all elements in the rows corre-
sponding to Jo and all elements in the columns corresponding to I0. Call the resulting
submatrix A L; I, J]. Observe that the nonzero elements ofA [L; I, J] all appear in
the rows K (A I0 and in the columns K (A J0, and they are precisely the same as the
elements in the submatrix A[I, J] of A. Note that det A[L; I, J] 0 because it has
d(I, J) rows of zeros and d(I, J) columns of zeros.

The next step in our construction follows that in [14]. Set d(I, J) r, Io
{ i, i2,’", it} and J0 {J, j2, "’", j}, where i < i2 < < ir andj < j2 < <
jr. In the matrix AlL; I, J] replace each of the zeros in the positions (j,, i,), r 1, 2,
.’, r, with a one. Call the resulting matrix J[L;I, J].

LEMMA 2. For the matrix J[L; I, J] defined as above,

detJ [L;I, J] (- )z’) det A [1, J]

where t(I, J) r= (r(i,) + ’(j,) and ’( i,), z(j,) are the relative positions of i,, j,,
respectively, in the ordered set L.

Proof. Denoting L by (l, 12, l} with l < 12 < < l, let z denote the
function such that r(lk) k, <= k <-_ s. Since I0, J0 - L, z(i,) and (L) denote, respectively,
the positions of i, and j, _-< r _-< r) in the ordered set L. The result now follows from
the structure of,4 L; I, J]. [2]

In order to obtain a graph-theoretic understanding of this lemma, observe that in-
serting the ones in the matrix A L; I, J] as was done above can be interpreted in terms
of the digraph (I, J) as adding the arcs (j, i,), a 1, 2, r. Denoting the resulting
digraph by ( I, J), observe that ( I, J) is not in general a subdigraph ofD(A) but that
D(,4 L; I, J] ( I, J). We can interpret the calculation of det . L; I, J] graph theo-
retically with the help of ( I, J). Corresponding to a factor (a set of cycles) of ( I, J) is
a "factor" that is a set of cycles and paths of (I, J). The extension of this notion of
factor is used below in the context of nonprincipal minors.

THEOREM 8. Let A be an n n matrix with I, J, L, s, #(I, J), and ( I, J) defined
as above. A nonprincipal minor ofA is given by

(19) detA[I,J]=(-1)tl’J)(-1)s (-1)"kA[Pkl].. "A[Pkr]A[Ckl] "A[Ckmk]
k

where the sum is taken over allfactors fk of ( I, J, and k is the number ofcycles offk.
Proof. Clearly the terms in the expansion ofdet .4 L; I, J] correspond to the factors

of (I, J). The distinguished vertices of (I, J) are found in V0 f’) K. Therefore every
cycle of ( I, J) containing either of the vertices j. or i., r 1, 2, r, must contain
the arc (j., i.) because j. is a sink vertex of (I, J) and i. is a source vertex of (I, J). It
follows that every factor of ( I, J) contains all of the arcs (j., i.), r 1, 2, r. But
this implies that each factor of ( I, J) contains a set ofpaths Pl, "’",/gr in (I, J) having
the following properties (see 14 ):

(a) p, ..., p are disjoint;
(b) Each p. starts at a vertex of Io and ends at a vertex of J0; and
(c) Each p. contains no other vertices in either 10 or J0.
Set k equal to the number of cycles in the factorJ of ( I, J). Then the sum of the

lengths of the cycles in J is equal to s and the sign they contribute to the factor J is
(-1 )s+. Corresponding to the factorJ of ( I, J is a "factor" of (I, J that we may
write in the formfk {Pkl, "’", Pkr, Ck, "’", Ckmk) as the element ofA corresponding
to each (j., i.) has the value 1, a 1, 2, r. The r paths infk come from the r cycles
of (I,) containing the arcs (j., i.), a 1, 2, ..., r. We associate with the factor fk
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the sign (- )s + k, and thus using ’) and Lemma 2 we have (19) for the nonprincipal
minor det A I, J]. [3

Since J[L; I, J] plays only an auxiliary role for the purpose of computing
det A I, J], we can interpret the computation of the determinant graph theoretically in
terms of D(A [1, J]) (1, J). Observe that each of the cycles Ck, Ckmk in (19)
belongs to the subdigraph (K). Therefore let us partition the factorsfk according to the
set of r paths in the factor; thus two factors having the same set of paths are put into the
same class. Denote by V(k; L) the complementary set ofindices in L to the set contained
in the union of the paths Pk, Pk2, "’", Pkr. Note that V(k; L) is uniquely defined. We
can now modify (19) to the form

(19’) det A[I, J] (--1 ).I,) , (_ )UkA[Pkl] A [p] det A[V(k;L)]
k

where the sum is over all distinct sets of paths in (I, J) and Uk equals the number of
cycles of even length generated by the paths Pkl, Pkr in ( I, if). This result is used
in 14 to show that ifA is an M-matrix with its graph having no simple cycle of length
greater than three, then the sign of any minor depends only on this graph (and not on
the magnitudes ofthe matrix entries). The formulas ofthis section illustrate the fact that
the expansions of nonprincipal minors involve paths in D(A), whereas the expansions
of principal minors involve only cycles (see 18 ], 19 ).

We give now two special cases ofTheorem 8. First consider a minor with maximum
possible dispersion, i.e., the case I

COROLLARY 8.1. Let A be an n n matrix and d(I, J) II r. Then a minor
ofmaximum dispersion ofA is given by

(20) det A I, J] (- )r )’k fix ai.,f(
k

where the sum is taken over allfactorsf of ( I, J ), uk is the number ofcycles in fk, and
fk( i) is the element ofJ that is the endpoint ofthe arc with initial point i,for given fk.

Proof. In this case the graph (I, J) is a directed bipartite graph, i.e., every arc of
(I, J) has the form (i, j) where i I and j J. For each factor3 of (I, J) every
cycle has length 21 for some l, since ( I, J) is a bipartite digraph. Thus each cycle of]
contributes a negative sign. Letting I { i, i2, "", it} and J ( j, j2, "’", jr}, we
consider the mapping 7 on I t3 J for which 7(I t.J J) { 1, 2, ..., 2r }. Now 7(i,) +
7(j,) is even if both 7(i,) and 7(j,) are even or if they are both odd, and r(i,) + 7(j,) is
odd if one of 7(i,), 7(j,) is odd and the other even. But, if r is odd, there must be an odd
number of differences with one even and one odd and, if r is even, an even number of
such differences. It follows that t(I, J) 7= (7(i) + 7(j)) has the same parity as r.
As s is even, we obtain the expansion formula (20) in the maximum dispersion case. []

Now consider the case of a minor of dispersion one. Such minors are sometimes
called almost principal minors (see 13 ]). There is, however, some confusion in the
literature concerning this term. Apparently Gantmacher and Krein 7 had a narrower
concept in mind when they introduced almost principal minors. We use the term in the
broad sense here.

COROLLARY 8.2. Let A be an n n matrix. Then, with I K t3 ( io } and J
K t3 { jo ), a minor ofdispersion one ofA is given by

(21)
m

detA[I,J]=(-1 )-(o)+.(o) (-1)tA[pk(io--jo)]detA[V(p,K)]
k=l
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where the sum is over all distinct pathsfrom io to jo in (I, J) -( io r(jo) is the position
ofio, jo, respectively, in the ordered set I t3 J; lk is the length ofpath pkfrom io tojo; and
V(pk, K) is the set ofvertices of (I, J) not belonging to Pk.

Proof. When I K U {i0 }, J K t_J {jo) each "factor" of (I, J) consists of a
product of cycles of (K) and a path p(io - jo). The path contributes sign (-1 )t
where is the length of the path. We can partition the factors of (I, J) into equivalence
classes by holding the path p(io -- jo) fixed and permitting the cycles of (K) to vary.
Let p(io -- jo),’", Pm(io jo) be the distinct paths from i0 to jo in (I, J). Let
V(Pk, K) be the set of vertices of (I, J) not belonging to Pk; these vertices are all in
(K), and hence the notation. Then we have (21 as a general formula for an almost
principal minor. [2]

Note that when III the almost principal minor is the nondiagonal element

aioo ofA. In this case L { io, A } and we have r(min { io, A l, r(max { io, A }
2, and lk 1. Thus, (-1)*ti)+*) (-1)t -1 so that (21) yields det A[io, jo]
aioo, as it must. Note that ifA is an M-matrix, then each term in the summation of (21
is nonnegative, so that det A[I, J] det A[J, I] >- 0 for any I, J with d(I, J) 1. When
this inequality holds, A is called weakly sign symmetric.

7. Cofactor formulas. We now use Corollary 8.2 to prove the following results,
where the cofactor of a0 is denoted by A0., and the matrix cof A [A0].

THEOREM 9 15 ]. Let A be an n n matrix with digraph D(A ). Let ao with j
be an arbitrary nondiagonal element ofA. Then the cofactor ofai is given by

(22) Aij , (-1)tkA[Pk(j-’ i)]detA[V(pk)]
k

where the sum is taken over all paths in D(A from j to i, and lk is the length ofpath Pk.
Proof. Let us apply (21 to the almost principal minor det A (i,j), i.e., to the almost

principal minor det A[I, J] where I V- { i}, J V- { j }. We then have L V,
io j and jo i, r(j) j, r(i) i. Note that the set of all paths from j to in (1, J) is
the same as the set of all paths from j to in D(A). Therefore we obtain the result

det A(i,j) (-1 )i+ j E (--1 )lkA[Pk(j" i) det A[V(pk)].
k

But the cofactor of ao is Ao (- )i+ det A (i, j), so the formula (22) follows at
once. D

COROLLARY 9.1. Let A be an n n nonsingular matrix with digraph D(A ), and
let A - [c0. Then we have

(23a) a,= det A(i)/det A,

and

(23b) aV-detA
, (-1)t*A[pk(i--j)]detA[V(pk)], i4=j,
k

where the sum is taken over all paths in D(A )from to j, and lk is the length ofpath p.
Proof. Formulas (23) follow at once from (22) and the fact that (det A)A-(cof A) r Vq

In the following corollary we use these formulas to prove that if a matrix is nonsin-
gular and irreducible and every vertex is distinguished, then, if cancellations are ignored,
its inverse matrix is full. Other proofs of this have been given recently [6 ], [8 in the
context of sparse matrices.
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COROLLARY 9.2. Let A [aij] be an n n irreducible matrix with aii 0 for all
V, and suppose A -1 [ao] exists. Then, ignoring cancellations, aij 4 0 for all i,

jrV.
Proof. Suppose aii 0. Then from (23a), det A (i) 0. As cancellations are ignored,

this implies that at least one of ap 0, p V { }, which is a contradiction.
Suppose ao O, 4 j. Then from (23b), A [Pk( -- j) 0 for each path Pk in D(A

from to j. (Note that as each a, is assumed nonzero and cancellations are ignored,
det A[V(pk)] is nonzero.) Thus there is no path from toj in D(A). So A is reducible,
which is a contradiction. []

Note that it is possible for every vertex not to be distinguished, but the inverse matrix
to be full.

The basic cofactor formula is presented above as equation (22) of Theorem 9. We
now elaborate on this result and indicate some applications.

Since A (cof A) r (det A)I,

" 0 ifiCj,
_

aikAjk
k det A if =j.

For j, we have

det A aikAik aiiAii q- aikAik
k=l ki

aiidetA(i)/ aik (--1)tmkA[Pmk(k-" i)]detA[V(Pmk)]
k/i m

where m is taken over all paths in D(A) from k to i. Clearly for each k such that
both ak 4 0 and there exists at least one path p(k--, i) in D(A), the product
akA [Pmk(k -- i)] is a cycle containing the index i. The sign attached is (-1 )t+l where
l is the length of the cycle. So we have rederived Theorem 2 using the cofactor formula.

Now for 4: j, we have

Thus,

n

0 , aikAk aiiAji d- aoA;; + aikAjk.
k= ki,j

O= aii (-1)tkA[pk(i-j)]detA[V(pk)]+aodetA(j)
k

+ , ak (-1)tA[Pm(k--j)]detA[V(Pm)].
k4i,j m

Now the sum in the first term is over all paths in D(A) from to j, and a given
path from to j in D(A) appears exactly once in the third term. Observe that, since
Pmk(k "j) does not contain the vertex i, the set V(Pmk) does. On the other hand, V(Pk)
appearing in the first term does not include the vertex i. Thus we have the following
identity:

0 aodetA(j)+ , (-1)tkA[Pk(i--j)]{ a,detA[V(pk)]-detA(V(pk)k.J i) }.
k

In the remainder ofthis section, we consider particular cases ofthe cofactor formulas
when D(A) has special local properties.



516 MAYBEE, OLESKY, VAN DEN DRIESSCHE, AND WIENER

Consider first the case where D(A) has the cutpoint i; see 3 for notation. There
are four cases to consider in evaluating cof A.

Case (i). a e/s, z e Ik for j =/= k. We have

A,=A[ ],iA[ [k]i 1-I detA[Im].
m /j,k

Case (ii). a i, r e/s (r i, a e/s is analogous). We have

A,,=A[] 1-I detA[Ik].
k=b j

Case (iii). (r, r e/s, a :/= . We now obtain

A,,=A[],, I-[ detA[Ik]+ A[Is],,detA[.k] I-I detA[Im]
k/ j k/ j m/ j,k

-(p(i)- 1)aiA[Is.],, 1-[ detA[Ik].
kb j

Case (iv). a r. If a i, then Aii 1-I(-- det A[Ik]. If r /S, we obtain

A,=detA[.-{a}] 1-i detA[Ik]+ detA[fk]detA[Is-{a}] l-I detA[I,,]
k/ j k/ j m/ j,k

-(p(i)- )a, det A [/s.- { (r}] I-[ detA[Ik].
k/j

Next consider the cofactors ofA when D(A) contains the bridge consisting of the
arcs (i, j) and (j, i); see 4 for notation. There are now three cases to consider in
evaluating the A,,.

Case ). tr I, r J a J, r I is done analogously). Let p be an arbitrary path
in D(A) from r to a. We can write p(r -- tr) p’(r -- j)(j, i)p"(i -- ). Then
p’(r -- j) is contained in Dj and p"( -- a) in Di. Therefore from (22) we may write

A,= (-1)tkA[Pk(r-- (r)]detA[V(pk)]
k

(--1 l(p’k) + 1+ l(p"k)
k

A[p’(r-,j)]aoA[p’(i--, )] det A[ J- V[p’]]detA[ I- V[p"] ],

which is equivalent toA -aiA[I-]iA[J-]. This expansion means that for r [and
r J, the cofactor A, can be written as the product of-a and certain cofactors of the
smaller matrices A I] and A [J].

Case (ii). , r s I, : r r, r J, 4: r can be done analogously). If and r both
differ from i, we obtain

A A I]det A J] aoaA [I], det A [J].

For (r is done analogously), this reduces to

A, A I] det A J].

Case (iii). r. If r q: i, r g: j, I r J is analogous), then

A A I], det A J] aoajA I]det A J].

For r j is done analogously), thenA det A I] det A J].
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From these three cases, we see that, when D(A) has the bridge { (i, j), (j, i) }, the
matrix cof A is completely determined by the matrices cof A I], cof A [I], cof A J],
cof A J], the principal minors det A [I], det A [I], det A J], det A [J] and the elements
aij, aji.

As a final application of our methods we mention the following double bridge for-
mula. Given a matrix A, let i, j, k, I be distinct vertices in D(A). A double bridge is a
subset B of arcs ofD(A) such that B

_
( (i, k), (k, i), (j, l), (l, j) }, B contains at least

one arc from {(i, k), (k, i)} and at least one arc from { (j, l), (1, j)}, and D(A) B
has more weak components than D(A) with { i, j ) in one weak component and { k, ! }
in another.

Let D(A) be weakly connected and have a double bridge. Suppose (11 t.J { i, j}
and (12 t_J { k, l} are the subdigraphs of D(A) B containing { i, j} and { k, 1},
respectively. When we let I- 11 t3 { i, j } and [2 12 t.J { k, }, the cycles of a factor f
of D(A) may be categorized as follows:

(i) f contains cycles lying entirely in ([1 or in (;
(ii) f contains the two 2-cycles i, k, i), (j, l, j) and cycles lying entirely in (I1

or in (I2);
(iii) f contains the 2-cycle (j, l, j) and cycles lying either in (11 t.J { } ) or in

(iv) f eomains the 2-yde (i, k, i) and cydes lying either in <I U { j } ) or in

(v) f contains cycles that lie partly in (El > and partly in (>.
Thus,

detA det A Ii det A 12] + aikakiajlaljdetA[I]detA[I2]

ajtatdetA[l LI ( i} det A [I2 O { k)]- aikakidetA[l t.J {j) det A [I2 LJ { l }

ajlakiA Ii ]jiA 12 ]kt- aikaoA 11 ]ijA I2 Ilk,

where the first four terms correspond, respectively, to categories (i)-(iv) and the last two
terms correspond to the two types of factors in (v).

8. An example. We conclude with a 7 7 example that illustrates several of the
formulas given previously. Figure 5 displays the strongly connected digraph D(A) for
our example; all the vertices are distinguished. We use A[ i, j] to denote A[ { i, j } and
similar notation for other principal minors.

2 6

3 7

FG. 5. The digraph for our 7 7 example.
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Vertex 5 of D(.4) is a cutpoint and the number of weak components in D(A)
(5) is two. When we take I1 (1, 2, 3, 4) and I2 { 6, 7 ), our cutpoint formula
(4) gives

det.4 det.4[1,2, 3, 4, 5]det.416, 7] ,1, det‘4[ 5, 6, 7]det‘4[1,2, 3, 4]

a55 det ‘4[ 1,2, 3, 4] det‘4 6, 7].

When we work with cycles, our formula (4’) gives

det .4 ( a55 det .4 1,2, 3, 4 a45a54 det .4 1,2, 3 ) det .4 6, 7

t" ( a57a76a65 + a56a67a75 a65a56a77 a75a57a66 } det A 1,2, 3, 4 ].

We can also regard Do (2, 3 as a critical subdigraph of D(A). Then, when we
take 1 { } and 12 { 4, 5, 6, 7 }, our critical subdigraph formula (7) gives

det A detA[ 1,2, 3 ]det A[4, 5, 6, 7] +a det A[ 2, 3, 4, 5, 6, 7]

a det A[2, 3 ]det A[4, 5, 6, 7].

The arcs (4, 5 and (5, 4) constitute a bridge of D(A), with subsets I { 1, 2, 3 }
and J { 6, 7 }. Formula (8) then yields

det A det A 1,2, 3, 4 det A 5, 6, 7 a45a54 det A 1,2, 3 det A 6, 7 ].

Expanding about row 4 of.4, we have, by the usual cofactor expansion, det A
a43.443 ,1, a44A44 ,1, a45A45. Clearly, A44 det A[1, 2, 3]det A[5, 6, 7 ], and from our
cofactor formula (22) A43 a32a24a det A 5, 6, 7 ], and

.445 -a54 det A 1,2, 3 det A 6, 7 ].
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AN EIGENVECTOR TEST FOR INFLATION MATRICES
AND ZME-MATRICES*
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Abstract. It is shown that a matrix A is of the form A B U + pG(V), where U is an inflator and
is the inflation product, ifand only ifA has a row and a column eigenvector for some eigenvalue such that

the eigenvectors satisfy a simple restriction on their supports. This test is extended to recover the inflation
sequence for a ZME-matrix. These results imply that the maximal eigenvalue (and hence spectral radius) of a
ZME-matrix is the maximum of the maximal eigenvalues of its 2 2 principal submatrices. Additionally, it is
shown that for every inflation sequence, there exists an equivalent normalized inflation sequence.

Key words, inflation, Z-matrix, ZME-matrix, spectral radius
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1. Introduction. The inflation product introduced by Friedland, Hershkowitz, and
Schneider in [2] has been studied in a number of recent papers [1 ], [2], [5 ]-[ 8]. This
paper addresses two questions associated with inflation that have arisen in or been sug-
gested by the previous papers. The first is that of recognizing when a matrix arises by
inflation. In 8, we develop a necessary condition based on the existence of a pair of
eigenvectors with a particular support structure. In 12, we extend that test to show how
an inflation sequence for a ZME-matrix can be recovered. In 13, we use these results
to derive a simple computational method for determining the maximal eigenvalue (and
hence spectral radius) of an n n ZME-matrix based on finding the roots of (n 2 n)/
2 quadratic equations.

The second question addressed is whether the existence of an inflation sequence
guarantees the existence of a normalized inflation sequence. This arises from the fact
that several results in 5 require the existence ofnormalized inflation sequences, whereas
certain constructions for producing inflation sequences (such as in [7 ]) do not necessarily
produce normalized inflation sequences. In 7, we show that the answer is affirmative,
and we present an algorithm for transforming an inflation sequence into an equivalent
normalized inflation sequence.

2. Basic definitions and notation. Throughout this paper, /n(’) will be the set
of all n n matrices over the set o" where is either or C. The set of n matrices
over will be denoted as n, and the term "vector" will always mean row vector. The
symbol (9 will always denote the zero vector or zero matrix, as determined by context.
If v is in ", the support of v, denoted supp (v), is the set defined by supp (v) { i: vi
4:0 }. A strictly nonzero matrix (strictly nonzero vector) will be a matrix (vector) each
of whose entries is nonzero. A strictly positive matrix (strictly positive vector) will be a
real matrix (vector) each of whose entries is positive. A positive diagonal matrix is a
diagonal matrix each of whose diagonal entries is positive.

LetA be in /(C). The spectral radius ofA will be denoted by o(A). Ifthe spectrum
ofA is real, kma ()k) will denote the maximum eigenvalue. If o is a nonempty subset of
{ 1, 2, n }, then A[w] will be the principal submatrix ofA with entries indexed by
the elements of o.
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Let A be in ’n(C). The matrix A is reducible if there is an n n permutation
matrix P such that

PAP=
0

where the matrices BI and B3 are square matrices. Ifno such permutation matrix P exists,
then A is irreducible.

A Z-matrix is a real, square matrix with all of its off-diagonal entries nonpositive.
A ZME-matrix is a matrix all of whose positive integer powers are Z-matrices, and all
ofwhose positive, odd powers are irreducible. The properties ofthe class ofZME-matrices
and certain of its subclasses have been extensively studied (see [1 ]-[3], [51, [91).

3. Inflation, inflators, and the matrix G(U). Let m and n be positive integers with
m -< n. An m-partition of n is a partition of the set { 1, 2, n } into an ordered
collection ofm nonempty, disjoint sets such that the elements within each set are arranged
in ascending order.

Throughout this paper, the following conventions are assumed: First, m and n are
positive integers with m -< n; and second, the set II is an m-partition of n given by B,
B2 Bm.

Let U be in #///n(C). The partition II induces a block partitioning of the matrix U
as follows. For -< i, j =< m, the i, j block of U consists of all entries U such that a is
in Bi and is in Bj. Denote the i, j block of U by U(i,j>.

Let x be in C n. Then II partitions 2: into m subvectors such that the th subvector
has entries x where a Bi. Denote the ith subvector by

Let A be in //m(C). Let u be in //n(C). The inflation matrix ofA by U with respect
to the partition II is the n n matrix denoted by ,4 U defined as follows. For each
a and in { 1, 2, n }, there exist unique indices r and s such that a Br and Bs;
let (A U), arsU,a. Equivalently, in the block partition induced by the partition
I-I, (A U)(r,s) arsU(r,s) for each r and s. When the partitions are clear, A U will
be called an inflation matrix. (This is the definition of inflation given in Definition 4.1
of[21.)

Let U be in /’n(C). The matrix U is called an inflator with respect to II) if there
exist vectors u and in C that are partitioned by II such that the following conditions
hold:

(i) u and a are strictly nonzero vectors;
(ii) For =< i,j <= m, U(i,)
(iii) For <= <= m, u(i)[(i)] t= 1.

The pair of vectors u and fi is called a generating pairfor the inflator U. The matrix U
is called a normalized inflator if u and d can be chosen so that they also satisfy a fourth
condition:

(iv) For <= <= m, 1.,l(i)[U(i)]* /(i)[/(i)]*.
Observe that U ut[ z]. (These conditions are equivalent to Definition 4.3 of[2 ].)

Let U be an inflator associated with the m-partition II of n. The matrix G(U) is
defined by G(U) In (Im U). Thus G(U) can be expressed as the (internal)
direct sum

G(U) In U( i,i) I- U( i,i) ].

Thus G(U) is permutation similar to a block-diagonal matrix. By convention, if U
[0] is the zero matrix, G(U) I.
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4. Inflation sequences and inflation-generated projectors. Let nl, n2, n be a
sequence of integers such that n < n2 < < r/k n. For < _-< k, let P_ 1,i be
an hi--partition of n. Let U [0], the zero matrix. For < _-< k, let U be an
inflator associated with Pi- ,. The sequence { Ui }/ is called an inflation sequence. If
each ofthe inflators Ui is normalized for < _-< k, then the sequence is called a normalized
inflation sequence.

If { Ui }/ is an inflation sequence, we will adopt the convention that G(Ui)
Ui+l Uk G(Uk) when k. For -< =< k, let Ei G(Ui)
Ui/ Uk. Let e denote the set { Ei: <= <= k ). The set e is called a complete
set ofinflation-generated projectors.

LEMMA 4.1. Let ( Ui } -- be an inflation sequence. Let be the corresponding com-
plete set of inflation-generated projectors. For <= <= k, the n n matrix Ei is an
idempotent matrix ofrank ni ni- 1). Furthermore, EiEj (9 when 4 j, and

k, El=In.
i=I

Proof. See 2, 6 ].

5. Inflation-generated matrices. The matrix A is called an inflation-generated matrix
if there exist k pairwise distinct complex numbers c1, a2, "’", ak, and there exists an
inflation sequence { Ui }/= such that

k

a oiEi
i=1

where for each i, the matrix Ei corresponds to Ui. (That is, the matrices Ei comprise the
complete set of inflation-generated projectors corresponding to { Ui } k= 1.)

If the requirement that the ai be distinct is relaxed, it is not clear that the resultant
matrix is inflation-generated. (For one set of conditions under which the restriction can
be relaxed, see 5 ]. It shall be seen that this will interfere with the iterated application
of Theorem 8.1.

6. The normalization and its construction. The relationship between inflators and
normalized inflators is partially revealed by the following result ofFriedland, Hershkowitz,
and Schneider 2, Lem. 4.16 ].

LEMMA 6.1. Let U be an inflator with respect to II. Then there exists a unique
normalized inflator V with respect to II such that G(U) G(V).

The unique matrix Vin Lemma 6.1 is called the normalization ofU. In the remainder
of this section, we show how Vis obtained from U, and how Vcan be substituted for U
in inflation products.

First, however, we present two results concerning inflation and diagonal matrices.
The first follows directly from the definition of inflation.

LEMMA 6.2. Let D be an m m diagonal matrix. Let II be an m-partition ofn.
Then D In is a diagonal matrix. IfD is a positive diagonal matrix, then D I is
a positive diagonal matrix. IfD is nonsingular, then D I. is nonsingular with

[D XX/] -I [D-’] XX/.

LEMMA 6.3. Let U be an inflator with respect to II. Let U have generating pair u
and such that U utt. Let D be a nonsingular, n n diagonal matrix. Then

(J DUD-1 is an inflator with respect to II with generatingpair uD and
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(ii) A = D[A U]D- for allA in ///m(C);
(iii) G() DG(U)D-1.
Proofof (i). Since D is a nonsingular, diagonal matrix, it follows that uD and riD-are both strictly nonzero. Note that

O(i,j) [DUD-I](i,j) D(i,i) U(i,j)[D-I](j,j)

D(i,i)[ U(i) t/,(j> D- ]0,> [[ uD]<i> ]t[ tD-
Finally,

uD]<i) riD- ]<i> ]t= u<0 D<i,o[D- <i,i> z<i)]t

u(i)[DD-1](i,i)[:l(i)]
U(i)[ ffl(i)] t’- 1.

Proofof(ii). Let a, be such that e B and j e B. Then

[D(A U)D- ]0 Dii(A U)ij[D- ]jj= Diia,,aUo.[D- ]jj

a,,sD.Uij[D- ]s a,,[DUD- ]o [A ]o.
Proofof iii ). From the definition of G(U),

DG(U)D- =D[In-ImXX U]D-I=In-D[ImXX U]D-.
Using part (ii), D[I, U]D-= Im . The result follows from the definition
of G()).

Let U be an inflator with respect to II with generating pair u and
are strictly nonzero vectors, there exist m unique, positive numbers , that satisfy

U(i)[ U(i} * (Xi) 2/’(i} [/’(i}
for -< -< m. Define D(U) to be the diagonal matrix

D(U) diag (,, ,2, am).

The positive diagonal matrix D(U) is called the normalizer of U.
The following lemma shows how the normalization of U is constructed using the

normalizer of U.
LEMMA 6.4. Let U be an inflator with respect to II with generating pair u and

Let V= [D(U) XX/hi-U[D( U) X/]. Then V is the normalization ofU. Furthermore,
V has generating pair v u[D(U) In] - and z[D(U) In]. Equivalently,
V(i> (ki)-lu(i) and f:(i) )i:t(i)for each i.

Proof. Let D [D(U) i,]-1. By Lemma 6.2, D is a nonsingular, diagonal
matrix. By Lemma 6.3, V is an inflator with respect to II with generating pair v and
By the choice of the ),, V is a normalized inflator. Finally, by Lemma 6.3, G(V)
DG( U)D- I,, D(Im U)D-1 Thus [G(V)]0,s 0 if/4: j, and

[G(V)](i,i) I-D(i,i} U(i,i)[D-1](i,i)
I- [(Xi)- I] U<i,i>[XiI]

I- U(i,i> G(U) (i,O.

Thus G(V) G(U). That is, V is the normalization of U.
LEMMA 6.5. Let U be an inflator with respect to II. Let V be the normalization of

U. Let A be in lm(C). Then J D(U)]A D(U) - is the unique matrix satisfying
AXX U=AXX V.
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Proof. For each and j,

V(i,j> [[D(U) XXIn]-l](i,i> U(i,j>[D(U)
[(Xi)-lI] U(i,j)[,jI] [(ki)-lj] U(i,:).

Hence for all A in //,,(C ),

[A XX U](i,j) AijU(i,j) Aij[ ,i( ,j)-l V(i,j)

[[D(U)IA[D(U)I-I]ijV(i,j>
[[[D(U)]A[D(U)]-I]

Thus A U A V if and only if

D( U)]A D( U) -1 I-q

Remark. By Lemma 6.4, the inflator U and its normalization V are positive diag-
onally similar. The matrices A and A in the previous lemma are positive diagonally
similar. In both cases, the normalizer of U is or generates the positive diagonal matrix
needed for similarity.

7. The normalization theorem. The principal result in this section is actually Theo-
rem 2.4.4 of[5]. (In [5], it appears without a proof.)

THEOREM 7.1 (The Normalization Theorem). Let { Ui } = be an inflation se-
quence. Then there exists an inflation sequence { Vi } i= such that for each i, Vi is a
normalized inflator with respect to the same partition as that of Ui, and

G(V,.) XX .+ XX XX Vk-- G(Ui) XX Ui+ XX XX fk.

Furthermore, thefollowing algorithm constructs the sequence { Vi } i= from the se-
quence { Ui }

ALGORITHM.
(i) Let D(k) be the normalizer of Uk.
(ii) Let V be the normalization of U.
(iii) For i= k-1, k-2,... ,2, let D(i) be the normalizer of the matrix

o(i+ 1)Ui[D(i+ 1)]-1.
(iv) For k-1, k-2,..., 2, let V be the normalization of the matrix

o(i+ l)ui[o(i+ 1)]-1.
(v) Let VI UI, the X zero matrix.

Proof. Observe that D() is a positive diagonal matrix, and that V is the unique
normalized inflator with respect to the partition of Uk such that G(U) G(V). Suppose
that the matrices V, V_ 1, Vk_ 2, Vi+l have been constructed and that they are
normalized inflators with respect to the appropriate partitions. Then D(i+ 1) is a normalizer,
and hence a positive diagonal matrix. If > 1, let (_: D(i+ 1)Ui[O(i+ 1)]-1. By Lemma
6.3, is an inflator with respect to the same partition as Ui. Thus O(i) D((J) is well
defined. Let Vi be the normalization of f. Then Vi is a normalized inflator with respect
to the same partition as that of

Let < k. Let E G(Ui) XX Ui/ XX XX U. By Lemma 6.4, D) normalizes
U. Then by Lemma 6.5,

E=[D(k)[G(Ui)XX Ui+IXX XX Uk_l][D(k)]-l]xx gk.

By Lemma 6.3,

E=[[G(U)Xx g+ xx xx U_21XX[D(U_[D(I-I]Xx V.
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By its definition, D(k-) is the normalizer for D(k)Uk_[D(k)] -, transforming it into
Vk-. Then by Lemma 6.5,

E=[[Df-)[G(Ui)XX Ui+ XX XX U_][D(- )]-] XX Vk-1] XX Vk.

Iterating this process (k- i) times yields

E=[D(i+)G(Ui)[D(i+)]-I]xx 1’//+ 1XX /i+2XX XX Wk.

If i= 1, then G(UI) I1, so D(2)G(UI)[D(2)]-= I G(VI). If i> 1, then by
Lemma 6.3,

D (i+ )G( Ui)[D (i+ 1)]-I G([D(i+ )Ui[D(i+ )]- ]).

By Lemma 6.4, the fight-hand side of the preceding expression is equal to G(Vi). Thus
E G(V,-) V,.+ Vk. D

kCOROLLARY 7.2. Let { Vi )ki= be the inflation sequence constructedfrom { Ui }i--
by the algorithm in Theorem 7.1. Then for each i, Ui and Vi are positive diagonally
similar. For 1, U V [0], and any positive matrix will produce the
transformation. For < < k, the positive diagonal matrix [D(i) Ini]-D (i+ ) will
produce the transformation. For k, the matrix [D(k) In] will produce the trans-
formation.

Proof. This follows from the definitions, Lemma 6.2, and Theorem 7.1. if]

8. An eigenvector test for inflation matrices. The following theorem, which contains
the eigenvector test as one of its equivalent conditions, is proven in 9.

THEOREM 8.1. Let A be in /(C). Let be in C. Thefollowing are equivalent:
A B U + pG(U)for some inflator U;

(ii) A B U + pG(U)for some normalized inflator U;
(iii) A C V + pG(V) where V is an inflator corresponding to an n )-

partition ofn;
(iv) A C V + oG(V) where V is a normalized inflator corresponding to an

n )-partition ofn;
(v) A has a row eigenvector x and a column eigenvector yt both corresponding

to the eigenvalue such that xy O, such that supp (x) supp (y), and such that
supp (x) 2.

Remark. In the proof of (v) implies (iii), it is shown how to explicitly construct
the matrices C and V in (iii) from x and y in (v). Using the results on normalization,
the matrices B and U in (ii) can be constructed from the matrices B and U in (i), and
the matrices C and V in (iv) can be constructed from the matrices C and V in (iii). For
a construction of x and y in (v), given the inflator U or V from (i)-(iv), see Theorem
5.1 of[6].

Remark. Recall that an inflation matrix is merely a matrix of the form A B XX
U for some inflator U. That is, A B XX U + pG(U) where p 0. Consequently,
Theorem 8.1 yields an obvious corollary relating the existence of eigenvectors for the
zero eigenvalue of a matrix with that matrix being an inflation matrix.

As the following example demonstrates, the condition Xy 0 cannot be relaxed if
x and y in (v) are to be eigenvectors for G(V) where Vis as in (iii) or (iv).

Example. Let u (i ). Let U utu. Then U is an inflator corresponding to
the unique 1-partition of 3: { 1, 2, 3 }. Let A G(U), then A has row and column
eigenvectors x and yt, respectively, where x y (i 0). Note that xy 0. Suppose
that there eixsts an inflator V such that A B XX V + G(V) where G(V) is rank one,
xG(V) x, and [G(V)]yt= yt. Let II be the partition corresponding to V. Let v
and be a generating pair for V. By Theorem 5.1 of [6], v(i)[x()] t= 0 for each i.
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Thus v has the form v (a /ll for some nonzero complex numbers a and/. Then
v()[x()]t= 0; that is, ai + 0, forcing v()= cx() for some c0. Similarly,
() dy() for some q: 0. Note that f()[v()] cx()[y()] 0, contradicting
the fact that v and are a generating pair. Note that G(U) does have a pair of eigen-
vectors that satisfy condition (v) of the theorem: x =y (0 -1 ). For this pair,
A G(W) V + G(V) where W is the inflator W ww and V is the inflator V
l)tl), with w (r i) and v 1/2(21V V).

The condition [supp (x)[ 2 cannot be replaced by a simple, weaker condition.
The essential problem is that if a vector x has exactly two nonzero entries, if x and u
have the same zero pattern, and ifxu 0, then u is uniquely determined (up to a scalar
multiple) by x. If, however, x has three or more nonzero entries, then the space of
solutions to xu 0 is at least two-dimensional. Consider the following example.

Example. Let A be the matrix

A= 2
2

The matrix A has spectrum { 1, 1, 4 }. Clearly, each ofthe vectors 0) and (0
is a row eigenvector and the transpose ofa column eigenvector for A. Since each ofthese
vectors satisfies condition (v) of Theorem 8.1, A must be inflation-generated. Since the
eigenspace for the eigenvalue one is two-dimensional, it is easy to construct an orthonormal
basis of eigenvectors for A such that each eig_envector has three nonzero entries. For
example, let a )-(-5, 4, ), b V 14)-1 1, 2, 3), and c V)-1 1, 1, )o
Let P ata, Q btb, and R ctc. Then A (P + Q) + 4R. The projector for the
eigenvalue one is P + Q G(U) where U ctc. Let B be the matrix B 1P + XQ +
4R. Suppose that X e C\ { 1, 4 }. IfB were of the form B C V + oG(V) for some
inflator V, then one of P, Q, and R would be the matrix G(V). Since each of P, Q, and
R has no nonzero entries, each corresponds to a one-partition of three. Thus if one of
these matrices is to be of the form G(V), it must be rank 2, which is clearly false. Thus
we have a matrix that has row and column eigenvector pairs x, yt such that x y,
Xy O, [supp (x)[ 3, but such that B v C V + pG(V).

9. The proof of Theorem $.1. The following equivalences are proved: (i) (ii),
(i) . (iii) (v), and (iii) (iv). Furthermore, (iv) (iii) (i), and (ii) (i) are
obvious.

Proofof (i) (ii). If U is normalized, then the result holds. If U is not normalized,
construct a normalized inflator using Lemma 6.4. Let/ be constructed using Lemma
6.5. Then

BXX U+ pG(U) =/XX O+,oG(O).
Proof of (iii) (iv). Apply the proof of (i) (ii); substitute V for U, and C

for B.
Proofof(i) (iii). Let II be the partition corresponding to the inflator U. If II

is an (n )-partition of n, the result is clear. If II is an m-partition of n where m <
(n- 1), then by Theorem 4.2 of [7], there is a sequence of inflators U, U2,
Un-m corresponding to a sequence of partitions such that the partition for Uk is a
(m + k )-partition of (m + k), and such that U U XX U2 XX XX Un-,,,. By
Theorem 2.6 of [7], W U U2 Un-,- is an inflator corresponding
to an m-partition of (n ). By Theorem 2.6 of 7 ], G(U) G(W) Un_, +
G( U_m). Let B C W + aG(W). Then A B V + aG(V) where V is the
inflator U-m corresponding to an (n )-partition of n.
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Proofof (iii) (v). Let II be the (n )-partition of n. Then there is a unique
subset in II that is not a singleton, and without loss of generality, it can be assumed that
the subsets of II have been labeled so that this set is B1. Then Bl { a,/3} for some a

and/3 with a 4:/3 and _-< a,/3 _-< n. Let v and be a generating pair for U. Then v(i)
(i) e for <

_
(n ), and both of v(l) and are strictly nonzero vectors

in C 2. By Theorem 5.1 of[6 ], there exist nonzero vectors w and v in C" that are
partitioned by II and that satisfy the following conditions:

( W(1)[/)(1)] 0 and 1’(1)[(1)] 0;
(2) w(0=k(O=[0]forl <i--<(n- 1);
(3) G(U) t kt and w[ G(U) w;
(4) w[B U] (9 and [B U]k (O where (9 denotes the zero vector

in C n.
That is, there are row and column eigenvectors for A corresponding to the eigenvalue
0 such that their supports are B1. Since V is an inflator, V(l)[fi(1)]t 1. Since

v(l), (l), w(l), and (1) all lie in C 2, condition (1) implies W(I)[I(1)] 5/= 0. Hence
wv b O.

Proofof (v) (iii). Without loss of generality, it may be assumed that x and y
have been normalized so that Xy 1. Let B supp (x); and for < _-< (n ), let
B be the ith element of { 1, 2, ..., n } \supp (x). Let II be the (n )-partition of n
formed by the sets Bl, "", B,_ I. Let v and be strictly nonzero vectors in C" parti-
tioned by II such that v(i> f(i) [1 l for < _-< (n ), and such that

l)(1)[X(1)] t-" (1)[Y(l)] =0.

Since xy X(l)[y(1)] t, this implies V(l)[(1)] 4: 0. Finally, by scaling the sub-
vectors v and ( ) if necessary, it may be assumed that v )[ ]t 1. Then v and

satisfy the definition of a generating pair for an inflator V corresponding to II. It
remains to show that .4 C V + G(V).

First, it is shown that x and y are, respectively, row and column eigenvectors for
G(V) for the eigenvalue one. Computing, we have xG(V) x[I I V] x
x[I V]. For <-i<=(n 1),

.--1

[x[IXX V]](O= x<j)[I V](j,o=x<o[I V]<i,i)
j=l

X(i>[1)(i>]t)(i) 0(i> 0.

Thus x[I V] (9, and hence x[ G(V) x. Similarly, G(V)]yt yt.
It is known (see [2, 4 ]) that G(V) is a rank one, idempotent matrix; hence it is

diagonalizable with eigenvalues one (multiplicity one) and zero (multiplicity n ).
Choose a basis for C" of the form { x,/32, ,/3, } where the/3i are row eigenvectors for
G(V) corresponding to zero. Now let H G(V)[A pG(V)]. Then

xH= xG(V)[A oG(V)] x[A pG(V)] px- px (9.

For each i,

iH= (9 [A pG(V) (_9.

Thus H annihilates a basis for C". Thus G(V)[A oG(V)] (9, the n n zero matrix.
Similarly, [A oG(V)]G(V) (9. By [2, Lemma 4.23], A pG(V) C V for
some C in Jg._ I(C). ["]

10. Recovering inflation sequences. Suppose that the matrix A is an inflation-gen-
erated matrix as in 5. Then it is apparent that A can be expressed as A Uk +
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otkG(Uk), where J is an inflation-generated matrix corresponding to the numbers
a2, ak-1, and the inflation sequence { Ui }/k2d. Thus Theorem 8.1 may be applied
to. Care must be exercised, however, for it is not a priori apparent that given eigenvectors
x and y for A that satisfy condition (v) of Theorem 8.1, that the eigenvalue p will be ak.
Consequently, when A is written as A B V + oG(V), it is not clear that B is
inflation-generated. Thus even when A is known to have an inflation sequence, it is not
clear that that sequence or any other sequence) can be recovered by repeated applications
of Theorem 8.1.

The example in the following section demonstrates the difficulties that may arise.
We shall construct a complete set of inflation-generated projectors ( El, E2, E3, E4 ) that
is generated in that sequence, such that E3 FI + F2 where F1 and F2 are a decomposition
of E3 into a pair of lower rank, orthogonal projectors. It shall be demonstrated that E3
and E4 both have eigenvectors that satisfy condition (v) of Theorem 8.1, and that for
E3, the eigenvectors actually correspond to F. Let A be the inflation-generated matrix

A alEl -t- a2g2 --b a3g d-- a4g4

where the ai are distinct. Applying Theorem 8.1 to A using the eigenvectors corresponding
to FI, we obtain

A=B V+ aG(V)
where G(Vs) FI, and

BX V5 alE1 + a2E2 + o3F2 "" a4E4.
The matrix B has only one pair of eigenvectors satisfying condition (v) of Theorem 8.1,
the pair corresponding to H4 where H4 V- E4. Thus the inflation sequence,
{ Vi }/5= that we construct by repeated applications ofTheorem 8.1 generates the projectors
in the sequence El, E2, F2, E4, Fl. Since Ot is assigned to the projectors corresponding
to both V3 and V, A is not an inflation-generated matrix with respect to this inflation
sequence.

11. A cautionary example. Let U [0]. Let o (f)-l. For 2 _-< _-< 4, let Ui
[u(i)]t[u i)] where u(2) (o o), u(3) (o o[o o), and u(4) (1[1[1 [w o). Then
{ Ui } = is a normalized inflation sequence. Let { El, E2, E3, E4 } be the corresponding
complete set of inflation-generated projectors, with Ei corresponding to U for each i:

-1](R)ll21-f_f -Vll
E4=[0I@[0]([0] -1
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Observe that E3 F1 + F2 where

El =1[ 1_1 -1]@[0]q)[0]([0]l
F2=.0.q).0.q)4[=

-/

Since all of the matrices are symmetric, row eigenvectors are also column eigenvectors.
Both ofE and F1 have eigenvector [1 -1 0 0 0] that coesponds to the eigenvalue
one. For E4, the vector [0 0 0 -1 is an eigenvector for eigenvalue one.

IfA is the inflation-generated matrix

A IEI + a2E2 + a3E3 + a4E4
where the a are distinct, then there are two distinct eigenvector pairs that satisfy condition
(v) of Theorem 8.1. If the vectors for E4 are chosen, then the inflation sequence
{ Ui } = is recovered by repeated applications of Theorem 8.1. If, however, x y
[1 -1 0 0 0] is chosen, then the result is

A=BXX V+a3G(V)

where V= vtv for v (w will 111), where G(V) F, and where

BX V= aE + a2E2 + a3F2 + 4E4.
It can be shown by direct computation that there are paiise ohogonal, idempotent
matrices H, H2, H3, and H4 such that E H XX V, E2 H2 X V, F2 H3 X V,
and E4 H XX V. Fuheore, H G(W) for some normalized inflator W only if

4. In this case, W wtw where w 111 w w). Thus the matrix B has a unique pair
of vectors satisfying condition (v) of Theorem 8.1, x y [0 0 -1 ]. By repeatedly
applying Theorem 8.1, an inflation sequence { V } = is constructed such that El cor-
responds to Vl, such that E2 coesponds to V2, such that F2 coesponds to V3, such
that E4 coesponds to V4 W, and such that F coesponds to V V. Note that the
eigenvalue a3 ofA is associated with two (nonconsecutive) inflators. Thus A is not in-
flation-generate with respect to the constructed sequence { V } = , even though A is
known to be inflation-generated.

12. Recovering inflation sequences for ZME-matrices. The difficulty ofknowing a
priori that we have chosen a correct pair ofeigenvectors satisfying condition (v) ofTheo-
rem 8.1 can be alleviated under certain conditions, most notably when the original matrix
is a ZME-matrix. Note that ifA is a ZME-matrix, then by Lemma 3.1 of 2 ], the spectrum
ofA is real.

THEOREM 12.1. Let A be a ZME-matrix. Let 0 kmax (A). Then there exist row
and column eigenvectors ofA corresponding to/7 that satisfy condition (v) of Theorem
8.1. Furthermore, if V is the inflator constructed using the eigenvectors, and B is the
unique matrix satisfying B V A oG(V), then B is a ZME-matrix. Thus repeated
applications of Theorem 8.1 will produce an inflation sequence with respect to which A
is an inflation-generated matrix.

Before proceeding with the proof of Theorem 12.1, we prove the following lemma.
LEMMA 12.2. Let U be an inflator corresponding to an m-partition ofn where m <

n ). Let x and yt be row and column eigenvectors, respectively,for G(U) correspond-
ing to the eigenvalue one. Suppose that xy 4: O, that supp (x) supp (y), and that
[supp (x) 2. Then there is a pair ofinflators Wand Vsatisfying thefollowingproperties:
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(i) U= W V;
(ii) G(U) G(W) V + G(V);
(iii) V corresponds to an n )-partition ofn;
(iv) x andyt are row andcolumn eigenvectors, respectively,for G(V) corresponding

to the eigenvalue one;
v) ifU is strictly positive, then Wand V may be chosen to be strictly positive.

Proof. The proof will consist of constructing an inflator V from U such that (iii)
and (iv) hold. The construction of V also generates W satisfying (i). Finally, if (i) is
shown to hold, then (ii) holds by 4 of [7].

Let II be the partition corresponding to U. By Theorem 5.1 of[6 ], xG(U) x if
and only if x(o U(g,) ( for each i. Since U is strictly positive, this implies that the
support ofx (and hence ofy) must be contained in one ofthe partition sets of II. Without
loss of generality, this is the set B.

Let u and be a generating pair for U. There are two cases: BI 2; BI > 2.
In the first case, let w and v be vectors in Cn- with blocks defined by

[1] if/= 1,
w(i>

u(i) if i> 1,

[1] if/=l,
(i)=

fi(i) ifi>l.

Clearly, w and are a generating pair for an inflator Wcorresponding to an m-partition
of (n ). Furthermore, if U is strictly positive, then so is W. Let v and be the vectors
in C n with blocks defined by

u() if/=l,
v(i)=

[1] if2-<i-<n-1,

(1> if/=l,
0=

[1] if2-<i-<n-1.

Clearly, v and are a generating pair for an inflator V corresponding to an (n )-
partition of n. Since x( V( , x( U( 1,1 (9, it follows that xG(V) x by Theorem
5.1 of [6 ]. Similarly, G(V)]yt yr. It is a direct computation that U W V.
Finally, if U is strictly positive, then u and are strictly positive, and deafly so are W
and V.

In the second case, [B[ >_- 3. Let k [B[. Let a and be the indices in supp (x).
For convenience, let a u, d , b u, and b z. Since x is an eigenvector for
G(U), it follows from Theorem 5.1 of[6] that x(>[u()]t= O. That is, x,a + xab O.
Since u is a strictly nonzero vector, (a b) c(xe x) for some nonzero complex number
c. Similarly, (d b) Y(ye -y) for some Y 4 0. Then xy =/= 0 implies ad + bb 4 O. Let
be a complex number (chosen positive if possible) such that

X=[a+bb]-’/-.
Let v and be the vectors in C n with blocks defined by

[ka Xb] ifi=l,
v(0--

[1] if2_-<i_-<n-2,

[Xd xb] ifi=l,
(0=

[1] if2-<i-<n-2.
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Clearly, v and are a generating pair for an inflator V such that V corresponds to
the (n- )-partition f of n given by { a, } and (n- singletons. Furthermore, if
U is strictly positive, then so are u and a, and hence so is V. Since x(>U(,l>
0 (( ) with respect to H), and since supp (x) { a, }, it follows that x()V,)
0 (( ) with respect to ft). Thus xG(V) x by Theorem 5.1 of [6]. Similarly,
[G(V)lyt yt.

Let z be the vector in Ck- with entries defined by z k-1, and zi u ]i / for
2 -< < k. Then z is strictly nonzero. If u and a are strictly positive, then so is z. Similarly
define 3 in terms of , and a(). Computing, z. u()[()] since k -2 ad +
bb. Now let w and be the vectors in Cn- defined by

z if/= 1,
w()

u(> if2-< i=< m,

z if/= 1,
v(i>

d<> if2=<i-<m.

Then w and are a generating pair for an inflator corresponding to an m-partition
of (n ). Again, if U is strictly positive, then so is W. By direct computation, U
WXX F. [3

Proofof Theorem 12.1. Let A be an n n ZME-matrix. By Theorem 6.18 of 2 ],
there is a normalized inflation sequence { U } k= and a sequence of real numbers ai
satisfying- a2 =< a < < ak such that

k

./1 . oriEl
i=1

where the E are in the complete set of inflation-generated projectors corresponding to
( Ui }/k__ , and where Ei corresponds to Ui for each i. The eigenvalue ofmaximum modulus
is ak, and Ek G(Uk).

There are two cases to consider: (i) G(Uk) has rank one, and (ii) G(Uk) has rank
at least two. In case (i), the row and column eigenvectors for A corresponding to ak are
unique up to scalar multiplication, hence they must be multiples ofx and y, the pair of
eigenvectors satisfying condition (v) ofTheorem 8.1. Let Vbe the normalized, rank one
inflator obtained from x and y. Then G(V) G( Uk); and since V and Uk are both
normalized, V Uk by Lemma 4.16 of [2]. Then A B V + akG(V) where B has
inflation sequence { Ui }/kll and eigenvalues ai satisfying -or2 -< Otl < < ak-1. By
Theorem 6.18 of 2 ], B is a ZME-matrix.

In case (ii), let x and yt be the eigenvectors satisfying condition (v) of Theorem
8.1. Then x and yt are eigenvectors for G(Uk) satisfying the hypotheses of Lemma 12.2.
Then it follows that Uk I/ where I and are strictly positive inflators. By
Lemmas 6.4 and 6.5, I and may be chosen so that they are also normalized. Since
G(Uk) G(I) X 0 + G(0), it follows that A B XX 0 + akG(O) where B has
inflation sequence { U, U, Uk-, I } and eigenvalues- a2--< a < < ak, and
hence B is a ZME-matrix. By Theorem 6.18 of [2], B is a ZME-matrix. Finally, if V is
the normalized, rank one inflator constructed from x and y, then since G(U) is also
rank one with eigenvectors x and y, G(V) G(U). Hence by Lemma 4.16 of [2 ],

13. The spectral radius ofa ZME-matrix. In this section, it is shown that the spectral
radius of an n n ZME-matrix is the maximum of the maximal eigenvalues of the
2 2 principal submatrices. Since the maximal eigenvalue of a 2 2 matrix is just a
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root of a quadratic equation based on its entries, this provides a simple computational
tool for finding the spectral radius of a ZME-matrix.

THEOREM 13.1. Let A be in n(E)for n >- 2. IfA is a ZME-matrix, then

(13.2) o(A)= kmax(A)-- max 0(A[(i,j}])
l_i<j_n

(13.3) max -[aii+ajj+[(aii-ajj):Z+4aijaji]l/2].
l_i<j_n

Proof. Suppose that A is a ZME-matrix. By Lemma 3.1 of 2 ], A has a real spectrum
and 0(A) kmax (A). By Theorem 9.6 of 2 ], there exist a diagonal matrix D with all
its diagonal entries positive and a symmetric ZME-matrix such that A DD-1 For
all nonempty 0 in { 1, 2, n}, A[0] D[co]A[co](D[o])-. Since such similarity
transformations preserve spectra, it suffices to prove the theorem for symmetric A.

Suppose that A is a symmetric ZME-matrix. Then A is Hermitian, and the Cauchy
eigenvalue interlacing inequalities hold [4, Result 11.4.4.7, p. 119]. In particular,
kma (A[o)]) kma (A) for all w in { 1, 2, n}. Since A is an n n ZME-matrix
with n >= 2, Theorem 12.1 asserts that there is an eigenvector v for A corresponding to
max (A) such that ]supp (v)l 2. Let supp (v). Then the subvector of v consist-
ing of the two nonzero entries is an eigenvector for A[g] for the eigenvalue ’mx (.4).
Thus kma (h) kma (A ) ). Noting that g { i, j } for some and j with =< <
j =< n, (13.2) clearly holds. Since A[] is a Hermitian matrix, kma (A[]) is the larger
root of the quadratic equation, [tr (A g]) , + det (A ]) 0.

By applying the quadratic formula and simplifying, (13.3) holds. D
Remark. Given an n n ZME-matrix A, we can simplify the task of determining

an inflator V for which A C V + o(A)G(V). The unique, nontrivial 2 2 block
of V will correspond to one of the 2 2 submatrices that yields Xmax (A). Given a
2 2 submatrix that yields kma (A), we need only construct a row and a column
eigenvector for kma (A) for this submatrix. These vectors are then extended n-vectors
by adjoining (n 2) zeros so that the nonzero entries have indices corresponding to the
submatrix. If the resultant n-vectors are eigenvectors for A, then they give rise to V as
in Theorem 8.1. Furthermore, at least one pair of vectors will extend to a pair of eigen-
vectors for A that give rise to V.
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A NOTE ON LOCAL BEHAVIOR OF MULTIPLE EIGENVALUES*
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Abstract. This note is a continuation of the work in [J. Comput. Math., 6 (1988), pp. 28-38 ]. The
directional derivatives of multiple eigenvalues of a symmetric eigenproblem analytically dependent on several
parameters are given. The result can be used to define the sensitivity of multiple eigenvalues, and it is useful
for investigating structural vibration design and control system design.
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1. Introduction. Although the investigation ofthe sensitivity analysis ofeigenvalues
has a long history 4 ]- 6 ], 8 ]- 11 ], the case of multiple eigenvalues dependent on
several parameters is rarely treated in the literature. The local behavior of multiple ei-
genvalues dependent on several parameters is quite different from the case ofone param-
eter 8 ]- 10 ].

In this paper, which is a continuation of the work in 10 ], we investigate the local
behavior of multiple eigenvalues of a symmetric eigenproblem analytically dependent
on several parameters. The directional derivatives of the eigenvalues are discussed. The
results of this note are useful for investigating structural vibration design and control
system design.

Notation. The symbol m n denotes the set of real m n matrices. We set "
m, {Amn. rank (A)= r}

and
,9I""= (A - ’’:Ar=A }.

The matrix I(") is the n n identity and zero is the null matrix. The matrix A > 0 means
that A is positive definite. We use o( for the spectral radius and 2 for the spectral
norm and the usual Euclidean vector norm. The set of eigenvalues of an eigenproblem
Ax Xx is denoted by X(A), and the set of eigenvalues of an eigenproblem Ax XBx
is denoted by X(A, B). The eigenvalues of an n n matrix A will be denoted by X(A),.., X,(A).

Let p (Pl, "", PN)r N. In this paper we consider the eigenproblem

(1.1) A(p)x(p)= X(p)B(p)x(p), X(p) , x(p)- 2", p.Sf,

where 5 is an open subset of N, and the matrices A(p), B(p) . Sf"" are real
analytic functions in 5f and B(p) > 0, for all p 5’. Without loss of generality we may
assume that the set 5f contains the origin, and throughout this paper we shall use the
symbols Sj(/) defined by

Sj )
(pj p=0 (PJ =o

j= 1, ,N,

where ,4 (p), B(p) are the matrices appearing in the eigenproblem (1.1), and .
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Let ,(p) be a function defined in 9. The directional derivative of X(p) at p*
in the direction v, denoted by D),(p*), is defined as follows:

(1.2) D,X(p*) lim
X(P*+’’)-)’(P*)

’- +0 T

where N with 1[2 and is a positive scalar.
In 2 we shall prove that every eigenvalue ,(p) of the eigenproblem (1.1) has

directional derivatives at each point of 5’, and give expressions of the directional deriv-
atives. On these grounds we can define the sensitivity of multiple eigenvalues useful for
investigating structural vibration design and control system design.

2. Directional derivatives. Without loss of generality, we may investigate the di-
rectional derivatives of the eigenvalues at the origin of N. The main result of this
section is the following theorem.

THEOREM 2.1. Let p (p, pN) r 1N, and let A(p), B(p) 5f’nxn be
real analytic functions ofp in some neighborhood (0) of the origin of , where
B(p) > O, for all p g$ (0). Suppose that there is a matrix X (X, X2) 17, x n with
X n such that

(2.1) XrA(O)X:( )kll<r’o A20 ), XrB(O)X:I, )kl k(A2)"

Then there exist r continuousfunctions ) (p), ..., )r(P) that are the eigenvalues ofthe
eigenproblem (1.1) satisfying

X(0) X, s 1, ,r,

andfor any direction , (,, ..., ,u) r u with [l’[[2 there is a permutation r of
{ 1, ..., r } dependent on , such that

(./ ,x(0 x, 2; xrN(XI/X s , ..., r.

Before we give the proof, we cite the Implicit Function Theorem 3, p. 277 and
the Rellich theorem [9, pp. 42-45].

INl,crr Fuc’no TORN. Ifthe real-valuedfunctions

f(, ,;n, ,h), 1, ,s

are real analytic functions ofs + t real variables in some neighborhood ofthe origin of
l+, iff(O; O) O, 1, ..., s, and if

detO(f". ."’. ’f)
# O for , =, rh=O,

0(1, ,s)

then the equations

f(,"" ,s;/l,’" ,h)=0, =1,... ,s

have a unique solution

g(, ..., ), 1, ..., s

vanishing for t 0 and being real analytic in some neighborhood of the
origin oftt.
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RELLICH’S THEOREM. Let ,4() 6. ,9 nxn be an analyticfunction ofa single real
variable in a neighborhood of the origin, and let X be an eigenvalue of,4(0) with
multiplicity r. Then there exist r real analyticfunctions X ( ), ..., Xr( ) in a neighborhood
ofthe origin, such that (), Xr() are eigenvalues of,4() and

(2.3)

and

X(0)=X, s= 1, ,r.

Proofof Theorem 2.1. The proof consists of the following three steps.
(1) Let

(i.(,) A’.(,) r)(P)=XrA(p)X=
2(P) A’22(p)

(,(p) 2,(p) r)(2.4) B(p) XrB(p)X
21 (P) /22(P)

where 2(p), (p) ’x. We introduce matrix-valued functions

F(Z, W,p)ffiA,(p)+::(p)Z+ W,,(p)+ WA,(p)rZ
and

where

and

G(Z, W,p) J2, (P)-F B22(p)Z+ WB (p)-F WB2 (p) Tz,

z=(), w=(,oo) t(’-), p (p pN) T6.

F(Z, W,p)-(fij(Z, W,p)),G(Z, W,p)=(gij(Z, W,p))6. (n-r) Xr.

Observe that the functions F(Z, W,p) and G(Z, W,p) are analytic for Z, W6.
(’-) and p 6. (0),

and

det

where

fo(0, 0, 0) 0, g0.(0,0,0)=0, =l, ,n-r, j=l,...,r

O(f g) )O(Z, w) z=o,w=o,=o

r) ()A22(0)
det

All(O)(i(n_r)
I(r) (R) 22 0

l(O)r(R)I(n-r))
i(r)(R),42

det
Xi(r)()i(,_r)

I(r)( I(n-r))I(r)() I(n-r)

det
X I(n- r) i(n ) det (A2 Xl I) :/: 0,

f=(fll, ,flr, ,f,-r,l, ,A--r,r),

g=(gll, ,glr, ,gn-r,l, ,gn-r,r),

Z--(’ll, ,’lr, ,n-r,l, ,n-r,r),

W-- ((.Oll ,O)ir ,(.O,_r,l, ,oO,_r,r)
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and (R) denotes the Kronecker product symbol [7, pp. 8-9 ]. Hence, by the Implicit
Function Theorem the equation

F(Z,W,p)ffiO, G(Z,W,p)=O

has a unique real analytic solution

z= Z(p), w: W(p)

in some neighborhood o ((0)) of the origin of v with Z(0) 0 and W(0)
0, and

det (In-r)- W(p)Z(p)r)/O Vp-g$o.(2.5)

From (2.5) the matrix

I W(p)r)Z(p) I

is nonsingular for p o. Therefore we have

(2.6)
Z(p) I

(P)
Z(p) I 0 A2(p)

and

(2.7)
Z(p) I

(P)
Z(p) I 0 B2(p)

> 0,

in which A(p), B(p) ,.,rr,

and

, (p) ,, (p) + z(p):,(p)+i,(r)Z(p)+ Z(p):(p)Z(p)

, (p) 9,, (p) + z(p) rg_, (p) + 9:, (p) rz(p) + z(p)

From (2.6) and (2.7)

(p)(I I)BZ(p) )=(p)( (p)-A (p)
z(p)

Combining with (2.3), (2.4) and writing

(’)(2.8) X (p) X
Z(p)

we get

(2.9)

and

A(p)X(p)ffi B(p)X(p)B(p)-’A(p)

(2.10) A(O)fXI(r), B(O)=I(r), X(O)=X.

From (2.9), we have

(2.11) B(p)-A(p)=[X(p)rB(p)X(p)]-[X(p)rA(p)X(p)].
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Let

X(B()-()) { X,() },r= , o.
Then the relation 2.1 and 2.4 )-(2.7 show that

Xs(p)X(A(p),B(p)), Xs(O) h,, s l, ,r

and h (p), hr(p) are near h, provided that o is suciently small.
(2) Let u # be any fixed direction and [[u[[: 1. Take p u in which

[-, ] and is a small positive scalar such that u o for [-, fl]. t

,()= k,(u), s= 1, ,r(2.12)

and

(2.13)

Then dearly

HI (P) B (p)-/ZA -/,(p)B(p) (r) H(r).

X(/-l(’r))-- {ts(’r)}_--l, "r[--,], ts(0)’-- VS.

But, on the other hand, since () rx is real analie on [-, ] and (0)
I(’), by Rellich’s theorem there is a positive scalar and real analic functions

(), r() on [-1, ], such that

X(B,(z))= {Xt(r)}[=,, r[-O,,B,], Xt(O)=h, Vt.

Obsee the following facts:
(i) Since the zeros of a real analic function of one real variable are isolated

[1, p. 41], we have

provided that Xi(r) # X(r) for r (0, fl) and the positive scalar fl is suciently small.
(ii) The functions v(r), (r) are continuous on [0,
(iii) The sets { gs(r) } = and { Xt(r) } [= are just the same for any point

[0, ill], and there is a one-to-one coespondence between the elements of the two sets.
Therefore there is a peutation r of { 1, r } dependent on v such that

(2.14) (r)=,()(r) Vs, r[0,fl].

Consequently, from 1.2 ), (2.12 ), and (2.14), we get

D,X(O)= lira h(ru)-h(0)= lim
#(r)-#(0)

(2.15)

(3) Let

(2.16)

Obviously,

s 1, ,r.

G(p) Bz(p)-A(p), (r)=G(ru).

x(d,())= x(B,()) v,[0,t].
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From (2.16), (2.8), and (2.11), we have

dr(r) dGl(rV)

(2.17)
N

Jl ( 0GI (p)) --ZlljxTISj(kl)Xl"
.=

PJ 0 p--0 j--I

The relation (2,17) shows that (dd (r)/dr), =o ( 6a ’, and hence there is a real
orthogonal matrix W such that

(2.18) Wr,(dr’(r) I W, diag (/i,, ,’r), ’1" "’r.
\ !dr,--o

Now we write

Wr d,,(r)W, z

in which the functions ’kz(r) are real analytic and so may be written as the following
convergent power series:

(0) (I) (2) 2"Ykl(r)=’Ykl =l-’yk/ r+rkZ r +’’’ k,l= 1, ,r.

From

(WITI (r)Wl). 0 ,1I(r),

and

d(WTI(r)W{) ]dT

as well as (2.18), it follows that

(o) {X, ifk=l, (,) { k if k= l,
otherwise, ’ 0 otherwise.

Therefore

(2.19)
(3)

Xl + k’r +"y(k2)r2 +"Ykk "r +’’"f3’k/(r)= (2) 2 (3)
’t’ k "l" -I- k "1" +

Assume that

ifk=l,
otherwise.

(2.20) 1 rl < rl + rl + r2

<’’" <rl+’"+rq-i+l rl+’"+rq-i+rq,

and write

r+’’’+rq=r

(2.21) rl=dl, rl + rm d2, rl + + rq-" dq’

then by the Gerschgorin theorem from (2.19)-(2.21) we know that there are precisely
q circular discs fi), ..., @q with centers Xl + dr, ..., , + dqr and with radii of
magnitude O(z2), respectively, and the union U= )j contains all of the eigenvalues
] (r), r(r). Besides, the discs @l, are mutually disjoint provided that
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belong to a sufficiently small segment [-/,/], and in such a case every disk contains
exactly rj eigenvalues which may be written as the following convergent power series:

(2.22) ), q" dj.,/- ._,,(2) 2 ,.,(3)
rl+ +rj-i+k 7" + +kr3+ k rj,rl + + -where r [-#,/], j 1, q and ro O.

Combining 2.22 with (2.20) and 2.21 ), we may rewrite the expressions of 2.22 as

t(’) kl + tT" + g2)’r2 + g3)7"3 + t 1, ,r.

Consequently, we obtain

(2.23) (dt(r)) =/it, t 1, ,r.
dT r--0

Combining (2.17), (2.18), (2.23) with (2.15 ), we get the relations (2.2).
Let e. denote the jth column vector of the identity I{m. From Theorem 2.1 we get

the following corollary.
COROLLARY 2.2. Under the hypotheses of Theorem 2.1, there are permutations r

and r’ of { 1, r } such that the relations

(2.24) Dejhs(0) ,{s)(X rSj()I)X,)

and

(2.25) O_ejh(0) ,,{)(Xr S(X,)X), s= 1, ,r

are validforj 1, ..., N. Where thefunctions (p), ..., Xr(P) are described in Theorem
2.1. Especially, ifr then the eigenvalue (p) has the partial derivatives with respect
to py at the origin

(0,,(p)). =xrSx, j=l ..., ,N,(2.26)
PJ p=0

where x is the associated eigenvector with ) satisfying (2.1).
We note that the relations (2.24) and (2.25) have been proved in 10 in a slightly

different way, and the relations (2.26) have been obtained by Fox and Kapoor 4 ].
According to Theorem 2.1 we may introduce the following definition.
DEFINITION 2.3. Let A(p), B(p),Xand , be as in Theorem 2.1. Then the quantity

(2.27) Sp")(X,)- p Z p.X rSj.(
j-’-I

is called the sensitivity of the multiple eigenvalue , in the direction u (u, ..., u)
v with 1, the quantity

(2.28) s,( ,) p(X Sj( ,)X)

is called the sensitivity of the multiple eigenvalue , with respect to the parameter p,
and the quantity

(2.29)

is called the sensitivity of the multiple eigenvalue ,.
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with

From (2.27)-(2.29) we get

Example 2.4 (see 10 ). Consider the eigenvalue problem

A(p)x(p)= k(p)x(p), k(p) , x(p)6 1, p=(p,p2)r1

+2p + 2P2 P2 )A(p)
P2 +2p2

Obviously, the matrixA (p) is a real analytic function ofp 12, A (0) has eigenvalue
k with multiplicity 2, and the eigenvalues ofA(p) are

h(p) +p +2p2+ /p2+’p2 h2(p) +p +2p2 Vp2 +p2

It is well known that the functions h (p) and kE(P) are not differentiable at p 0.
Straightforward calculations show that, for any direction r (cos O, sin 19)r t2 with
O [0, 2r), the functions h(p) and X2(P) have directional derivatives

(2.30) Dh(O)=cosO+2sinO+ 1, Dk2(O)=cosO+2sinO-1.

On the other hand, applying Theorem 2.1 we have

{D,,Xs(O)}== X’XX cos0
0 0

+sin0
2

{ cos 0 + 2 sin 0 + 1, cos 0 + 2 sin 0- }.

This coincides with (2.30). Moreover, by Definition 2.3 we have

s)(,) max { cos 0 + 2 sin 0 + I, cos 0 + 2 sin 0 11 }
and

sp, (hi) 2, sp2(hl) 3,

where r (cos O, sin O)r 2 and h 1. Further, we have

max s’(X)= 1/ + 3.23607
2

11112

and

s(,,) , 3.60555.
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CIRCULANT PRECONDITIONERS FOR HERMITIAN
TOEPLITZ SYSTEMS*

RAYMOND H. CHAN’t"

Abstract. The solutions of Hermitian positive definite Toeplitz systems Ax b by the preconditioned
conjugate gradient method for three families of circulant preconditioners C is studied. The convergence rates
of these iterative methods depend on the spectrum of C-A. For a Toeplitz matrix A with entries that are
Fourier coetficients of a positive function f in the Wiener class, the invertibility of C is established, as well as
that the spectrum ofthe preconditioned matrix C-A clusters around one. It is proved that if f is (l + )-times
differentiable, with > 0, then the error after 2q conjugate gradient steps will decrease like ((q )!)-2t. It is
also shown that if C copies the central diagonals ofA, then C minimizes C AIla and C AII

Key words. Toeplitz matrix, circulant matrix, preconditioned conjugate gradient method

AMS(MOS) subject classifications. 65F10, 65F15

1. Introduction. In this paper we discuss the solutions to a class ofHermitian positive
definite Toeplitz systems Ax b by the preconditioned conjugate gradient method. Direct
methods that are based on the Levinson recursion formula are in constant use; see, for
instance, Levinson 10 and Trench 12 ]. For an n-by-n Toeplitz matrix An, these methods
require O(r/2) operations. Faster algorithms that require O(n log2 n) operations have
been developed; see Bitmead and Anderson and Brent, Gustavson, and Yun 2 ].
The stability properties of these direct methods for symmetric positive definite matrices
are discussed in Bunch 3 ].

In 11 ], Strang proposed using preconditioned conjugate gradient method with cir-
culant preconditioners for solving symmetric positive definite Toeplitz systems. The
number of operations per iteration is of order O(n log n), as circulant systems can be
solved efficiently by the Fast Fourier Transform. Chan and Strang 4] then considered
using a circulant preconditioner Sn, obtained by copying the central diagonals ofAn and
bringing them around to complete the circulant. In that paper, we proved that if the
underlying generating functionf, the Fourier coefficients ofwhich give the entries of
is a positive function in the Wiener class, then for n sufficiently large, Sn and S are
uniformly bounded in the 12 norm and the eigenvalues of the preconditioned matrix
SIAn cluster around 1. We note that f is an even function since the matrices An are
symmetric.

In this paper, we extend these results to Hermitian positive definite Toeplitz systems.
More precisely, we show in 2 that if the generating function f is a real-valued positive
function in the Wiener class, then the spectrum of SAn is clustered around 1. We
remark that the proof given in Chan and Strang [4] cannot be readily generalized to
cover this case. In fact, for Hermitian An, the Hankel matrices Hn/2 used in the proof in
[4] are not Hermitian, and the circulant-Toeplitz eigenvalue problem cannot be split
into two similar Toeplitz-Hankel eigenvalue problems. In 3, we establish the supedinear
convergence rate ofthe conjugate gradient method when applied to these preconditioned
systems. In particular, we show that if f is (l + )-times differentiable, with l > 0, then
the error after 2q conjugate gradient steps will decrease like ((q )!)-2t.

Received by the editors September 28, 1988; accepted for publication (in revised form) January 25,
1989. This work was partially supported by National Science Foundation grants DCR86-02563 and CCR87-
03768.

Department of Mathematics, University of Hong Kong, Pokfulam Road, Hong Kong
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In 4, we discuss other viable preconditioners for the same problem. We show that
the preconditioned systems for these preconditioners also have clustered spectra around

for large n and that they all have the same asymptotic convergence rate. In 5, we
show that the preconditioner that copies the central diagonals of An is optimal in the
sense that it minimizes c= A= I1 Cn An over all Hermitian circulant matrices
Cn. Finally, numerical results are given in 6.

2. The spectrum of the preconditioned matrix. Let us first assume that the Hermitian
Toeplitz matrices A. are finite sections of a fixed singly infinite positive definite matrix
Aoo; see Chart and Strang [4]. Thus the (i,j)th entries ofA andA are a_/, with a
a-_ for all k. We associate withA the real-valued generating function

f(/9) ake-ika,

defined on [0, 2r). We will assume that f is a positive function and is in the Wiener
class, i.e., the sequence { ak } if=-oo is in Ii. It then easily follows that the An are Hermitian
positive definite matrices for all n; see for instance, Grenander and Szeg6 [8 ]. More-
over, if

0 <fmin < f <fmax < ,
then the spectrum r(An) ofAn satisfies

(1) o’(An) [fmin,fmax]

Let Sn be the Hermitian circulant preconditioner that copies the central diagonals
ofAn. More precisely, the entries sij &-j of Sn are given by

ak O<=k<=m,

(2) Sk ak-n m<k<n,

-k 0<-k<n.

For simplicity, we are assuming here and in the following equations that n 2m + 1.
The case where n 2m can be treated similarly, and in that case, we define s,
(a, + a-m)/ 2; see 17 below.

We will show that SAn has a clustered spectrum. We first note the following
theorem.

THEOREM 1. Supposefis positive and is in the Wiener class. Thenfor large n, the
circulants Sn and S are uniformly bounded in the 12 norm. In fact, for large n, the
spectrum ( Sn) ofSn satisfies

(3) tr( Sn) [fmin, frnax]

The proof of this theorem is similar to the proof of Theorem of Chan and Strang 4 ],
and we therefore omit it.

Next we show that An Sn has a clustered spectrum.
THEOREM 2. Letfbe a positivefunction in the Wiener class, thenfor all e > O, there

existMandN> 0 such thatfor all n > N, at mostMeigenvalues ofSn An have absolute
values exceeding .
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Proof. Clearly Bn Sn An is a Hermitian Toeplitz matrix with entries b0 bi-j
given by

(4)

0 O<=k<=m,

bk ak- n ak rn < k < n

b-k 0<-k<n.

Since f is in the Wiener class, for all given e > 0, there exists an N > 0, such that=+ akl < e. Let UN) be the n-by-n matrix obtained from Bn by replacing the
(n- N)-by-(n- N) leading principal submatrix of Bn by the zero matrix. Then
rank (Urnm) =< 2N. Let Winv) Bn Uu). The leading (n N)-by-(n N) block of
W<,m is the leading (n N)-by-(n N) principal submatrix of Bn’, hence this block is
a Toeplitz matrix, and it is easy to see that the maximum absolute column sum of
Wm is attained at the first column (or the (n N- )th column). Thus

n-N-I n-N-1 n-N-I

(5) IIW.N)II-- Z Ibkl , lak-,--akl <= , lakl
k=m+ k=m+ k=N+

Since Winm is Hermitian, we have 11WN) wLN) I1. Thus

Hence the spectrum ofWN) lies in (-e, e). By Cauchy Interlace theorem, see Wilkinson
[13], we see that at most 2N eigenvalues of Bn Sn An have absolute values exceed-
ing e.

Combining Theorems and 2, and using the fact that

S-An In + g-t (An Sn),

we have the following corollary.
COROLLARY. Let fbe a positive function in the Wiener class, then for all e > 0,

there exist N andM > O, such thatfor all n > M, at most N eigenvalues ofS An In
have absolute values larger than e.

Thus the spectrum of SAn is clustered around one for large n.

3. Superlinear convergence rate. It follows easily from the Corollary of the last
section that the conjugate gradient method, when applied to the preconditioned system
SAn, converges superlinearly. More precisely, for all e > O, there exists a constant
C(e) > 0 such that the error vector eq at the qth iteration satisfies

where Ilxll 2 X* SI/2AS-I/2x; see Chan and Strang [4] for a proof. Thus the number
ofiterations to achieve a fixed accuracy remains bounded as the matrix order n is increased.
Since each iteration requires O(n log n) operations using the Fast Fourier Transform,
see Strang [11 ], the work of solving the equation Anx b to a given accuracy 6 is
c(f, )n log n, where c(f, 6) is a constant that depends on f and 6 only.

We note that if extra smoothness conditions are imposed on f, we.can get a more
precise bound on the convergence rate.
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THEOREM 3. Letfbe a (l + )-times differentiable function with its (l + )th de-
rivative offin L[O, 2r), l > O. Thenfor large n,

Cq

(7) e2 =< eo((q- )!)

for some constant c that depends onfand l only.
Proof. We remark that from the standard error analysis of the conjugate gradient

method, we have

8 eq _-< min max

where the minimum is taken over polynomials of degree q with constant term and the
maximum is taken over the spectrum of S-gA,,, or equivalently, the spectrum of
S/2A,,S-/2; see for instance, Golub and Van Loan [7]. In the following, we will try
to estimate that minimum.

We first note that the assumptions on f imply that

where IIf+ ) II,; see, for instance, Katznelson 9 ]. Hence

As in Theorem 2, we write

B. Wk) + U<nk), Vk >= 1,

where U<.k) is the matrix obtained from B. by replacing its (n k)-by-(n k) principal
submatrix of Bn by a zero matrix. Using the arguments in Theorem 2, of. (5) and (9),
we see that rank ( Uk)) <- 2k and wk) 112 =< Y/k, for all k >= 1. Now consider

S" 2nnS" 1/2 s" 2W(nk S" 1/2 "-I" S" 2U(nk S"1/2 [/r(nk + f k

By Theorem 1, we have, for large n, rank (0(,k)) --< 2k and

(0) I1k)112 IIS;l1211Wk)l127, Vk 1,

with ? /fmin.
Next we note that Wk) W(nk+ 1) can be written as the sum of two rank one

matrices of the following form:

w<.- w.+ ’) uv; +vu; 1/2ww+ +* -ww*), v>0.=

Here Uk is the (n k)th unit vector, Ok (bn-k-, b, bo/2, 0, 0), with b.
given by (4), and w Uk + Vk. Hence by letting z S/2w for k

_
0, we have

(11)

I/k) + V- V, ’v’k > 1,
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where V 1/2 k- +,=-- -=o. ZTZ7 are positive semidefinite matrices of rank k. Let us order
the eigenvalues of W.) as

gO </-t-<’’" <--#-</.tO.

By applying the Cauchy Interlace Theorem to 11 and using the bound of Ik’) [[2 in
(10), we see that for all k ->_ 1, there are at most k eigenvalues of #0) lying to the fight
of /k, and there are at most k of them lying to the left of-6/k( More precisely,
we have

Vk>__l.

Using the identity

S-l/2AnS’1/2 I,, + S-l/2BnS’1/2 In + l’(,,),
we see that if we order the eigenvalues of S’I/2AnS’1/2 as

x _-< x _-<... _-< xi _-< x,
then X + g for all k >_- 0 with

(12) 1-F-< X_-< X_-< +-7, Vk>-l.

For X, the bounds are obtained from and (3)"

fm. _< X < X < fm.(13)
fmax-- =fmin"

Having obtained the bounds for X, we can now construct the polynomial that will
give us a bound for (8). Our idea is to choose P2q that annihilates the q extreme pairs of
eigenvalues. Thus consider

Pk X 1-- X---k 1-- kk ’k
_

Between those roots X, the maximum of ]Pk(X)I is attained at the average x
1/2 (X + X), where by (12), we have

max ]Pk(X)[
(X--k-)2 < (22 (fmax)2" (fmax)2 1"

xEtx,xl 4X 7) 2fmin fmin -, Vk >_- 1.

Similarly, for k 0, we have, by using (13),

(k- k)2 (f2ma f2min)2
max p0(x) =<

x xff,x 4X Xff 4f4mi
Hence the polynomial P2q PoP’" "Pq-, which annihilates the q extreme pairs of ei-
genvalues, satisfies

(14) e2(x)
cq

((q- )!)

for some constant c that depends only on f and l. This holds for all [ in the inner
interval between )Q_ and X_ , where the remaining eigenvalues are. Equation (7) now
follows directly from (8) and (14). Vl
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4. Other circulant preconditioners. The proof ofTheorem 2 suggests that there are
many other viable preconditioners that can give us the same asymptotic convergence
rate. One example is given by the circulant matrix T proposed by Chart [6]. It is obtained
by averaging the corresponding diagonals ofA, with the diagonals ofA being extended
to length n by a wraparound. More precisely, the entries ti t_ of Tn are given by

l{kak_n+(n_k)ak} O<=k<n
tk n

t-k 0<-k<n,

where an is taken to be 0. He proved that such Tn minimizes the Frobenius norm
Z A IIF over all possible circulant matrices Tn. The entries bij bi-j of Tn An are

given by

k(a_n-a) O<k<n,
bk n

-k 0<-k<n.

As in Theorem 2, we let W(,) be the matrix obtained from Tn A,, by replacing the last
N rows and N columns of T An by zero vectors. We see that

n-N-I N k n

(15) IIW(.)ll-<2 2; Ibl--<2 22 -lal +4 E lal.
k=0 k=O n k=N+

Now let M> N be such that (l/M)v=0 k akl < e. Then for all n > M, we have
w.u) I1 < 6. Hence the eigenvalues of Tn An are clustered around zero, except for

at most 2N of them. We remark that by using results in Chan 5], we can show that
limn-*oo s T I1= 0 and that the convergence rate of S-IAn and TIAn are the same
for large n. In particular, both will converge superlinearly.

As another example, let us consider the circulant matrix R, with entries r; r_j
given by

f ak- n-t- ak 0-<k<n,
?’k-"

?-k 0<-k<n,

where an is again taken to be 0. The entries bi bi-j of Rn An are given by

bk {ak-" O<-k<n,_
O<-k<n.

It is easily seen that the conclusion of Theorem 2 holds for this preconditioner,
too; cf. (5) and (15). As was displayed in the similar case of T, we can show that
lim_ II& RII2 0 and that the convergence rate of SAn and RIA are the
same for large n; see Chan [5 ]. Numerical results in {} 6 indeed show that the three
preconditioners Rn, Sn, and Tn behave almost the same for large n.

5. The optimality of Sn. From the discussion in 2 and 4, we know that it
is interesting to obtain the Hermitian circulant matrix C that minimizes the norm
c. a. I1 C. a. The minimum is attained by Sn.

THEOREM 4. The circulant matrix S,, whose entries are given by (2), minimizes
c An Ill C A over all possible Hermitian circulant matrices Cn.
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Proof. Let us construct the circulant matrix Cn that minimizes the absolute column
sums of Cn An. Let the (i, j)th entries of Cn be co ci-j. Since Cn is Hermitian and
circulant, we have Ck ?n-k for k 1, m, where m (n 1)/2. Hence Cn is
determined by { Ck } ’--o. Forj 0, n 1, the jth absolute column sum uj of Cn
An is given by

n-l-j j

(16) uj Z, lak--Ckl / lak--g, kl.
k=0 k=l

We note that un-l-j uj for 0 -< j < n. Hence it suffices to consider u for 0 -< j -< m.
The term involving Co in (16) is a0 c01, which has its minimum at Co ao. For k
1, ..., m, the terms involving Ck in (16) are either of the form

(a) [ak- Ck[ + [k- Wkl 21ak- Ckl, or
(b) la-cl + la--c-gl la-cl + 17--cl.

In case (a), the minimum is at Ck ak. In case (b), the minimum occurs at any ck lying
on the line segment joining ak and tin_ k. In particular (a) and (b) attain their minima
at ck ak. Thus Cn so constructed is the same as the Sn given by (2).

Now for any other Hermitian circulant matrix Hn, the jth absolute column sum v.
ofan An will satisfy u =< v, for j 0, n 1. Hence,

& A, II max u =< max v H A, I1.
J J

Remark. When n 2m is even, Cm is real, since Cn is both Hermitian and circulant.
The term involving Cm in uj takes the form [am Cm[ or Item Cm[. Since u Un--
for j 0, "’, n 1, we see that Cm should be chosen such that both terms are mini-
mized, i.e.,

(17) Cm=1/2(amnt’m).

6. Numerical results. To test the convergence rates ofthe preconditioners, we have
applied the preconditioned conjugate gradient method to AnX b with

+-f
k>0,

/ k) ’
ak 2 k=0,

a--k k < O.

The underlying generating function f is given by

f(0)= 2 X sin (k0)+cos (kO)

k--O + k) TM

Clearly, f is in the Wiener class. The spectra ofAn, RX An, S An, and TX An for n
32 are represented in Fig. 1. Table shows the number of iterations required to make
Ilrall2/Ilro[12 < 10 -7, where rq is the residual vector after q iterations. The fight-hand side
b is the vector of all ones, and the zero vector is our initial guess. We see that as n
increases, the number of iterations increases like O(log n) for the original matrix
while it stays almost the same for the preconditioned matrices. Moreover, all precondi-
tioned systems converge at the same rate for large n.
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5

2

gg;,III;,II+++++ + + + + + + +

0

0 2 4 6

/x inv(R)A X inv(S)A

FIG. 1. Spectra ofthe preconditioned systems.

V inv(T)A

TABLE
Number ofiterationsfor different systems.

n An RIAn SiAn TAn

16 13 7 8 7
32 15 6 7 6
64 18 7 7 7
128 19 7 7 7
256 21 7 7 7
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LEVERRIER’S ALGORITHM: A NEW PROOF AND EXTENSIONS*

STEPHEN BARNETT

Abstract. A new derivation is given ofthe Leverrier-Fadeev algorithm for simultaneous determination of
the adjoint and determinant ofthe n n characteristic matrix M. A. The proof uses an appropriate companion
matrix and is of some interest in its own fight. The method is extended to produce a corresponding scheme for
the inverse of the polynomial matrix , 21. ,A, A2, and indeed can be generalized for a regular polynomial
matrix of arbitrary degree. The results have application to linear control systems theory.

Key words, characteristic matrix, characteristic polynomial, Leverrier-Fadeev algorithm, polynomial
matrices
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1. Introduction. Consider an n n matrix A having characteristic polynomial

1.1 a(X) det (Mn-A)

,- +a1.2) Xn + a + + a_
where In denotes the unit matrix of order n, and let

(1.3) (,In-A)-l=(n-lln+n-2Bl+ +B,_2+B,_)/a(X).

A well-known algorithm attributed to veer, Fadeev, and others pewits simultaneous
deteination of the coefficients a and the matrices B by means of the formulae

(1.4) a -tr (A), a=-tr(AB_), k=2,3, ,n,

(1.5) B=A+aI,, B=AB_+aI,, k=2,3,...,n-1

where tr (A) denotes the trace ofA. The scheme is useful for theoretical, if not compu-
tational puoses, and finds application in linear control theo 3 and elsewhere. The
usual proof relies on Neon’s foulae that relate sums of powers of the eigenvalues
X, X2, , of A to the coefficients in (1.2). Details can be found, for example, in
4 and 8 ]. The puose ofthis paper is first, to give in 2 a simple alternative derivation
ofthe algorithm using a companion matrix associated with a( X); and second, to present
an extension in 3 for the polynomial matrix X2I A A2, this being readily gen-
eralized for a regular polynomial matrix of arbitraff degree.

2. Proof of the algorithm. From (1.2) and (1.3) we obtain the identity

(2.1) (XL-A)("-In+Xn-zB+ +Bn-)=(n+a + +a.)In.

Equating coefficients of -, -, X in (2.1) immediately produces 1.5 )note
also that a check on the calculations is provided by ABn- + a.I. O.

Now define the companion matrix

(2.2) C= [ 0 1_, ]-an a2 al

* Received by the editors April 20, 1988; accepted for publication (in revised form) January 9, 1989. This
paper was presented at the Third SIAM Conference on Applied Linear Algebra, Madison, Wisconsin, May 23-
26, 1988.

" Department ofMathematics, University ofBradford, Bradford BD7 1DP, West Yorkshire, United King-
dom.
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whose characteristic polynomial is a(X) in 1.1 ). The derivation of (1.4) relies on the
fact that since A and C have the same eigenvalues (although of course they need not be
similar), then

n

(2.3) tr (A) tr C) X.
i--1

Substituting 1.5 into (1.4) gives

A k-I(2.4) a -tr(A), ak -ktr(Ak+al +’’’+ak_A), k-2,...,n.

In view of (2.3), it follows that the desired formulae (1.4) will be established if we can
prove that

(2.5) ak- --C tr (Ck + alCk- + + ak- C), k- 2, n,

since it is obvious from (2.2) that a -tr (C). Two preliminary results are needed,
which are of some interest in their own fight.

LEMMA 1. The rows x, x2, "’", x, ofthe matrix

Cm-(2.6) coC" + c + + amIn, rn < n

are given by

(2.7) Xl=[am,am-, ,co,O, ,O], xi+-xiC, >-1.

A proof can be found in and relies on the simple observation that

(2.8) eiCk ei + k, k

_
where e denotes the ith row of I,.

Another proof of (1.4) due to Frame [2 is based on showing that

tr(Ak+aAk- + +akI,)=(n--k)ak.

Although this is all that is required, we can in fact be more specific when A is the com-
panion matrix C in (2.2). In this case we have Lemma 2.

LEMMA 2. The principal diagonal of

(2.9) Ek Ck-t- alCk- -t- q- ak- iC- akin, k= 1,2, ,n-

is ak, ak, ..., a, O, O, where there are k zeros.
Proof. For 1, 2, ..., n k the i, element ofE is eiEe]’, where superscript

T denotes transpose. Then

eiEe eiC + aleiC- + + aei)e"

(ei/+ aei/-l +"" + aei)e

using (2.8) and the property eje iji, the Kronecker delta.
To determine the remaining diagonal elements of E, for n-k + 1,

n k + 2, ..., n, consider the Cayley-Hamilton identity

Cn + aiC- + + aIn O,
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which can be rewritten as

Cn-k- C+anln)(2.10) C"-kEg -(ag+ + + an-1

where Eg is defined in (2.9). Let the matrix within parentheses on the fight in (2.10)
have rows Yl, YE, Y,. Then by (2.7)

y [a,,an_ , ,a+ ,O, ,0]
and

Yi Yl C 1, < k

(2.11 (anel + an-1e2 + + ak+ len-k)Ci-

anei + a, lei + + + ak / le,- g / i- by (2.8).

Now denote the rows of Eg in (2.9) by zl, zz, zn. By a further application of (2.8)
it follows that the ith row on the left side of (2.10) is

eifn-kEk=en_k+iEk

=Z,-k+i, 1,2, "-,k.

Equating the first k rows on either side of (2.10) therefore produces

(2.12) Zn-k+i----yi, i= 1,2, ,k.

Comparing (2.12) with (2.11 shows that the coefficient of e,_ k+ in Zn-k+ is zero for
1, "", k. In other words, the entries on the principal diagonal of rows n k + 1,, n of Ek are all zero, and this completes the proof of Lemma 2.
To conclude the derivation of (2.5), we have from (2.9)

tr C + aC- + +aC) tr (Ek) tr (akin)

(n k)ak-- nag by Lemma 2

--kak,

which is the required result.

3. Extension to polynomial matrices. We now give the algorithm corresponding to
(1.4) and (1.5) for the polynomial matrix X2I, XA1 A2.

THEOREM. If
(3.1) (X2In-XA1-Az)-I=(xzn-Zln+X2n-3I+...+Zn_z)/d(X)

where

3.2 d(X) XE, + dlX2" + + dE, + dzn,

then the coefficients in (3.1) and (3.2) can be determined sequentially by

3.3 dl -tr (A ), [31 A + dl In,

(3.4) dg= -c tr (Al/3g-1 + 2Az/3g_ 2),

(3.5) k’-" Al[3k- 21- A2[3k- 2 2i- dkln,

where 3o In; and d2n-1, d2n are determined by

(3.6) A l/2n 2 q- A22n -d2n ln,

k=2,3, ,2n-2,

k=2,3, ,2n-2

A22n- 2 -d2nln
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Proof. By equating coefficients of k2n 1, )k 2n 2, k2 in the identity

(3.7) (X2ln- XAI -A2)(En-EIn+ ,2n-3l + + En-E)-" d(k)ln

the expressions for, f12, ,/2n- 2 in (3.3) and (3.5) are obtained immediately. Con-
sider the block companion matrix

(3.8) D=
A2 A

for which

det (M2n-D) det (k2In XA-A2) d(X).

The coefficients of d(,) in (3.2) can therefore be obtained by applying (1.4) and 1.5
to D. Hence d -tr (D) -tr (A ), which is (3.3), and

(3.9)
dk --c tr (Dk + dDk- +... + dk- D),

v tr (F), say.
K

k>=2

The expressions (3.4) are obtained from (3.9) by establishing that

(3.10) F [k- IA2 (A2/k- 2 +alk- 1)

This is easily done by induction as follows. It is routine to verify that (3.10) holds for
k 2. Using (3.8) and (3.10) produces

Dk/ +diDk+ +dkD

DF+ dkD

=[ 3k-,A2 (A23k- 2 +A3k- + dkln) ](A23k-2A2+A3k-A2+dkA2) (A23k- +AiA23k-2+A213k- +dkA)

[k- ia2 k ]kA2 AE[Jk- +AIk

using the expression for flk in (3.5). This verifies the induction hypothesis. Combining
equations (3.9) and (3.10) then produces the required formula (3.4), on recalling that
tr (AE/k- 2) tr (k-EA2). The expressions (3.6) follow at once by equating the coefficients
of , and ),0 in (3.7). [3

Remarks. (1)It follows at once from (3.6) that provided dEn 0, then
A Ozn- z / d2n.

(2) It is also clear from (3.6) that only one element on the principal diagonal of
each of (AB?,- 2 + A_/32n_ 3) and A2/32n- 2 is needed to determine d_n- and dzn, respec-
tively. However, evaluating these matrices in full can serve as a check on the calculations.

(3) Two alternative expressions for d2n- can be obtained after realizing that the
argument used to derive (3.4) still holds for k 2n 1, so that

2n-
tr (Afl2n 2 + 2Azflzn 3 )"
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Equating the trace of each side of the first equation in (3.6) gives

(3.12) d2n- tr (AB2- 2 +A2/2n- 3).

Comparing (3.11 and (3.12) reveals that

(3.13) tr (A3,,_)=(n tr (A1/2n- 2)

and substituting (3.13) into (3.11 produces Lemma 3.
LEMMA 3.

(3.14) d2,, -tr (A/32 2 )

3.15 tr (A2/2n 3 ).
n-1

It is clear that the theorem can be generalized to any regular polynomial matrix in
the form

(3.16) kNIn kN- Al AN- --AN
by applying (1.4) and 1.5 to the block companion matrix

0

AN A
It is surprising that extension of the method for N > appears to be available only in a
little-known Russian paper [5 ], which uses a different method of proof from that given
above.

Example. Consider

X2--2X--4
A(X)= 4X+3

11

-3X+5 X-3 ]X2-k 2X-2
-5X- 2 k2 9X +

so that

2 3
AI -4 -2

0 5 9

From (3.3) we have

[ ]4 -5 3
A2 -3 0 2

-11 2 -1

d =-tr (A) =-12,

-10 3 -1]-4 -11 -2
0 5 -3

Equation (3.4) gives

d2 -1/2 tr (A/3 + 2A2) 48
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and from (3.5)
32 A3 +A2 + 481

20 -37 -2]33 15 10
-31 -8 10

Continuing to apply (3.4) and (3.5) alternately, we obtain

d3 - tr (AI/2 + 2A2/31) --157,

/3 A1/2 +A2I- 157I

-7 61 13]45 23 -5
-12 -57 -7

d4 -I tr (A1/3 -1- 2A./3) 41,

/4 A 1/33 +A2/2 -- 411-4 -10]-25 29 -17
-6 47 -15

Finally, the expressions in (3.6) give

AI34+A233 -366I, A234=91I
so that d5 366, d6 -91. Alternatively, it is easy to verify that in (3.14) and (3.15 ),
-tr (AI/4) -1/2 tr (A2/3) 366. We therefore have

det A(X)= )k6- 12X + 48,4- 157X 3 -I- 4 lX z + 366),- 91,

adj A(X)
(X 10X + 20X2- 7X-4)
(-4X3 + 33X2 +45X-25)

(-31X2- 12X-6)

(3X3-37x+61x+ 1)
(X- lX + 15), + 23X + 29)

(5X3- 8X- 57X +47)

(-X3-2X+13X- 10) ]
(-2X3+ 10Xa-5x- 17) I(X4-3x+ 10X-7x- 15)

Different extensions of Leverrier’s algorithm arising from singular linear control systems
have appeared in the literature recently [6], [7]. The problem is to expand (XJ- A
where J is singular but det (XJ- A) 0, and an interesting question for future research
is whether a scheme can be found to deal with (3.16) when I is replaced by J.
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CHOLESKY FACTOR UPDATING TECHNIQUES FOR RANK 2 MATRIX
MODIFICATIONS*
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Abstract. Gill, Golub, Murray, and Saunders have described five methods by which the Cholesky factors
of a positive definite matrix may be updated when the matrix is subjected to a symmetric rank modification.
For a negative rank update, a modification of one of their methods was given by Lawson and Hanson and
analyzed by Bojanczyk, Brent, van Dooren, and de Hoog. In many minimization algorithms, symmetric rank 2
modifications are found.

This paper shows how each of the rank methods gives rise to a single-application rank 2 method. For
some of the methods, this involves a new Householder transformation technique designed to eliminate elements
of two vectors at once using a rank correction of the identity matrix.

The authors’ experiments on scalar, vector, and shared-memory multiple-instructions multiple-data
machines show that it is more economical to perform rank 2 updates rather than two rank updates. In their
comparison, the authors do not consider pipelining two applications of the rank algorithms, which in certain
instances is possible.

Key words. Cholesky, updating, parallel

AMS(MOS) subject classifications. 65F05, 65W05

1. Introduction. In [5] Gill, Golub, Murray, and Saunders have described a number
of methods by which the Cholesky factors of a real, nxn, positive definite matrix A may
be updated when the matrix is subjected to a symmetric rank 1 modification:

(1.1) A A + bzz

and the resulting matrix A is also positive definite. In minimization and root-finding
algorithms based upon quasi-Newton techniques, symmetric rank 2 updates are used:

(1.2) , A +bllZlZr + blE(ZlZ+ZEZ)+b22ZEZ

A+ [ZlZ2] [II biB] rzlrl
Lz j

A +ZBZr.

The problem of multirank updates also appears in the QR factorization for Toeplitz
matrices of Bojanczyk, Brent, and de Hoog [3] The Gill, Golub, Murray, and Saunders
techniques are applicable to rank k updates if they are expressed as k successive rank 1
changes.

With the exception of the first method given in [5], C1, which was based upon work
by Bennet [1] for arbitrary rank modifications, all of the updating methods for Cholesky
factors given by Gill, Golub, Murray, and Saunders are specific to the rank 1 case.
Further, all save Bennet’s method make use of Givens or Householder transformations.
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In this work we use modifications of Householder transformations that enable us to
translate the rank methods C2-C5 of [5] into methods for updating Cholesky factors that
are directly applicable to rank 2 modifications. We also give an algorithm that general-
izes the modification of C3 that was given in Lawson and Hanson [8] and proved stable
by Bojanczyk, Brent, van Dooren, and de Hoog [2].

We give operation counts to show that the rank 2 methods that we propose are no
less efficient than two applications of their rank 1 counterparts, and we indicate where
there might be an advantage in using the rank 2 methods.

Goldfarb [6] has also looked at methods for updating the Cholesky factorization of
matrices that arise using variable metric methods for minimizing functions. In particular,
he considers methods for updating the factorization of the matrix

(1.3) A’=(I + vur)A(l + uvr),
which is slightly less general than (1.2). In (1.3) one eigenvalue of the rank 2 change is
nonnegative and one is nonpositive, while in (1.2) the signs of the eigenvalues of ZBZr
are not restricted. Let L be the given lower triangular matrix such that LLr =A, i.e., the
Cholesky factorization of A. Goldfarb shows that (1.3) can be written as

(1.4) A’=L(I + zwr) (I +wzr)L r,

where Lz= v and Lw=Au. He then gives two methods for finding an orthogonal matrix
Q such that

1.5) (I + zw’) a ,
where is a lower triangular matrix whose elements below the diagonal are essentially
given by

(1.6) "iij fri gj

where fi and gj are vectors of length 2. Obtaining L requires O(n) operations, and multi-
plying L by L to obtain the Cholesky factorization of A’ requires 2n 2 +O(n) multiplica-
tions.

Our generalization of methods C2, C4, and C5 of [5] in some sense parallels the
ideas of Goldfarb. Rather than (1.4), we use a lemma proved in 2 that there exists a
matrix C such that

(1.7) t =L(I + VCVr)(I + VCrVr)Lr,
where L plays the same role as in (1.4) and LV =Z. Our various generalizations of the
methods in [5] give different methods for computing Q such that

(1.8) (I + VCVr)Q =L,

where again L is lower trian~gular and has the same essential form as (_1.6). As in
Goldfarb’s case, constructing L requires O(n) operations while computing LL to form the
new Cholesky factorization of A’, which requires 2n2 + O(n) operations. The major
difference is that because (1.5) is slightly simpler than (1.8), the coefficient of the O(n)
term in the construction of L is smaller. Thus the advantage of Goldfarb’s approach for
the more limiting, although most prevalent problem, is a decrease in the coefficient of the
lower-order terms in the theoretical complexity count.

When we began our examination of rank 2 updates, computational work was done on
scalar machines. Theoretically, on these machines the computation saved using our rank
2 algorithms rather than two rank 1 updating algorithms was rather small. However,
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when we implemented our algorithms we discovered that, especially on vector and paral-
lel machines, the results were more encouraging. The main reason for the difference
between theory and practice is the structure of the algorithms.

The time-consuming sections in all the programs fall into three categories: triangular
solves, sequences of planar transformations, and nested double updates, which we will
explain later.

Algorithms C2, C4, C3 with a negative update, and C5 of [5] all begin with a tri-
angular solve using the current L, which is updated later in the program. The generaliza-
tions to rank 2 algorithms start with a triangular solve involving two fight-hand sides.
Computing two solutions simultaneously rather than sequentially saves loop overhead. On
a sophisticated machine without parallelization, some address calculation and vector loads
and stores may be saved when the same triangular matrix is used. On machines with
parallel processing the solution for each fight-hand side with the rank 2 algorithms may
be done concurrently. Thus, although the operation count is the same, two instantiations
of a triangular solve with one right-hand side will probably take more time than a triangu-
lar solve with the same matrix but two fight-hand sides.

Algorithms C3 and C4 of [5] both involve sequences of 2 plane transformations that
are preceded by a triangular solve in C4 and in C3 with a negative update. In the gen-
eralizations for the rank 2 case, these 2 plane transformations are replaced by 3 plane
transformations. Thus code of the form

Algorithm A
Fori=l, ,n

Compute numbers ix, 13, and
For j=i,i + 1, ,n

Set lj, + (Xyj.
Set lj,i lj,i + t.
Set yj yj + txT.

for the most part was replaced by code of the form

Algorithm B
Fori=l,... ,n

Compute numbers ct, 13,3’, 5, and c.
Forj=i, ,n

Set lj, +xyj + )xwj.
Set lj, lj, + xt.
Set yj yj + txT.
Set Wj =Wj + tXt.

Obviously, two applications of Algorithm A would take more time than one applica-
tion on Algorithm B. Not only are fewer arithmetic operations involved, but there are also
fewer vector memory references in Algorithm B than in two applications of Algorithm A.
In C3 with a positive update, one could pipeline two rank corrections and begin the
computation of the ith column of the new L for the second application as soon as the ith
column of L is known for the first application. In fact, when the matrix B in (1.2) is
indefinite, Algorithm B is essentially a pipelining of C4 for positive and negative updates.
Algorithm C4 begins with a triangular solve and ends with a sequence of planar transfor-
mations. For two rank 1 corrections with that algorithm, one could pipeline the ending
sequence of transformations for the first update with the triangular solve for the second
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update.
Double updating appears in C1, C2, and C5 and is essentially code of the form

Algorithm C
For i=l, ,n

Compute numbers a and b.
Forj=i, ,n

Set yj yj +alj,i.

Set lj,i lj,i + byj.

These loops for the rank 2 updating algorithms were changed to

Algorithm D
Fori=l,2,...,n

Compute numbers a, b, c, and d.
For j i, ,n

Set yj yj + axlj,i.
Set Wj’-Wj’+’C.XIj,i.

Set lj, lj, + bxyj +dxwj.

Although two applications of Algorithm C have the same floating point operation
count as Algorithm D, the execution time of two instances of Algorithm C might be con-
siderably more than one instance of Algorithm D. For a scalar machine, Algorithm D
requires less loop control than two applications of Algorithm C. On a vector machine
like the Cray-1, in which the number of vector memory references is the best measure of
algorithm performance for algorithms like those given above, two applications of Algo-
rithm C might require 1.2 as much time as one application of Algorithm D.

Algorithms C2 and C5 of [5] begin with a forward solve with the current L before
Algorithm C is begun. For two rank 1 corrections with these algorithms, one could pipe-
line Algorithm C for the first rank correction with a triangular solve for the second rank
1 correction. However, for C1, the least stable of the algorithms, one could pipeline
Algorithm C itself as either

Algorithm E

or

Fori=l,...,n
Compute numbers a, b, c, and d.
Forj=i,...,n

Set yj=yj+axlj,i.

Set lj, lj, + bxyj.
Set Wj=Wj+CXIj,i.

Set lj, lj, -I- dxwj.
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Algorithm F
Forj=l,... ,n

Set yj=yj+alj,
Set lj, lj, + byj.

Fori=2,...,n
Compute numbers a, b, c, and d.
Set Wi_ =Wi_ +cli_l,i_ 1.

Set li_l,i_ =li_l,i_ +dxwi_ 1.

Forj=i, ,n
Set yj yj + alj,i.
Set Wj=Wj+cxlj,i_
Set lj,i=lj,i+bxyj.
Set lj,i lj,i +dwj.

Set w n,n wn,n + c n ,n"

Set n,n n,n + dxwn"

On a machine with concurrency, Algorithm F could be faster than Algorithm E,
because in the inner loop w and y could be handled simultaneously.

TABLE 1.1
Comparison of 2Algorithm C and Algorithms D, E, and F.

n 2 C D E F (2xC)/D
Sequent- no

multiprocessing

Sequent- with
multiprocessing

Vax 750 with
floating point
acceleration

Cray XMP with
vectorization but
no multiprocessing

Convex

Alliant- with
vectorization and

concurrency

100 .461 .407 .423 .418 1.13
200 1.82 1.60 1.68 1.66 1.14

100 .213 .135 .136 .144 1.57
200 .539 .379 .380 .395 1.42

100 .570 .394 .531 .555 1.45
400 8.97 6.23 8.37 8.98 1.44

100 .000575 .000427 .000466 .000482 1.35
800 .0209 .0180 .0197 .0187 1.16
100 .00349 .00341 .00293 .00348 1.02
400 .0438 .0438 .0357 .0425 1.00

100 .00718 .00504 .00542 .00625 1.42
1600 1.25 .927 .990 1.041 1.35

Table 1.1 gives the times for two applications of Algorithm C and one of Algorithms
D, E, and F for several machines for n 100 and for some large values of n which were
chosen to be considered a good large size for the machine in question. We also show the
ratio for two applications of Algorithm C over one for Algorithm D. No computing was
done to replace the phrase "Compute numbers" in the above algorithms. We have
included Algorithms E and F to indicate what might happen if one knew that two rank
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corrections were needed and changed the programs accordingly, without trying to use any
of the theory developed in this paper. Certainly that would be the preferable mode on the
Convex, but on the other machines there is the advantage of using Algorithm D versus
Algorithms E or F, although not much on the Sequent. The generic speedups given in
Table 1.1 will be reflected in the specific generalizations of C1 through C5 of [5] given in
the later sections of this paper. A good indication of the performance in two different
environments is the Sequent machine. To obtain multiprocessing, the user has to state
explicitly around each "DO" loop in FORTRAN that the loop should use more processors
and which variables should be shared and which are local. Thus the user has control of
the situation. We see little speedup when multiprocessing is turned off, but when it is
enabled, the speedup is large. The user should keep in mind that under the traditional
measure of counting floating point operations, there should be no speedup.

Throughout this paper we will indicate opportunities for parallel and vector opera-
tions and show the performance on various machines. We will give speedup ratios for
two applications of a rank 1 algorithm versus our rank 2 algorithm. Speedups of about 1.4
will be common. Since one rank 2 update cannot possibly cost less than one rank 1
update on a given machine, our speedups are bounded by 2. In our comparisons we do
not consider pipelining two applications of the rank algorithms, which, as we pointed
out, could have been done in certain instances.

In 2 of this paper we prove a lemma that is the foundation of our generalizations
of algorithms C1-C5. We also give a modification of the traditional Householder transfor-
mations that permits the annihilation of elements of two vectors at once. In 3 through
7 we present generalizations of Algorithms C1 through C5 of [5]. In 5 we also general-
ize row removal method 3 of [8]. The user’s particular problem, the mode in which the
matrix factors are stored, the file structures used if the problem is large, the sparsity of
the matrices being considered, and the fill-in properties of the method used all may play a
role in the choice of an updating technique. As with Gill, Golub, Murray, and Saunders,
it is not our purpose to recommend the use of a particular method where there exist more
than one. Section 8 summarizes our computational results on various classes of machines.

2. Preliminaries. Certain operations on pairs of vectors or on symmetric 2x2
matrices are basic to what will come later. We begin by establishing these operations.

2.1. Factoring I + VBVr in the positive definite rank 2 case. In some of the updat-
ing methods to be discussed, the problem of finding the Cholesky factors of A, given
those of A (as in (1.2)), involves the problem of finding the Cholesky factors of a positive
definite matrix of the following form:

(2.1.1) I + VBVr

where B is 2x2 and symmetric. As a first step toward producing the desired factors, we
prove the following lemma.

LEMMA 1. Assume I + VBVr is a symmetric positive definite matrix, where B is a
2x2 matrix and V is an nx2 matrix. Then there exists a symmetric matrix C such that

(2.1.2) I + VBVr (I + VCVr)(I + VCVr)

Proof. Clearly (2.1.2) will be satisfied if

(2.1.3) CXC + 2C -B =0,

where X VrV. It is easily verified that

(2.1.4) C X-1/2 [-I+(I+X1/2BX1/2)I/2]X-1/2
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will satisfy (2.1.3) formally, and we need only be assured that the square roots of X and
I +X 1/2BX 1/2 exist.

Note that X is at least positive semidefinite, so it has a square root. As for the
second square root, consider

(2.1.5) Vr (I + VBVr) V X +XBX

Since I + VBVr is assumed to be positive definite, this product must be at least positive
semidefinite. That is,

(2.1.6) X+XBX X1/2(I+X1/2BX1/2)X 1/2

is positive semidefinite.
Now, consider any vector y e E2. Then y=r+s, where r is in the nullspace of X 1/2

and s X1/2t for some t. Consequently

(2.1.7) yT(I+X1/2BX1/2)y= rT(I+X1/2BX1/2)r+rT(I+X1/2BX1/2)$ +

sT(I+X1/EBX1/2)r + tTx1/E(I+XI/EBX1/2)x1/Et.

The second and third terms are zero, the first term reduces to rrr, which is nonnegative,
and the last term is nonnegative because of our observation (2.1.6) above. Consequently,
I +X1/2BX 1/2 is positive semidefinite and has a square root. E3

To compute the square root of a 2x2 matrix X is rather simple. Assume one can
obtain the eigendecomposition of X in the form

(2.1.8) X =QDQr,
where D is diagonal and Q is orthogonal. Then X1/ is given by

(2.1.9) X 1/2 =QD 1/2 Qr.
For a 2x2 matrix, Moler and Stewart [9] give a simple algorithm for determining the
decomposition (2.1.8).

Fortunately, there is another lemma, similar to Lemma 1, that involves fewer opera-
tions to compute a factorization.

LEMMA 2. Assume V is an nx2 full rank matrix and let X VrV Assume B is a
2x2 diagonal matrix with b 11 > bEE if B is indefinite. If I + VBVr is a symmetric positive
definite matrix, then there exists a lower triangular matrix C such that

(2.1.10) I + VBVr (I + VCVr)(I + VCrVr)
where

(2.1.11) c 11 =(-- +(1 +Xll bll )l/2)[Xll,
C 22 is the root of the equation

(2.1.12) c222Y + 2c22 --bEE =0,
where y in (2.1.12) is given by

(2.1.13) y (X22 +Xll bll )-Xl bll )/( 1 +Xl bll ),

and

(2.1.14) c2 =-x21 c 11 22/(1 +Xll c 11 ).

Proof. If (2.1.11) is true, then c 11 is the root of the equation
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(2.1.15) 121Xll +2Cll-bll =0.

Using simple algebra, it is easy to show that if c1 ,c2, and c21 can be found satisfying
(2.1.15), (2.1.12), and (2.1.14), then

B =C +C +CVrVC,
which implies

I + VBVT -V(C +CT +cvTvcT) VT

Thus we must show that real roots of (2.1.15) and (2.1.12) can be computed.
Since X is positive definite, Xl is positive. If b is positive, then obviously

+x b l is positive and hence c l in (2.1.11) can be computed. Since I + VBVT is posi-
tive definite, X +XBX must also be positive definite, which implies that

(2.1.16) e(X +XBX)e =x (1 +x b )+x b22 >0.

From the hypothesis of Lemma 2, if b is negative, so is b22, which from (2.1.16)
implies 1 +x b > 0 so in all cases c can be computed.

The condition that c22 can be computed as a real root of (2.1.12) is equivalent to

(2.1.17) +x b )( + b22 x22 b22 b x _>0.

The left-hand side of (2.1.17) is just det(l+BX). Since X+XBX is positive definite,
det(X+XBX)=det(X)det(l+BX)>O, which implies det(l+BX)>O, which implies
(2.1.17), can be satisfied and c 22 can be computed. []

When B does not satisfy the hypothesis of Lemma 2, but is symmetric, there exists
an orthogonal matrix Q such that

B =QQr,
where/ is diagonal and/1 > b22 if B is indefinite. If one lets V VQ, then one can find

a lower triangular matrix C from Lemma 2 such that

I + I/IT
=(I +I)(I +IrlT)

and then the matrix C QQ would satisfy (2.1.10).

2.2. A modified Householder transformation. Householder transformations, or ele-
mentary reflectors, as they are sometimes called, are symmetric and orthogonal matrices
of the form

(2.2.1) e =I !111
T

where u#0 and x=(uru)/2. They have the property that if z and y are two vectors of
the same Euclidean length, the u can be chosen in (2.2.1) such that Pz=y. The most fre-
quent use of this property is made in transforming a given vector into another that has
specified components equal to zero.

There are several features of Householder transformations that benefited [5], and we
will take advantage of them. In the first place, if z can be partitioned as

and we wish Pz to have the form (Y1,0, ,0) r, then one can partition u as
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that is, the bottom n- 1 elements of z and u will be the same.
Secondly, there are two notable cases of the matrices P. In the first case only the ith

and jth components of z (it:j) are transformed to produce a zero in the jth position. We
will denote these matrices by Pj. In the second case the ith, jth, and kth components of z
are transformed to produce a zero in the jth and kth positions. We will denote these
matrices by Pk.

When transformations of the form Pj and Pjk are applied to many vectors, it is more
economical to rewrite (2.2.1) as

(2.2.2) P I vwr,
where wr =(1,u2/u 1, ,Un/U )T and

Ul
V= 11.

For a transformation in two planes applied to k vectors, (2.2.2) requires 3k multiplications
and for a transformation in three planes applied to k vectors, (2.2.2) requires 5k multipli-
cations. Throughout this paper, when we give computational complexity counts involving
standard Householder transformations in two and three planes, we will assume form
(2.2.2) is being used.

For the purposes of our updating proposals, we would like to extend the notion of a
Householder transformation in three planes somewhat. Let two vectors
Z-"( 1, n

T and w (to 1, ton T be given (n > 2 ). We shall define an orthog-
onal matrix P i,j,, that when applied to both z and w will change the ith, jth, and kth
entries and leave the kth entry zero (i,j,k distinct). Such a matrix will have the form

(2.2.3) P i,j,

Only rows and columns (i,j,k) have been indicated, and all components not explicitly
given are equal to the components of the identity.

For the construction it is sufficient to consider the case

r(2.2.4) P 1,2,3 I - pp

where p [rr ,/I;2,3 ]T and X prp/2.
Any P of this form is easily seen to be orthogonal. The condition requiting that Pz

and Pw both be vectors with a zero third component is

1 1
(2.2.5) 3--Tg3(Igll+22+Tg33) toa----3(Igltol+IgEtoE+Tg3to3) 0.

This condition can be satisfied by first finding 71; and r2 so that

(2.2.6) ;1/1;1 -!- 2n2 ;3 K,

toll + to22 to3

for some quantity , whose choice will be given in (2.2.8). Then (2.2.5) becomes

1
3[1---3(1+/g3)] to3[1--’’/g3(K+/g3) 0.
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This will be satisfied if we choose

(2.2.7) rr,3 lC,- sgn()’X/ 2 +1r,21 + rr,
Condition (2.2.6) is most readily satisfied by letting

3

This specification for P 1,2,3 could fail if/1 =x2 =x 3 =0. From the definition of x 3,

this implies that K=0 as well. But in turn from (2.2.8) we find that this results in

1 =2=;3 =0)1 =0)2=0-)3 =0, in which case P1,2,3 may be taken as the identity. The
specification could also fail if z and w were collinear.

To draw the connection between the expressions given for P i,j,k in (2.2.3) and in
(2.2.4), we note here that

g,(2.2.9) tx (n+n-n)/(n+g+)

8 (+-)/(i++)

g (+ /( + + g

--2glg2/(g+g+g) glg2,
-1n -23/(++ ,
1--2glg3/(g++g) glg3

One should note that (2.2.4) is a rank 1 modification of the identity matrix that
annihilates elements in two vectors and should not be confused with the generalized
Householder transformations given in [4] [10], and [7], which annihilate elements in k
vectors with matrices that are rank k corrections to the identity matrix. Ironically, the
work in [7] was stimulated by the current effort because it was thought necessary to gen-
eralize the algorithms in [5]. Although three planar versions of the Generalized House-
holder transformations of [7] and the block reflectors of [10] may be used instead of
(2.2.2), they are a bit more costly.

2.3. Products of the P i,j,k In later sections we shall be employing matrices
Pi,i+l,i+2, which are identity matrices, except for the 3x3 submatrices consisting of rows
i, + 1, and + 2 in columns i, + 1, and + 2, where they have the form
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ai i Ti

i i 1i"

Ti Ii l’i
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They will be applied to vectors v in the order

(2.3.2) P 1,2,3 P 2,3,4 Pn-2,n- 1,n v.

We note that the product P 1,2,3 P2,3,4 Pn-2,n- 1,n has the form

(2.3.3)

l flTgl flTg2 flTgn -3 fgn-2 fgn-1

1 f:gl dg2 f:gn-3 f:gn-2 f:gn-1

T1 ffgl ffg2 ffgn-3 ffgn-2 ffgn-1
V2 f4rg2 f4gn-3 f:gn-2 f4rg.-I

Tn-3 fTn-lgn-3 fnT-lgn-2 fnT-lgn-1
%-2 tin-2 ,,-2

where each fj and gj satisfy each of the following recursions:

Forward Recursion.

Set a0

Forj=l,2,...,n-3:

Set Hj [aj_ bj_ l]_
gj Hj CLj+

j+l

aj Hj j+

Lastly, set

bj Hj Tj+

gn-2 an-3, gn-1 bn-3

Backward Recursion.

Set g n-1 :n-2J’ dn Cn gn-2
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For j= n ,n 2, ,3"

Set Hj rr+
%1.,

fj Hf TIj-2
l,j_2

cj Hf )j-2
TIj_ 2

j-2

gj-2 Hf
Lastly, set f2 c3, f d3

These recursions will break down whenever one of the H-matrices is singular. Con-
sider the example of forward recursion:

(2.3.4) Hj Hi_
j "fl

Ifj is the first index for which Hj is singular, then Pj,j+ 1,j+2 must be such that

(2.3.5)
D Tj

Lo_,

is singular. This will clearly be the case if Pj,j+ 1,j+2 I, that is Ij Tj nj O.
This is the only case, for if Pj,j/I,j/2 has the form (2.3.1), then from (2.2.9) we may
write (2.3.5) as

(2.3.6) [ -271:; g2

(gl2+g22+g) Lgl2+g-g -29293

"’gl/I;2 --’glg3
1 g2 11; 3

for suitable = 1,n 2,r 3 and . (72 + += )/2. If this is singular, then

1nn +’’gll n22n --n n 3 0(2.3.7) (’’-)gl 3 g3 (’’-)gl 3

which implies that g g3 0. But from (2.2.7) we see that except when

Pj,j+I,j+2 ], [g3 must equal [:l + ]:2 +12 +, which has to be nonzero.
Thus, as would seem reasonable, the forward recursion will be interrupted at those

values of j for which anomalously defined reflectors P2,j+ 1,j+2 appear in the product. A
similar result holds for backward recursion.

3. Generalizing method C1 of [51. Method C1 of [5] was originally proposed by
Bennet [1] and is not recommended for numerical reasons. Our generalization will suffer
from the same problems when the original matrix is nearly singular. We include it here
for completeness and because it shows how our algorithms may be easily adapted to vec-
tor and parallel machines. Our explanation mimics that of [5] and does not involve any
of the concepts of 2.
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Let A be an nxn symmetric positive definite matrix, and assume the matrices M and
D have been computed where M is unit lower triangular and D is diagonal such that

(3.1) A =MDMr.
Assume Z is an nx2 matrix, B is a 2x2 symmetric matrix, and we wish to find a unit
lower triangular matrix M and a diagonal matrix D such that

(3.2) /O-r =, =A +ZBZr

Let V be an nx2 matrix such that

(3.3) MV =Z.

From (3.1) and (3.2), we then have

(3.4) =M(D + VBVr)Mr.
If one can find an//and a/ having the same structure as M and D such that

(3.5) blT
=D +VBVT,

then from (3.4) we may write

(3.6) =M/ and /=/.

To determine//and/, we equate elements of the jth column of (3.5) to obtain
j-l,, 2

(3.7) , dimji +lj=dj+vfBvj
i=1

and forr=j+l,...,n

(3.8) , d ji ri + dj rj VTr BVj
i=1

where vf denotes the jth row of the matrix V.
Using (3.7) and (3.8) we will show that there exists a 2xn matrix C, whose jth

column will be denoted by cj such that

(3.9) rj =VrrCj
for j= 1,2, ,n. Assuming (3.9) for r <j, from (3.7) we have

(3.10) _,di(vf ci +lj=dj+
i=l

which gives us immediately a formula for j. The same assumption and (3.8) suggest
j-l,,

Z divfcivTci +Ijtlrj=VTrBVj
i=1

which implies

(3.11) rj VrT(Bvj
j-l,,

-Zdi(vci)ci)/j.
i=l

If (3.9) is true, (3.11) means that

(3.12) c =(Bv- .div]’cici)/l.
i=1

Since
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equation (3.12) implies that

vfcic =Cic/Tvj,

j--l^

(3.13) cj=(B- Edicic)vj/tj.
i=1

This completely determines M.
To determine M and D iteratively, we introduce

j-l^

(3.14) Aj=B-.,dicic.
i=1

We note that the Aj are 2x2 symmetric matrices. Aj, j, and cj can be determined using
the following algorithm:

Thus M looks like

Set A --B.
Forj-l,2,...,n

Set dj dj + vfAj vj.

Set cj=(Ajvj)/j.
Set Aj+ =Aj-djcjc.

(3.15)

vc
1

4Tc3

VnTCl VnTC2 VnC 3 1

!11 =VCl -el VCl +el,

and

In general,

MII =(MV-m vlT)Cl +m

MIli=(MV- mkv)ci+mi.
k=l

Notice that MV=Z and define W(i) Z- i-1 mkv. Then W(i) is an nx2 matrix
k=l

whose first rows are zero, W(i) Wi-
in i- v/T- and

(3.16) Mffili=W(i+ l) ci+mi.

Recall that since M is unit lower triangular, v is just Zl
T =Itl) T. Moreover, v is

the second row of Z-mvT, which is the second row of w(2). In general,

(3.17) VTi =W!i) T.
We are thus lead to the following algorithm:
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Algorithm GC1

(3.18)
(3.19)

Set A --B, W(1) Z.
For j=l,... ,n

Let vf w)j) r, i.e., the jth row of V.
Set d =dj + vfAj vj.
Set cj=(Ajvj)/dj.
Set Aj+l =Aj-djcjcf.
Forr=j+l,... ,n

Set W(ry+ 1) T =wj T _mrjVjr.
Set trj=rnrj + W(rJ+ l) r cj.

In (3.18) both columns of the matrix W(j+l) can be determined simultaneously.
Equation (3.19) may be thought of as a rank 2 correction to the columns of M. Both
(3.18) and (3.19) are just the formulae given in Algorithm B of 1. Asymptotically, two
applications of C1 in [5] and one of GC1 both require 2n 2 +O(n) multiplications, which
means that on a scalar machine there should be no advantage in using GC1. In fact, for a
100x 100 problem on the Sequent with no multiprocessing, the ratio of two applications
of C1 to one of GC1 is about 1.06. However, when multiprocessing is enabled, the ratio
climbs to 1.44. This is somewhat less than that reported for two applications of Algo-
rithm C of over one of Algorithm D for the Sequent with multiprocessing, because
more O(n) work is involved. For the other computers considered in 8, vector memory
references are the dominant cost and the speedup is around 1.2.

4. Generalizing C2. Of the stable methods in [5], method C2 requires the least
number of arithmetic operations. It is based on the fact that the orthogonal reduction of a
rank 1 correction of the identity to a lower triangular matrix produces a matrix of special
form that can be characterized by three vectors. Using Lemma 1 of 2, we show that a
rank 2 correction of a symmetric positive definite matrix produces a problem involving a
rank 2 correction of the identity matrix. Reducing this rank 2 modified matrix to a lower
triangular matrix also produces a special matrix, but in our situation we need one vector
g, and two nx2 matrices, V and J. The special lower triangular matrix L(V,J,g) has the
form

(4.1) L(V,J,g)=

gl

v’jl g2

v’jl v’j2 g3"

vrj vrj2 Vnrj3 g

As in 3, let A be an nxn symmetric positive definite matrix, and assume the
matrices M and D have been computed, where M is unit lower triangular and D is diago-
nal such that

(4.2) A MDMr

Assume Z is an nx2 matrix, B is a 2x2 symmetric matrix, and we wish to find a unit
lower triangular matrix M and a diagonal matrix D such that
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(4.3) /r=,=A +ZBZr

Let V be an n2 matrix such that

(4.4) MD 1/2 V Z.

Then from (4.3) we have

(4.5) =MD 1/2 (I + VBVT)D I/2MT.

Now Lemma 1 of 2 implies that there exists a 2x2 matrix C such that (4.5) can be
written as

(4.6) =MD1/2(I+VCVr)(I+VCrVr)DI/2Mr.
We will show that there is a sequence of Householder transformations P such that
(I + VCVr)P is a special lower triangular matrix M=L(V,J,g), as in (4.1). Now

D /211 =L(D 1/2 V,J,D /2 g)=L(H,R,e) GD /2,

where

(4.7)

Thus

and

G diag (g

hs =d]/2 vsr

rr =jr t/2/(G )

s=1,2, ,n

s=1,2, ,n.

M =ML(H,R,e)

(4.8) D =GDG.

Because L(H,R,e) has the same structure as (3.15), the same algorithm used to form M
in 3 can be used here.

The important point about this algorithm is that D, computed using (4.8), will always
be nonnegative.

The remainder of this section will be spent filling in the details and verifying that
there exists a sequence of standard Householder transformations P =P1P2 Pn such
that

(I + VCVr) P =L(V,J,g)

for some J and g. Let us begin by partitioning V as

(4.9) Vr =(y’W)r).
Note that y is a two-element vector. The (1,1) element of I + VCVr is

0= l+yrCy.

Now P which may be written as l-uur/x, must reduce the vector (0:xr) to a multiple
of er. Here

(4.10) x=W) Cy=-W) f.

If P is a Householder transformation, then

P1 (I r),
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.XTUr (U

and

’l;=g U

We claim that there exists a vector jl) of length 2 and a 2x2 matrix C2 such that

(I+VCVT)(I
-g

(4.11) ----uuT)=
(1) W(1) W(1)Tjx wfl)j I+ C2

The proof of the claim is as follows: The last n- 1 elements of the first column of the
left-hand side of (4.11) are given by

(W(1) Cy /+W(1) CW(1)r) --W(1) Cy(1- ---Ul)--T

Thus j 1) in (4.11) is given by

which simplifies to

j(1) (1
Ul 1)---Ul(I+Ul))Cy----CW(1)Tw( Cy,

(4.12) j(1) 1(21 +CVrVC) y.
gl

To determine C 2, we note that the bottom (n- )x(n- submatrix of the left-hand side
of (4.10) is given by

(4.13) (W(1) Cy" I+W(1) CW(1)T) /-ulxT W(1) CyxT +I+W(1 CW(1)T

[I 1/’r,xxT
u

1 W(1) 1) TxxT"xxr CW

Since x----W(1) f=W<) Cy, the right-hand side of (4.13) must be

(4.14) I +W(1) fit 1) 1) W(1) T----ulffr +C CW rw( ffT)

If one assigns the matrix within the parentheses of (4.14) to C2, our claim is true. Since
the (n-1)x(n 1) submatrix has the same structure as the original matrix, one can
proceed in the same fashion. Let us partition the matrix V as

(4.15) V=

 Vnq
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Let W(i) represent the last n- rows of V. Then there exists a matrix Ci+ such that

(I+vcvT)p1p2 pi

gl

g2

W(1)j(1) W(2)j(2) gi

W(i) Ci+ 1W(i)T

In Algorithm GC2, given below, we attempt to use the notation given above, with a
few additions. Rather than computing f of (4.10), we compute -D/2f. Since x never
appears by itself, but always as part of the expression xrx, we compute =xrx. Simi-
larly, the W’s never appear by themselves, and we let ’s =WrsWs Moreover, although
we have developed everything from (4.9) through (4.15) in terms of V and J, we really
need formulae in terms of H and R of (4.7).

Algorithm GC2

Solve MH =Z. The matrix H is n2 and is the one given in (4.7).
Compute C using Lemma 1 of 2 and set C C.
Set W Z and 0 HrD- H.
Fors=l,... ,n

hslSet =Cs [hs2
Set 0= +(hsf +hs2f2)/ds.

Set Ws=Ws_--s [hs2J [hs2J
Set y=Wsf.

Set k
Set =f y/ds.
Set g =(02 +)1/2.
Set rs ((1 +O)+k).

gEd
Set q= gd(Og),,. ((1 +0+g)+k).

^T
SetCs+=Cs+qf.
Set s g2 ds"
For t=s + l, ,n

Set _ws+)r_ =wt-ltshf
Set lts=lts+WS+l)rrs.

Algorithm GC2 requires 3n 2 +O(n) multiplications and n square roots, which is a
saving of n square roots over two applications of C2 of [5]. On the Sequent with no mul-
tiprocessing, the speedup over two applications of C2 on a 100x 100 problem was 1.05.
As in the case of GC1 and C1, there was a much greater speedup with multiprocessing.
For the same problem set with multiprocessing enabled, the speedup was 1.39. The
speedup in general was less than that found in C1-GC1 for most of the vectorizing
machines because of the amount of O(n) work in GC2. In general, that work is four
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times the amount required in C2 because of the number of matrix by vector multiplica-
tions with 2x2 matrices.

For a rank k correction, as opposed to a rank 2 correction, this O(n) work would be
increased by k2. Thus the true operation count can be stated as (3kn2)/2+O(k2n) multi-
plications. Obviously, one would not want k to be too large.

5. Generalizing C3. In this section we generalize algorithm C3 of [5] to update the
Cholesky factor of

(5.1) =A +ZBZr

when the Cholesky factorization of A =LLr has already been determined, where L is
lower triangular. We will let ,,r denote the Cholesky factorization we wish to compute.
We will also generalize a slightly modified version of C3 for negative updates, which is
given in [8] and analyzed in [2], because it leads to a more economical version when B is
negative definite and indefinite. We distinguish three distinct cases: (a) B is positive
definite, (b) B is negative definite, and (c) B is indefinite. As before, we assume that A is
positive definite.

Case (a): B is positive definite. If B of (5.1) is positive definite, then there exists
an upper triangular matrix R such that

(5.2) B=RrR.
Let Y be the nx2 matrix defined by

(5.3) Y=ZRr

and let C be the matrix

(5.4) C =(L:Y).

Thus C will have the form

X X X

X X X

XXXXX X

XXXXX

Assume P is a sequence of standard Householder transformations P =PIP2 Pn that

operates on C from the fight and reduces it to the lower triangular matrix . If C() =C
and c(i)-’c(i-1)P i. The transformation Pi is a transformation in planes i, n+ 1, and

(i-1) (i-|)
n + 2 designed to anmhdate Ci,n +1 and ci,n + 2. Then

T cppTcT yyT +LLT

=ZRrRZr +LLr

ZBZr +LLr.
Therefore L is the Cholesky factor of A. Thus we have the following:
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Algorithm GC3 for positive definite B
Determine the Cholesky factorization B =RrR, as in (5.2).
Set Y=ZR r.
Form C() (L" Y).
Fori=l,... ,n

_(i- 1) _(i- 1)Find P to annihilate Ci,n + and ci,n + 2.

Set C(i C (i- 1) p
i"

Asymptotically this algorithm requires 5n2/2+O(n) multiplications and additions
and n square roots. If two rank 1 corrections had been used with P composed of a
sequence of Householder transformations requiting three multiplications per vector, then
asymptotically 3n 2 +O(n) multiplications / 2n square roots would have been required.
Thus even on scalar machines there would have been an improvement. Indeed on the
Sequent without multiprocessing for a 100xl00 problem, we see a speedup of 1.30.
When multiprocessing was enabled, the speedup jumped to a surprisingly large 1.67.
Large speedups were also seen on other machines, as the table in 8 indicates.

This algorithm can be easily generalized to the case where B is rank k and positive
definite. The matrix C would have k nonzero superdiagonals. The innermost loop would
consist of a rank k vector statement followed by k + rank statements.

Case (b): B is negative definite. When B is negative definite we present two algo-
rithms. The first generalizes C3 of [5] for negative updates. The second is faster. It is a
generalization of row-removal method 3 of [8], which we will call RRM3. Algorithm
RRM3 is also called version 3 in [2] and is analyzed there. It may be thought of as a
modification of C3, and we derive our generalization of RRM3 from our generalization of
C3.

Our generalization of C3 for negative updates is more complicated than our generali-
zation of C3 for positive updates. In the first place, we will now define the nx2 matrix Y
as the solution to

(5.5) L=Z,

where again L is the Cholesky factor of A. We then need to prove a lemma about the
positive definiteness of a certain matrix, the Cholesky factorization of which is central to
the algorithm for determining the Cholesky factorization of A.

LEMMA. If B is a symmetric, negative definite matrix, is defined in (5.5), and the
matrices A and A defined in (5.1) are symmetric positive definite, then the matrix
N B- yry is positive definite.

Proof. If B is negative definite, then-B is symmetric positive definite and there
exists a matrix R such that

(5.6) -B =RrR.
From (5.5) =L-1Z, where L is the Cholesky factor of A. Let

j=L-1ZR r.(5.7)

Note that

J. =A +ZBZr

LLr +ZBZr

=L(I_L-1 ZRrRZrL-r)Lr

L(I -jjr Lr
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from (5.7). Because l-JJr is congruent to ,, l-JJr has positive eigenvalues because
does. This means that all the eigenvalues of jjr are less than 1. Since the nonzero eigen-
values of jjr are also the nonzero eigenvalues of jrj, the eigenvalues of jrj are all less
than 1, which means that l-JrJ is positive definite. Now

N =-B- yTy =(RrR)- -(L- Z)rL- 1Z
=R- (l_jrj)R-T

from (5.7). Because I-jTj is congruent to N and because it is positive definite, the
matrix N must be positive definite and we have proved our lemma, rn

Since N is positive definite, one can find an upper triangular matrix Q such that

(5.8) QTQ=_B- yry.
Let P be a sequence of modified Householder transformations

(5.9) P=Pl,n+l,n+2P2,n+l,n+2 Pn,n+l,n+2,
which when operated on the left of

10,

annihilates the first n rows of that matrix, i.e.,

where S is a 2x2 matrix. Because P is an orthogonal matrix,

SrS yry+rQ r+(-B-1 r)=_B-"Thus

(5.11) -B (SrS)-1

The matrix P may also be constructed as a sequence of standard Householder transforma-
tions of the form

n+l +2 n+l n+2 n+l(5.12) p =p/2p p p P Pn
Because P is composed of matrices that touch only specific planes, it is easy to show that
there exists an nxn lower triangular matrix L and a 2x2 matrix F such that

(5.13) P Ft.
Now

Equating both sides of (5.14) we get

Z=LY=FS,

which implies that

(5.5)

Equation (5.14) also gives us that
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LLr r
+FFr,

which means that

L-r =LLr -FFr =A -ZS-1 S-rZr =A +ZBZr.
Thus L is the Cholesky factor of A.

We are then lead to the following algorithm

Algorithm GC3N1 for negative definite B
Solve LY=Z for Y.
Find Q such that QrQ =-B-
Set Ln) =L, Fin) =0.

For k=n,n-1, ,1

(5.16)

Find the modified Householder transformation Pk,n / 1,n + 2
to annihilate the kth row of Uk) using
row n + and n + 2 of Ui).

U()Set U-) =Pk,n+l,n+2
Set

F(k 1) =Pk,n+l,n+2 [F()

The speedup of GC3 over C3 depends on how one constructs P. Using the modified
Householder transformation discussed in 2, on the Sequent without multiprocessing on a
100xl00 example the speedup was 1.31, while with multiprocessing the speedup was
1.52.

Lawson and Hanson[8] and Bojanczyk, Brent, Van Dooren, and de Hoog [2] present
another version of C3 when the update is negative. We would like to mimic the modifi-
cation in [2] of C3 for the rank 2 update case because it (1) leads to an algorithm that
does not need the computation of Y in (5.5) or Q in (5.8) and (2) uses standard House-
holder transformations rather than modified transformations.

From (5.13) we see that

en+l,n+2 n+l,n+2 en+l,n+2 T
FT

where from (5.11) and (5.15) F=ZS- and-B =S- S-T. In this version we will use the
fact that we can compute F and L and try to determine some way of computing the P’s as
a sequence of 3 plane orthogonal transformations to get us L. In Algorithm GC3N1 we
note that =L() and F =F(). Moreover the first k rows of F(k) are zero. Since we
know F, we could almost perform the algorithm with the indices running forwards rather
than backwards and choose Pn+ 1,n+2 as an orthogonal transformation in planes k, n + 1,
and n + 2 to annihilate the kth row of F(- 1) to produce F(), as in

(5.17) F(,) -’Pn+l,n+2 [F(,_)
Unfortunately we do not have the kth column of L(k-l), which is actually the kth column
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of . All we have is the kth column of L, which is the kth column of L (k). In other
words, we wish to apply a 3-plane transformation in which we know the input in two
planes and the output in the third plane and wish to determine the input in one plane and
the output in the other two. Since all the transformations are linear, we may proceed as
follows:

kLet Pn + 1,n + 2 be a standard Householder transformation of the form

I UUT

where [=uuT"/2 and as one would expect

(5.18) u2 =f/-l),
(5.19) u 3 =f2( -1)

but
2 2 2 1/2(5.20) Ul=(lkk --U2 --U3 +11/11.

Then from (5.16)

which means that

T =ikT T
|k _Ul(Ul|k +U2flk-1)T+u3f2k 1)T),

--T
(5.21) lk -1/(1 [u)(l +Ul(U2[Ik-1)T +u3f(2k-1) T)).
From (5.17) we can then compute F() as

+u3k 1) +ulk ).

We are thus lead to the following algorithm:

Algorithm GC3N2 for negative definite B

Determine the Cholesky factorization of-B =RrR, where R is upper tri-
angular.
Set F() ZR r.
For k=l,2, ,n

Determine u as in (5.18), (5.19), and (5.20).
.-’T

Compute It as in (5.21).
Compute F() from (5.22).

Of course, one can modify (5.18) and (5.19) slightly, so that P has the form of
(2.2.2), to eliminate one multiplication in the inner loop of GC3N2. Algorithms GC3N1
and GC3N2 with the P of (2.2.2) both require (7n2)/2+O(n) multiplications, but algo-
rithm GC3N2 requires fewer vector memory references. In 8 we compare the negative
updating algorithms of C3 and of RRM3 and their generalizations. We looked at rather
small problems on each machine together with one or more problems that either might be
considered a good large size for that particular machine or is at a point where the ratios of
two instantiations of a rank 1 algorithm to a rank 2 algorithm seemed to stabilize. The
data corroborates the point in [2] that RRM3 is less costly than C3 for negative updates,
although in theory both algorithms require the same number of operations asymptotically.
Table 8.3 suggests that GC3N2 is the preferred algorithm. Because the code to generate
the standard Householder transformations is simpler than that to compute the modified
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ones in GC3N1, Algorithm GC3N2 should be cheaper than GC3N1. Comparing the
times on the Sequent without multiprocessing and with multiprocessing, we see that the
rank 2 algorithms seem to be able to take much better advantage of multiprocessing than
the rank 1 algorithms. In general, the ratios for vector and multiprocessing machines
seem to favor the rank 2 algorithms more heavily than the theoretical multiplication count
would suggest, which is one of our points.

Case(c): B is indefinite. When B is indefinite and rank 2, we have found no gen-
eralization based entirely on method C3 of [5]. However one can combine the ideas for a
positive update of C3 with those for a negative update in [2] to obtain a rank 2 method.

Since B in (5.1) is symmetric, one can find an eigendecomposition of B as

B =QDQr,
where Q is an orthogonal matrix and D is diagonal. If B is indefinite, one may assume
d 11 > 0 and d22 < 0. If

Y ZQ
)1/2(-d22

and

(5.23) G =A +Y Y,
then from (5.1)

(5.24) ,=G -Y2Y.
One could use C3 of [5] on (5.23) and proceed as follows:

Form the matrix

Fori=l,... ,n
Find a transformation e in planes and n + 1

(i)to annihila e c_+ 1,i

Set C (i + p C(t)

One could then apply the algorithm in [2] on (5.24) and continue as follows

Set y2) =Y2
Fori=l,...,n

Find a transformation Q
~(i)

to annihilate cn + 2,i and such that

(n) [TiiC Q
y(2ii-1)

Determine y(i) and i such that

y(2i)
=Qi

y2i_ l) r
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Because Q and P are the only transformations affecting row i, one could apply Q as
soon as P is complete. In fact, one could really combine them. Considering both the P’s
and Q’s as Givens transformations of the form

one is lead to the following algorithm:

Algorithm GC31 for indefinite B

Determine the eigendecomposition of B as in (5.23).
Form Y as in (5.24).
For i=l, ,n

(i-1) 2 1/2Set rp =(1/2/+yi! )
(i-1) 2 1/2Set rq=(r;9-Yi2

(i-)Set cp=lii/rp and Sp=-Yil /rp.
(i-1Set Cq=rq/rp and Sq=-Yi2 )/rp.

Set e=-Sp/Cq,f=Cp/Cq and g=Sq/Cq.
y(,i). T (i- 1) T=cpy +spi.Set
.--T "-I)T T.Set =eye’ +fl/r +gy2 1)

Set y(2i) r y(2i-1) r .--T
=Cq +Sqi

Asymptotically, this algorithm requires 7n 2/2 + O(n) operations. Since the operation
count for GC3I and C3 for a positive update followed by C3 for a negative update, one
is not surprised by the table in 8 that shows that the speedup for indefinite B is less
than that for positive definite B. Again, multiprocessing on the Sequent produces a
tremendous difference in the speedup.

6. Generalizing C4. Algorithm C4 of [5] is the most expensive, but probably the
least complicated theoretically. It is based on the fact that one can find a sequence of
planar orthogonal transformations that reduces a vector to a multiple of e and, when it is
applied on the right to the lower triangular Cholesky factor of a matrix A, leaves all the
elements above the first superdiagonal zero. To find the Cholesky factor of the updated
matrix, one then changes the first column of this lower Hessenberg matrix and finds a
sequence of transformations that will reduce it back to lower triangular form.

In our generalization we work not with one n-vector but with an nx2 matrix. Using
the modified Householder transformations given in 2.2, this matrix can be reduced to a
2x2 matrix. When these transformations are applied on the fight to the lower triangular
Cholesky factor of the original matrix, the result is a matrix with zeros above the
"second" superdiagonal. To find the Cholesky of the updated matrix, one changes the first
two columns of the transformed matrix and reduces it back to lower triangular form. The
specifics of the algorithm are as follows: Let A be an nxn symmetric positive definite
matrix and assume the lower triangular matrix L has been computed such that

(6.1) A =LLr.
Assume Z is an nx2 matrix, B is a 2x2 symmetric matrix and we wish to find a lower
triangular matrix L such that
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(6.2) r==A +ZBZr.
Let V be an nx2 matrix such that

(6.3) LV =Z.

From (6.1) and (6.2), we then have

(6.4) t =LLr +ZBZr =L(I + VBVr)Lr.
Now construct a product Q of reflectors according to (2.3.2) such that

where K is a 2x2 matrix. Then from (6.4) we get

(6.6) =LQrQ(I + VBVr) QrQLr.
Now

(6.7) Q(I + VBVr)Qr =I +EBEr.
Since is positive definite, by Sylvester’s Law of Inertia, I + VBVr must be positive
definite as well as the 22 matrix I +KBKr. Hence there exists a lower triangular matrix
L such that

(6.8)

Let J be-the nn matrix

Then from (6.6), (6.7), and (6.8)

r =1 +KBKr.

(6.9) LQrJJrQLr

Let

H=LQr.
Because Q is composed of modified Householders as in (2.3.2), H will be zero above its
second superdiagonal. Because multiplying H by J on the fight only affects the first two
columns of H, the product

(6.10) H =HJ

will have zeros above the second superdiagonal, i.e., H will have the form

XXX

XXXX

XXXXX

XXXXXX

XXXXXX

Assume P is a sequence of standard Householder transformations that operates on H from
the fight and reduces it to the lower triangular matrix L. Then from (6.9)

(6.11) t=r=eprr=r.
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Thus we have the following algorithm:

Algorithm GC4
(1) Solve LV=Z for V.
(2) Find Q, a product of generalized Householder
transformations that reduce V to a 2x2 matrix, and
apply these transformations on the right to L to form
H.
(3) Determine/ in (6.8) and form as in (6.10).
(4) Reduce H to lower triangular form using a
sequence of standard Householder transformations.

Asymptotically, Algorithm GC4 requires n 2 +O(n) multiplications for step (1),
5n2/2+O(n) multiplications for step (2), O(n) multiplications for step (3), and
5n2/2+O(n) multiplications for step (4) for a total of lln2+O(n) multiplications. In
algorithm C4 of [5], if one uses planar Householder transformations requiring three multi-
plications for each vector application, the total operation count for two instances of Algo-
rithm C4 is 12n2+ O(n) multiplications. Thus one would not expect a huge speedup on
a scalar machine, but for a 100xl00 problem we did obtain a speedup of 1.29 on the
Sequent without multiprocessing.

However, on a parallel machine, one should be able to do a bit better using GC4.
First of all in step (1), one can solve the lower triangular system with two right-hand
sides simultaneously. Then in steps (2) and (4) the basic step has the general form

For j=l,.-.,n
Compute numbers a,b,c,e,f.
For i=j, ,n

Set d axxij + bxxi,j+ + C>(Xi,j+ 2"
Set xi,j=xi,j+d.
Set Xi,j+ -’Xi,j+ +dxe.
Set xi,j+ 2 xi,j+ 2 +dxf

which gives much room for parallelization and vectorization. On the Sequent with mul-
tiprocessing, the speedup for a 100xl00 problem was 1.53, a sizable increase from the
ratio without multiprocessing. As given in 8, many machines had ratios for two appli-
cations of C4 of [5] versus one application of GC4 in the range of 1.4.

7. Generalizing Algorithm C5. In this section we develop an algorithm that takes
advantage of the special structure of the Q and P matrices of 6. Let A be an nn sym-
metric positive definite matrix, and assume the lower triangular matrix L has been com-
puted such that

(7.1) A =LL r.
Assume Z is an nx2 matrix, B is a 2x2 symmetric matrix, and we wish to find a lower
triangular matrix L such that

(7.2) ,,r =, =A +ZBZr

Let V be an nx2 matrix such that

(7.3) LV =Z.

From (7.1) and (7.2), we have
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(7.4) =LLr +ZBZr =L(I + VBVr)L r.
From Lemma of 2, we know there exists a symmetric matrix C such that

(7.5) I + VBVr (I + VCVr)(I + VCrVr)
and hence from (7.4)

(7.6) =L(I + VCV )(I + VCrV L.
As in 6, let Q be a product of modified Householder transformations, as in (2.3.2),

such that

where K is a 2x2 matrix. Let

(7.8)

Then from (7.6)

S =Q(I + vcTvT)=Q + [] cvT"

(7.9) =L(I+VCVT) QTQ(I+vcTvT)LT=LsTSLT

Let us investigate the structure of S. Since we showed in 2 that Q was zero below
the second subdiagonal, S must be zero below the second subdiagonal. Moreover, its third
through nth rows are exactly those rows of Q and possess the special structure of that
matrix, i.e., the structure of (2.3.3).

From (7.7) we have

(7.10) V Qr [I]
which means that the first two rows of Q are linear combinations of the columns of V, at
least when V has rank 2. But from (2.3.3) these rows look like

fGrl
fGrJ’

where G is an nx2 matrix and f and f2 are each two-vectors. Thus G and V span the
same subspace, which means there is a 2x2 matrix M such that

(7.11) Gr=MVr.
In fact, because of the form of S, it must be another special matrix of the form H(V,F,)
with

(7.12) /=fM for i>2,
=Y flM + kl
=r =fM+kCrf

Thus S has the following form:
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(7.13)

--_T --_T --_T --_T T
1 fl V2 fl V3 fiVn-2 fl Vn-1 fl Vn

--_T --_T --_T --_T --_T

1 f2v2 fv3 f2vn-2 f’vn-1 f,Vn
--_T --_T .-=T --_T ’-=T

1 f3 V2 f3 V3 f3 Vn-2 f3 Vn-1 f3 Vn
--_T --_T --_T --_T

T2 fcv3 ftvn-2 ftvn-1 fcvn
T3

--_T -’_T --_T

/n-3 f-lVn-2 fn-lVn-1 f-lVn
Tn-2 1"1 n-2 gn-2

Now consider reducing S to triangular form using a sequence P of standard House-
holder transformations, each of which is designed to annihilate two elements of a three-
vector. Thus

P=Pn-IPn-2 P1
where P for < n 2 has the form

Ii_ 0 0

Pi 0 I- U(i) W(i) T 0
o 0 In_i+ 2

Now consider applying the middle submatrix of P to a vector

[- --_T --_T T

Vj fi+lVj fi+2Vj

We would get a vector of the form

Vj fi+ 1Vj fi+2Vj

where now

(7.14) /T (1 Uti) Wt’) )- Uti) W0 /T+I Uti) Wi) "/T+ 2.
iT+ ui) wti)T i i

--_T
+._-u) w) 2.)fi+ Ui> Wi> Ti+

"T ==T
fi +2 ui> wti> f Ui> Wi> /T+I -I- Ui> wi>)’/T+ 2"

The matrix Pn- is simply

Thus if PS =R, an upper triangular matrix, R would look like
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(7.15)

"T "T "T
1 fl V2 fl V3 fl Vn-1

"T "T
2 f2v3 f2Vn-1

3

n_3Vn_l
n-2 /1

n-

AT
f
"T
f2 Vn

n-3Vn

which might be generated as follows:

(7.16)

Set 51 "-1,01 "-2, and ’1 =(+x +[)1/2
For i=l, ,n-3

(i) 0 +Set -’wi) )i +W2 +2"
(i)Set [’i ) U

Set

Ui)Set Oi+
V
2 1/2Set ?i+1 (’/+1 "I’5/T+I V/2+l "I’0/T+I i+1

(n-2) 5 + (n-2) 0Set )=W n-2 W2 n-2"

Set 01 =rVn_ +wn-2)
rln-2-

(n-2)Set 02 =rvn +w3 lan_ 2.
(n-2)Set V1 =iS-2Vn-1-u 01.

Set 2 =iSr (n-2)
n_2Vn --U 02.

)2 n -’Un-2) )2 1/2Setn_l=((0nr_lVn_l-U(2n-2) 01 +(rl -2 01
Set V3 =c(0nr_l vn-u(2n-2) o2)+s(l.t,_2-u-2) o).
Set (n =S(0nr_ Vn-U(2n-2) 02)--C(n_2--Un-2) 02).

From (7.9) we have

which means that we need to determine the matrix =LRr. Because of the special form
of R, we may use an algorithm similar to that used in GC1, with the modification that we
are now working with general lower triangular matrices rather than unit lower triangular
matrices. Thus our generalization of C5 would be as follows:
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Algorithm GC5
(1) Set W(1) Z and solve LV Z for V.
(2) Solve for C of (7.5).
(3) Find the transformations that reduce V to upper triangular form; this
determines F and G and , of (2.3.3).
(4) Find M such that VMr=G and perform the transformations of
(7.12).
(5) For i=1, ,n

(a) Find i and i using the algorithm of (7.16).
(b) Forj=i+l, ,n

Set wJi+ l)T =wJi)T --ljivTi
(c) Forj=i+l,... ,n

Set li =ljii + wJi+ l)Ti.

Asymptotically, steps (1), (Sb), and (5c) require 7n2/2/O(n) operations. All the
other steps require O(n) operations or fewer. This is n2/2 operations fewer than two
applications of C5 and many fewer than GC4. On the Sequent without multiprocessing,
for a 100xl00 problem the ratio of two applications of C5 of [5] to one of GC5 was
1.25. The improvement was considerably less with multiprocessing than in other methods
because of the large number of scalar O(n) operations in steps (3) and (Sa). With mul-
tiprocessing the speedup was 1.34.

$. Summary. In this section we present our computational evidence. We imple-
mented in FORTRAN the algorithms given in [5] for rank corrections and the ones
given in 3 7 and ran them on a variety of machines.

The VAX 750 had floating point acceleration. The Convex was run with the 02
option specified, which turns on scalar optimization and vectorization. Although we were
using a Cray XMP, we were limited to one processor. On the Alliant, both vectorization
and concurrency were specified. The Sequent gives the user complete control of mul-
tiprocessing and only performs multiprocessing on command from the user. Our confi-
guration had 30 processors that may be run in parallel.

Tables 8.1, 8.2, 8.3, and 8.4 give our results on several machines for each size aver-
aged over 100 problems. We give raw times as well as speedup ratios so the reader can
compare algorithms as well as speedups. For each machine we give results for n 50 and
n 100 and for one or more larger values of n, which either might be considered "large"
for that particular machine or were at a point that the speedup ratios changed very little.
In Table 8.3 we give results for both versions of C3 and their generalizations for negative
definite updates. The unparenthesized numbers are for C3 and GC3N1 and the
parenthesized numbers are for the algorithm in [8] and [2] and its generalization GC3N2.
Note that the rank algorithms in [5] and those presented in the earlier sections of this
paper all vectorize and that all the algorithms are asymptotically O(n 2) The only non-
vector operations are of O(n). Sometimes on vector machines, these scalar operations
dominate the cost of the algorithm.

Our data indicates that on each machine the appropriate version of GC3 is the
method of choice for rank 2 updates. In all instances GC3N2 is preferable to GC3N1.



88 RICHARD BARTELS AND LINDA KAUFMAN

TABLE 8.1
Experience on several machines on C1-GC1, C2-GC2.

n two rank- i
C1-GC1
multiplications 2n 2 + O(n)
Vax 750 50 .149

100 .573
200 2.25

Convex 50 .00315
100 .00776
400 .0780

Cray XMP 50 .000265
100 .000673
400 .00603
800 .0211

Alliant 50 .00403
800 .348
1600 1.30
100 .00931

Sequent nomp 50 .125
100 .483
200 1.84

Sequent mp 50 .106
100 .238
200 .604

C2-GC2
multiplications 3n 2 +O(n)
Vax 750 50 .259

100 .928
200 3.59

Convex 50 .00564
100 .0128
400 .102

Cray 50 .000735
100 .00167
400 .0117
800 .0367

Alliant 50 .00789
100 .0174
800 .549
1600 1.97

Sequent nomp 50 .223
100 .798
200 3.03

Sequent mp 50 .220
100 .481
200 1.16

rank2 ratio

2n2+O(n)
.116
.452
1.77

.00246

.00615
.0608

.000195

.000524
.00517
.0185
.00288
.243
.905

.00665
.121
.456
1.72
.0712
.164
.450

3n2+O(n)
.209
.716
2.78

.00518
.0119
.0955

.000516

.00123
.00957
.0316
.00682
.0152
.440
1.62
.220
.763
2.85
.154
.347
.861

1.28
1.27
1.28
1.28
1.26
1.28
1.36
1.28
1.17
1.14
1.40
1.43
1.43
1.40
1.03
1.06
1.07
1.49
1.44
1.34

1.2,
1.30
1.29
1.09
1 .O8
1.07
1.42
1.36
1.22
1.16
1.16
1.15
1.25
1.22
.O2

1.05
1.07
1.42
1.39
1.35
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TABLE 8.2
Experience on several machines on C3-GC3.

C3-GC3
multiplications
Vax 750

Convex

Cray XMP

Alliant

Sequent nomp

Sequent mp

positive definite

C3-GC3

50
100
200
50
100
400
50
100
400
800
50
100
800
1600
5O
100
200
50
100
200

indefinite

two rank- rank 2

3n2+O(n)
.213
.751
2.77
.0047
.0106
.0795

.000564
.00127
.0105
.0335
.00661
.0154
.501
1.84
.215
.789
2.94
.139
.326
.834

5n2/2+O(n)
.137
.472
1.79
.0032
.00738
.0581

.000337

.000779
.0728
.0245
.00434
.0104
.356
1.32
.163
.598
2.27
.082
.196
.520

ratio

1.2
1.56
1.59
1.55
1.45
1.43
1.37
1.67
1.63
1.44
1.37
1.52
1.47
1.41
1.39
1.32
1.30
1.30
1.70
1.66
1.60

multiplications
Vax 750

Convex

Cray XMP

Alliant

Sequent nomp

Sequent mp

50
100
200
50
100
40
50
100
400
800
50
100
800
1600
50
100
200
50
100
200

7n2/2+0(n)
.206
.722
2.71

.00415

.00932

.00717
.000543
.00130
.0102
.0339
.00568
.0134
.459
1.70
.200
.738
2.83
.152
.352
.858

7n2/2+0(n)
.158
.554
2.04

.00379

.00853
.0652

.000406
.00102
.00899
.0311
.00408
.00985
.344
1.28
.175
.649
2.49
.100
.241
.610

1.31
1.30
1.33
1.09
1.09
1.10
1.34
1.28
1.14
1.09
1.39
1.32
1.33
1.33
1.14
1.14
1.13
1.52
1.46
1.41
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TABLE 8.3
Experience on several machines on C3-GC3N1, [2]-GC3N2 for negative definite B matrices.

2C3([2])
multiplications 4n z + O(n)
Vax 50 .292(.197)

100 1.06(.703)
200 4.00(2.64)

Convex 50 .00591 (.00372)
100 .0133(.00824)
400 .107(.0644)

Cray 50 .000831 (.000488)
100 .00195(.00118)
400 .0139(.0101)
800 .0447(.0338)

Alliant 50 .00912(.00472)
100 .0209(.0111)
800 .644(.428)
1600 2.43(1.58)

Sequent nomp 50 .363(.186)
100 1.36(.687)
200 5.22(2.62)

Sequent mp 50 .243(. 140)
100 .543(.322)
200 1.32(.805)

GC3NI(GC3N2)
7nZ/2+O(n)
.217(.147)
.770(.527)
2.90(2.02)

.00430(.00303)

.00993(.00688)
.0833(.0638)

.000586(.000324)
.00148(.000835)
.0119(.00797)
.0409(.0267)

.00650(.004000)
.0153(.00952)
.479(.333)
1.75(1.24)
.283(.166)
1.03(.623)
3.92(2.40)
.158(.0867)
.357(.205)
.886(.534)

ratios

1.35(1.34)
1.37(1.34)
1.38(1.31)
1.38(1.22)
1.34(1.20)
1.28(1.20)
1.42(1.50)
1.32(1.42)
1.16(1.27)
1.09(1.27)
1.40(1.19)
1.36(1.16)
1.34(1.29)
1.40(1.28)
1.29(1.12)
1.31(1.10)
1.33(1.09)
1.54(1.62)
1.52(1.57)
1.48(1.51)

One of the major thrusts of this project was the hope that for a rank 2 (or more
update one could take advantage of a multiprocessing environment. Our data indicates
that this is possible to an extent. We obtained rather respectable speedups in many cases.
Our success was limited by the fact that many of the generalizations had large 0(k2n)
scalar operations, for a rank k update. Thus for a rank 2 update the number of scalar
operations was at least four times the number for the rank case. This was particularly
true of GC2 and GC5.

This project has several aspects. First there was the mathematical aspect. In 2 we
proved several theorems that were the foundation of the generalizations of the two fastest
algorithms of the stable algorithms given in [5]. Throughout the paper we needed to prove
propositions about the positive definiteness of a variety of matrices. To make three of the
generalizations cost effective, we developed the concept of a modified Householder that
would eliminate elements in two vectors at once using a rank 1 correction of the identity.
There was the algorithmic aspect of generating the algorithms. Lastly there was the com-
putational aspect of trying to take advantage of new computing environments, which
ideally should lend themselves to such a project.
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TABLE 8.4
Experience on several machines for C4-GC4, C5-GC5.

C4-GC4
n two rank-

multiplications 12 n 2 +O(n)
Vax 750 50 .657

100 2.43
200 9.13

Convex 50 .0112
100 .0263
400 .216

Cray XMP 50 .00132
100 .00316
400 .0243
800 .0779

Alliant 50 .0156
100 .0344
800 .997
1600 3.71

Sequent nomp 50 .766
100 2.91
200 11.3

Sequent mp 50 .379
100 .891
200 2.29

c5-ac5

multiplications

Vax 750 50 .330
100 1.10
200 4.00

Convex 50 .00800
100 .0175
400 .126

Cray XMP 50 .00103
100 .00232
400 .0149
800 .0456

Alliant 50 .0105
100 .0219
800 .600
1600 2.16

Sequent nomp 50 .274
100 .978
200 3.69

Sequent mp 50 .248
100 .555
200 1.34

4n2+O(n)

rank 2

lln2+O(n)
. oo
1.84
7.00

.00761
.0181
.152

.000828
.00209
.0194
.0661
.0112
.0256
.751
2.79
.600
2.26
8.78
.239
.583
1.57

7n2- +O(n)

.250

.818
2.95

.00693
.0155
.111

.000776
.00179
.0123
.380

.00876
.0187
.4453
1.56
.239
.781
2.80
.184
.413
.986

ratio

1.09
1.31
1.31
1.30
1.47
1.46
1.42
1.60
1.51
1.25
1.18
1.39
1.35
1.33
1.33
1.28
1.29
1.28
1.58
1.53
1.46

1.14

1.35
1.35
1.36
1.15
1.13
1.13
1.33
1.30
1.21
1.20
1.20
1.17
1.35
1.38
1.15
1.25
1.32
1.34
1.34
1.36
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ERRATUM:
Block Kronecker Products and Block Norm Matrices

in Large-Scale Systems Analysis*

DAVID C. HYLAND AND EMMANUEL G. COLLINS, JR/f

In the above paper the last part to the proof of property (A. should read as follows:
Substituting 2.11 and 2.12 into 2.10 shows that vecb (ADB) may be expressed

as an r-partitioned vector where the qth-partition has dimension n nq and is given by

Z (B@AIj) vec (D:,)

(2.13) [vecb (ADB)]o
(Bq(R)A,_:) vec (D:,)

j

, (Bir(R)Ao) vec (Off)
J

When we use the definition of B @ A (see (2.5)), it follows that (2.13) is equivalent
to

(2.14)

vec (Dli)

vec (D2i)
[vecb (ADB)lq _, (B(R)A)

vec (Dri)

Property (A. follows from (2.14).
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